首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cary JW  Klich MA  Beltz SB 《Mycologia》2005,97(2):425-432
Most aspergilli that produce aflatoxin are members of Aspergillus section Flavi, however isolates of several Aspergillus species not closely related to section Flavi also have been found to produce aflatoxin. Two of the species, Aspergillus ochraceoroseus and an undescribed Aspergillus species SRRC 1468, are morphologically similar to members of Aspergillus section Circumdati. The other species have Emericella teleomorphs (Em. astellata and an undescribed Emericella species SRRC 2520) and are morphologically distinctive in having ascospores with large flanges. All these aflatoxin-producing isolates were from tropical zones near oceans, and none of them grew on artificial media at 37 C. Aflatoxins and sterigmatocystin production were quantified by high-pressure liquid chromatography (HPLC) and confirmed by HPLC-mass spectrometry (LC-MS) detection. Phylogenetic analyses were conducted on these four species using A. parasiticus and Em. nidulans, (which produce aflatoxin and the aflatoxin precursor sterigmatocystin, respectively) for comparison. Two aflatoxin/sterigmatocystin biosynthesis genes and the beta tubulin gene were used in the analyses. Results showed that of the new aflatoxin-producers, Aspergillus SRRC 1468 forms a strongly supported clade with A. ochraceoroseus as does Emericella SRRC 2520 with Em. astellata SRRC 503 and 512.  相似文献   

2.
AIMS: Section Flavi is one of the most significant sections in the genus Aspergillus. Taxonomy of this section currently depends on multivariate approaches, entailing phenotypic and molecular traits. This work aimed to identify isolates from section Flavi by combining various classic phenotypic and genotypic methods as well as the novel approach based on spectral analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF ICMS) and to evaluate the discriminatory power of the various approaches in species identification. METHODS AND RESULTS: Aspergillus section Flavi isolates obtained from Portuguese almonds were characterized in terms of macro- and micromorphology, mycotoxin pattern, calmodulin gene sequence and MALDI-TOF protein fingerprint spectra. For each approach, dendrograms were created and results were compared. All data sets divided the isolates into three groups, corresponding to taxa closely related to Aspergillus flavus, Aspergillus parasiticus and Aspergillus tamarii. In the A. flavus clade, molecular and spectral analyses were not able to resolve between aflatoxigenic and nonaflatoxigenic isolates. In the A. parasiticus cluster, two well-resolved clades corresponded to unidentified taxa, corresponding to those isolates with mycotoxin profile different from that expected for A. parasiticus.  相似文献   

3.
Aims:  To design the Aspergillus flavus and Aspergillus parasiticus -specific primers and a real-time PCR assay for quantification of the conidial density in soil.
Methods and Results:  Aspergillus flavus and A. parasiticus -specific DNA primers were designed based on internal transcribed spacer sequences to distinguish these two species and from other Aspergillus and other fungal species. A method of pathogen DNA extraction directly from soil samples was developed. Using the designed primers, a real-time PCR assay was developed to quantitatively determine the conidial density of each A. flavus and A. parasiticus in soil, after generating corresponding standard curves. Known conidial densities of each A. flavus or A. parasiticus in soil significantly correlated with those tested with the real-time PCR.
Conclusions:  This study demonstrated the applicability of the real-time PCR assay in studies of quantifying A. flavus and A. parasiticus in soil as inoculum sources.
Significance and Impact of the Study:  The A. flacus and A. parasitic -specific primers can be widely used in aflatoxin research. The real-time PCR assay developed in this study provides a potential approach to quantify the plant pathogen density from not only soil but also other sources in relation to aflatoxin contamination from environment, food and feed commodities.  相似文献   

4.
We characterize the mating-type genes in Aspergillus flavus,Aspergillus parasiticus and Petromyces alliaceus. A single MAT1-1 or MAT1-2 gene was detected in the genomes of A. flavus and A. parasiticus, which is consistent with a potential heterothallic organization of MAT genes in these species. In contrast, the only known, functionally homothallic species in Aspergillus section Flavi, P. alliaceus, has tightly linked (<2kb) MAT1-1 and MAT1-2 genes, typical of other self-fertile homothallic euascomycetes. This is the first example of linked MAT genes within a homothallic species of Aspergillus. We tested the null hypothesis of no significant difference in the frequency of MAT1-1 and MAT1-2 in A. flavus and A. parasiticus sampled from a single peanut field in Georgia. For each species, mating-type frequencies were determined for the total population samples and for samples that were clone-corrected based on vegetative compatibility groups (VCGs) and aflatoxin gene cluster haplotypes. There was no significant difference in the frequency of the two mating types for A. flavus and A. parasiticus in either VCG or haplotype clone-corrected samples. The existence of both mating-type genes in equal proportions in A. flavus and A. parasiticus populations, coupled with their expression at the mRNA level and the high amino acid sequence identity of MAT1-1 (77%) and MAT1-2 (83%) with corresponding homologs in P. alliaceus, indicates the potential functionality of these genes and the possible existence of a sexual state in these agriculturally important species.  相似文献   

5.
Accumulation of the carcinogenic mycotoxin aflatoxin B, has been reported from members of three different groups of Aspergilli (4) Aspergillus flavus, A. flavus var. parvisclerotigenus, A. parasiticus, A. toxicarius, A. nomius, A. pseudotamarii, A. zhaoqingensis, A. bombycis and from the ascomycete genus Petromyces (Aspergillus section Flavi), (2) Emericella astellata and E. venezuelensis from the ascomycete genus Emericella (Aspergillus section Nidulantes) and (3) Aspergillus ochraceoroseus from a new section proposed here: Aspergillus section Ochraceorosei. We here describe a new species, A. rambellii referable to Ochraceorosei, that accumulates very large amounts of sterigmatocystin, 3-O-methylsterigmatocystin and aflatoxin B1, but not any of the other known extrolites produced by members of Aspergillus section Flavi or Nidulantes. G type aflatoxins were only found in some of the species in Aspergillus section Flavi, while the B type aflatoxins are common in all three groups. Based on the cladistic analysis of nucleotide sequences of ITS1 and 2 and 5.8S, it appears that type G aflatoxin producers are paraphyletic and that section Ochraceorosei is a sister group to the sections Flavi, Circumdati and Cervini, with Emericella species being an outgroup to these sister groups. All aflatoxin producing members of section Flavi produce kojic acid and most species, except A. bombycis and A. pseudotamarii, produce aspergillic acid. Species in Flavi, that produce B type aflatoxins, but not G type aflatoxins, often produced cyclopiazonic acid. No strain was found which produce both G type aflatoxins and cyclopiazonic acid. It was confirmed that some strains of A. flavus var. columnaris produce aflatoxin B2, but this extrolite was not detected in the ex type strain of that variety. A. flavus var. parvisclerotigenus is raised to species level based on the specific combination of small sclerotia, profile of extrolites and rDNA sequence differences. A. zhaoqingensis is regarded as a synonym of A. nomius, while A. toxicarius resembles A. parasiticus but differs with at least three base pair differences. At least 10 Aspergillus species can be recognized which are able to biosynthesize aflatoxins, and they are placed in three very different clades.  相似文献   

6.
AIMS: The objectives of this study were: (i) to evaluate genetic relatedness among Aspergillus section Flavi strains isolated from soil and peanut seeds in Argentina; (ii) to determine if AFLP molecular markers could be useful to identify isolates up to species level, and to correlate these markers with the isolates' toxigenic potentials and/or vegetative compatibility group (VCG) affiliations. METHODS AND RESULTS: Amplified fragment length polymorphism (AFLPs) analysis was applied to compare 82 isolates of Aspergillus section Flavi. Cluster analysis showed a clear separation of A. flavus and A. parasiticus, and comparison of fingerprints revealed several specific markers for each group of isolates. AFLP analysis indicates that no genotypical differences can be established between aflatoxigenic and nonaflatoxigenic producers in both species analysed. In addition, candidate AFLP markers associated with a particular VCG were not found. CONCLUSIONS: There was a concordance between morphological identification and separation up to species level using molecular markers. The findings of specific bands for A. flavus and A. parasiticus may be useful for the design of specific PCR primers in order to differentiate these species and detect them in food. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study provides new data on molecular characterization of Aspergillus section Flavi in Argentina.  相似文献   

7.
Aflatoxins are toxic and carcinogenic polyketides produced by several Aspergillus species that are known to contaminate agricultural commodities, posing a serious threat to animal and human health. Aflatoxin (AF) biosynthesis is almost fully characterized and involves the coordinated expression of approximately 25 genes clustered in a 70-kb DNA region. Aspergillus parasiticus is an economically important and common agent of AF contamination. Naturally occurring nonaflatoxigenic strains of A. parasiticus are rarely found and generally produce O-methylsterigmatocystin (OMST), the immediate precursor of AF. To elucidate the evolutionary forces acting to retain AF and OMST pathway extrolites (chemotypes), we sequenced 21 intergenic regions spanning the entire cluster in 24 A. parasiticus isolates chosen to represent the genetic diversity within a single Georgia field population. Linkage disequilibrium analyses revealed five distinct recombination blocks in the A. parasiticus cluster. Phylogenetic network analyses showed a history of recombination between chemotype-specific haplotypes, as well as evidence of contemporary recombination. We performed coalescent simulations of variation in recombination blocks and found an approximately twofold deeper coalescence for cluster genealogies compared to noncluster genealogies, our internal standard of neutral evolution. Significantly deeper cluster genealogies are indicative of balancing selection in the AF cluster of A. parasiticus and are further corroborated by the existence of trans-species polymorphisms and common haplotypes in the cluster for several closely related species. Estimates of Ka/Ks for representative cluster genes provide evidence of selection for OMST and AF chemotypes, and indicate a possible role of chemotypes in ecological adaptation and speciation.  相似文献   

8.
Horn BW 《Mycologia》2005,97(1):202-217
Soil is a source of primary inoculum for Aspergillus flavus and A. parasiticus, fungi that produce highly carcinogenic aflatoxins in peanuts. Aflatoxigenic fungi commonly invade peanut seeds during maturation, and the highest concentrations of aflatoxins are found in damaged seeds. A laboratory procedure was developed in which viable peanut seeds were wounded and inoculated with field soil containing natural populations of fungi, then incubated under different conditions of seed water activity and temperature. Densities of Aspergillus section Flavi in soil used for inoculating seeds were low relative to the total numbers of filamentous fungi (<1%). Aspergillus species from section Flavi present in soil included A. flavus morphotypes L and S strains, A. parasiticus, A. caelatus, A. tamarii and A. alliaceus. Wounding was required for high incidences of fungal colonization; viability of wounded seeds had little effect on colonization by Aspergillus species. Peanut seeds were colonized by section Flavi species as well as A. niger over broad ranges of water activity (0.82-0.98) and temperature (15-37 C), and the highest incidences of seed colonization occurred at water activities of 0.92-0.96 at 22-37 C. A. parasiticus colonized peanut seeds at lower temperatures than A. flavus, and cool soil temperatures relative to temperatures of aerial crop fruits might explain why A. parasiticus is found mostly in peanuts. Other fungi, dominated by the genera Penicillium, Fusarium and Clonostachys, colonized seeds primarily at water activities and temperatures suboptimal for section Flavi species and A. niger. Eupenicillium ochrosalmoneum frequently sporulated on the conidial heads of section Flavi species and showed specificity for these fungi. The inoculation of wounded viable peanut seeds with soil containing natural populations of fungi provides a model system for studying the infection process, the interactions among fungi and those factors important in aflatoxin formation.  相似文献   

9.
The Aspergillus genus belongs to a filamentous fungal group characterized by wide dispersion in the environment. Some species are associated with diseases, especially in immunocompromised patients, while others are of economical importance due to aflatoxin production or biotechnological applications. Its species identification is nowadays performed by traditional techniques combined with molecular markers, resulting in a higher efficiency of isolate characterization. In the present study, internal transcribed spacer, inter-simple sequence repeats (ISSR), and random amplified polymorphic DNA (RAPD) molecular markers were used, with the aim of genetically characterizing strains of Aspergillus flavus and strains of other species of the A. flavus group. High genetic diversity was revealed by RAPD and by ISSR, in which the use of the (GACA)4 primer yielded a higher diversity than with the (GTG)5 primer, although the latter showed a characteristic banding profile for each species. These data were used to create a similarity matrix for the construction of dendrograms by means of the UPGMA method. The ISSR and RAPD profiles showed that among the strains previously identificated as A. flavus, one should be A. oryzae, one A. parasiticus and two A. tamarii. On the other hand, a strain previously identified as A. parasiticus should be A. flavus. All these strains were retested by traditional methods and their new species identification was confirmed. These results strongly support the need for using molecular markers as an auxiliary tool in differentiating fungal species and strains.  相似文献   

10.
An effective selective medium for the enumeration of Aspergillus flavus and Aspergillus parasiticus has been developed by modification of Bothast and Fennell's Aspergillus Differential Medium. Results can be obtained with the new medium, Aspergillus flavus and parasiticus Agar (AFPA), after 42 h incubation at 30°C. The medium is thus suitable for use in quality control as a guide to the presence of A. flavus and, potentially, of aflatoxins. AFPA has been extensively tested on peanuts and soils. Results were reproducible and comparable with those on standard fungal enumeration media incubated for much longer periods. A very low percentage of false positives or negatives was found.  相似文献   

11.
An effective selective medium for the enumeration of Aspergillus flavus and Aspergillus parasiticus has been developed by modification of Bothast and Fennell's Aspergillus Differential Medium. Results can be obtained with the new medium, Aspergillus flavus and parasiticus Agar (AFPA), after 42 h incubation at 30 degrees C. The medium is thus suitable for use in quality control as a guide to the presence of A. flavus and, potentially, of aflatoxins. AFPA has been extensively tested on peanuts and soils. Results were reproducible and comparable with those on standard fungal enumeration media incubated for much longer periods. A very low percentage of false positive or negatives was found.  相似文献   

12.
A new readily-prepared medium, coconut cream agar, was developed for the detection of aflatoxin production by isolates of Aspergillus flavus and related species. Coconut cream agar, which comprised coconut cream (50%) and agar (1.5%), detected isolates of A. flavus more effectively than the synthetic media tested and was as effective as media containing desiccated coconut. Fluorescence colouring of colonies grown on coconut cream agar could be used to differentiate A. flavus from A. parasiticus and A. nomius. In addition, conidial colour of A. flavus and A. nomius was quite distinct from that of A. parasiticus.  相似文献   

13.
甘草药材上的污染真菌类群及其产毒素特性   总被引:5,自引:0,他引:5  
陈娟  杨蕾  蔡飞  杨美华  高微微 《菌物学报》2010,29(3):335-339
对药材市场上霉变甘草样品的污染真菌进行分析,共得到4属7种真菌,包括Penicillium、Aspergillus、Fusarium、Mucor属,其中Penicillium polonicum、Aspergillus parasiticus以及P.crustosum是优势真菌。采用高效液相色谱-质谱联用技术对优势菌菌株产黄曲霉毒素及赭曲霉毒素A的特性进行检测。结果表明A.parasiticus主要产生黄曲霉毒素(AFG2、AFG1、AFB2、AFB1)和赭曲霉毒素A(OTA);而Penicillium polonicum主要产生赭曲霉毒素A(OTA)。  相似文献   

14.
At one end of the 70 kb aflatoxin biosynthetic pathway gene cluster in Aspergillus parasiticus and Aspergillus flavus reported earlier, we have cloned a group of four genes that constitute a well-defined gene cluster related to sugar utilization in A. parasiticus: (1) sugR, (2) hxtA, (3) glcA and (4) nadA. No similar well-defined sugar gene cluster has been reported so far in any other related Aspergillus species such as A. flavus, A. nidulans, A. sojae, A. niger, A. oryzae and A. fumigatus. The expression of the hxtA gene, encoding a hexose transporter protein, was found to be concurrent with the aflatoxin pathway cluster genes, in aflatoxin-conducive medium. This is significant since a close linkage between the two gene clusters could potentially explain the induction of aflatoxin biosynthesis by simple sugars such as glucose or sucrose.  相似文献   

15.
The Aspergillus parasiticus aflR gene, a gene that may be involved in the regulation of aflatoxin biosynthesis, encodes a putative zinc finger DNA-binding protein. PCR and sequencing were used to examine the presence of aflR homologs in other members of Aspergillus Section Flavi. The predicted amino acid sequences indicated that the same zinc finger domain, CTSCASSKVRCTKEKPACARCIERGLAC, was present in all of the Aspergillus sojae, Aspergillus flavus, and Aspergillus parasiticus isolates examined and in some of the Aspergillus oryzae isolates examined. Unique base substitutions and a specific base deletion were found in the 5' untranslated and zinc finger region; these differences provided distinct fingerprints. A. oryzae and A. flavus had the T-G-A-A-X-C fingerprint, whereas A. parasiticus and A sojae had the C-C-C-C-C-T fingerprint at the corresponding positions. Specific nucleotides at positions -90 (C or T) and -132 (G or A) further distinguished A. flavus from A. oryzae and A. parasiticus from A. sojae, respectively. A sojae ATCC 9362, which was previously designated A. oryzae NRRL 1988, was determined to be a A. sojae strain on the basis of the presence of the characteristic fingerprint, A-C-C-C-C-C-C-T. The DNAs of other members of Aspergillus Section Flavi, such as Aspergillus nomius and Aspergillus tamarii, and some isolates of A. oryzae appeared to exhibit low levels of similarity to the A. parasiticus aflR gene since low amounts of PCR products or no PCR products were obtained when DNAs from these strains were used.  相似文献   

16.
Kinetic pulse-labeling of aflatoxin pathway compounds was carried out in Aspergillus parasiticus, beginning with radioactive acetate. Norsolorinic acid, averufin, versicolorin A, and sterigmatocystin (all known as compounds which can be incorporated into the aflatoxin molecule) were radiotraced to follow their order of appearance. Aflatoxin species B1, B2, G1, and G2 were included. Norsolorinic acid and averufin appeared as early transient intermediates followed in order by versicolorin A, aflatoxins, and sterigmatocystin. To date, a mutually confirming array of results has been obtained with established precursors in wild-type strains of A. parasiticus and A. versicolor (as well as with an aflatoxin pathway mutant of A. parasiticus), which together establish a practical methodology for recognition of new pathway intermediates. The kinetic of pulse-labeling for sterigmatocystin in relation to aflatoxins suggests that duel branchlets may exist to flatoxins; i.e., sterigmatocystin may not be an obligatory aflatoxin precursor.  相似文献   

17.
The effect of sodium biselenite on the growth of nine isolates from Aspergillus , including an afiatoxin-producing strain of Aspergillus parasiticus , was studied on plates of Czapek Dox agar and in the chemically defined medium of Reddy et al. (1971). Selenite (40 μ/ml) causes some inhibition of the growth of all the isolates tested and induces the formation of an orange pigment in the mycelium of all species except A. niger . The intensity of pigmentation of colonies of A. parasiticus increased with reduced growth brought about by increased concentration of selenite and the production of aflatoxin was quantitatively affected by the presence of selenite.  相似文献   

18.
Aspergillus spp. are frequently occurring seed-colonizing fungi that complete their disease cycles through the development of asexual spores, which function as inocula, and through the formation of cleistothecia and sclerotia. We found that development of all three of these structures in Aspergillus nidulans, Aspergillus flavus, and Aspergillus parasiticus is affected by linoleic acid and light. The specific morphological effects of linoleic acid include induction of precocious and increased asexual spore development in A. flavus and A. parasiticus strains and altered sclerotium production in some A. flavus strains in which sclerotium production decreases in the light but increases in the dark. In A. nidulans, both asexual spore production and sexual spore production were altered by linoleic acid. Spore development was induced in all three species by hydroperoxylinoleic acids, which are linoleic acid derivatives that are produced during fungal colonization of seeds. The sporogenic effects of these linoleic compounds on A. nidulans are similar to the sporogenic effects of A. nidulans psi factor, an endogenous mixture of hydroxylinoleic acid moieties. Light treatments also significantly increased asexual spore production in all three species. The sporogenic effects of light, linoleic acid, and linoleic acid derivatives on A. nidulans required an intact veA gene. The sporogenic effects of light and linoleic acid on Aspergillus spp., as well as members of other fungal genera, suggest that these factors may be significant environmental signals for fungal development.  相似文献   

19.
Soil is a reservoir for Aspergillus flavus and A. parasiticus, fungi that commonly colonize peanut seeds and produce carcinogenic aflatoxins. Densities of these fungi in soil vary greatly among fields and may influence the severity of peanut infection. This study examined the relationship between soil density of Aspergillus species and the incidence of peanut seed colonization under laboratory conditions. Viable peanut seeds were wounded and inoculated with 20 soils differing in composition and density of Aspergillus species and were then incubated for 14 days at 37 degrees C (seed water activity = 0.92). The effect of soil density of individual section Flavi species (A. flavus strains L and S, A. parasiticus, A. caelatus, and A. tamarii), section Nigri, and A. terreus on the incidence of seed colonization was best expressed as a function of exponential rise to maximum. Exponential curves often rose to maximum percentages of seed colonization by section Flavi species that were well below 100% despite high species densities in some soils. Competition primarily among section Flavi species may explain the reduced incidences of seed colonization. An average of two or fewer propagules of each Aspergillus species in the soil at the wound site was required for colonization of 20% of peanut seeds. Other fungal species were capable of invading peanut seeds only when soil densities of sections Flavi and Nigri species were low.  相似文献   

20.
The trpC gene in the tryptophan biosynthetic pathway was isolated from an aflatoxigenic Aspergillus parasiticus by complementation of an Escherichia coli trpC mutant lacking phosphoribosylanthranilate isomerase (PRAI) activity. The cloned gene complemented an E. coli trpC mutant deficient in indoleglycerolphosphate synthase (IGPS) activity as well as an Aspergillus nidulans mutant strain that was defective in all three enzymatic activities of the trpC gene (glutamine amidotransferase, IGPS, and PRAI), thus indicating the presence of a complete and functional trpC gene. The location and organization of the A. parasiticus trpC gene on the cloned DNA fragment were determined by deletion mapping and by hybridization to heterologous DNA probes that were prepared from cloned trpC genes of A. nidulans and Aspergillus niger. These experiments suggested that the A. parasiticus trpC gene encoded a trifunctional polypeptide with a functional domain structure organized identically to those of analogous genes from other filamentous fungi. The A. parasiticus trpC gene was expressed constitutively regardless of the nutritional status of the culture medium. This gene should be useful as a selectable marker in developing a DNA-mediated transformation system to analyze the aflatoxin biosynthetic pathway of A. parasiticus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号