首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We located the cleavage sites for restriction endonucleases EcoRI, HindIII, and BamHI on the genome of bovine adenovirus 7. Cross-hybridization at reduced stringency revealed two regions of homology shared by the DNA of human adenovirus 2 and bovine adenoviruses 7 and 3. These regions correspond to the hexon and the IVa2 protein genes of the human adenovirus. Another region of homology shared only by the human adenovirus and bovine adenovirus 7 corresponded to the penton or the polypeptide IIIa genes. These results allowed us to align the restriction map of bovine adenovirus 7 with respect to the other adenoviruses.  相似文献   

2.
3.
A highly oncogenic monkey adenovirus SA7(C8) facilitates the reproduction of human adenovirus type 2 (Ad2) in monkey cells. Upon mixed infection of monkey cells with both viruses, these viruses recombine producing defective adeno-adeno hybrids Ad2C8 serologically identical to Ad2 and capable of assisting Ad2 to reproduce in monkey cells. Ad2C8 and Ad2 form an intercomplementary pair inseparable in monkey cells. Unlike oncogenic SA7(C8), Ad2C8 is a nononcogenic virus for hamsters but is able to induce tumor antigens of this virus (T and TSTA). Molecular genetic analysis of 68 clones of adeno-adeno hybrids revealed that the left part of their genome consists of Ad2 DNA, and the right part contains no less than 40% of the viral SA7(C8) genome where E2A, E3, and E4 genes are located. Apparently, the products of these genes contribute to the composition of adenoviral tumor antigens, while the E4 gene is involved in complementation of monkey and human adenoviruses and makes a contribution to host range determination of these viruses.  相似文献   

4.
Some genital human papillomavirus (HPV) types, such as 16 and 18, are highly associated with malignant cervical tumors while others, such as HPV 6, are only rarely found in these malignancies. The E7 oncoproteins of HPV 6, 16 and 18 each have a 17 amino acid region with striking homology to adenovirus E1a and SV40 LT. E1a, LT and the E7 oncoprotein of HPV16 all bind the cellular Rb protein in vitro, and for E1a and LT this region of homology contains sequences essential for interaction with Rb. We have now found that in HPV 16 E7 this region (amino acids 21-37) contains two separate biochemical activities, each of which contributes to E7-mediated transformation. Rb binding was localized to the N terminus of this region, while the C terminus was shown to serve as a substrate for casein kinase (CK) II, which phosphorylated serine-31 and serine-32. Replacement of the two serines by non-phosphorylatable amino acids led to a reduction in transforming activity and abolished phosphorylation but did not affect Rb binding. Rb binding and CK II phosphorylation were also examined for the E7 proteins of HPV 6 and HPV 18. HPV 16 and 18 E7 bound similar amounts of Rb, but HPV 6 E7 consistently bound less. Phosphorylation rates also varied, with HPV 18 E7 being 2-fold faster than HPV 16 E7, which in turn was 2-fold faster than HPV 6 E7. We conclude that Rb binding and phosphorylation of E7 by CKII are independent activities which are required for efficient transformation by E7 and that these activities correlate directly with the relative oncogenic potential of these viruses.  相似文献   

5.
A point mutational analysis of human papillomavirus type 16 E7 protein.   总被引:44,自引:23,他引:21       下载免费PDF全文
The E7 open reading frame of human papillomavirus type 16 (HPV16) has been shown to be selectively retained in cervical tumors and to encode both transforming and trans-activating functions in murine cells, supporting the notion that expression of E7 contributes towards the progression of premalignant cervical lesions. A comparison among E7 sequences of different HPV types reveals some homology at the amino acid level. Of particular interest are two regions, one which contains significant homology to a region of adenovirus E1a and simian virus 40 large T (LT), and a second region which contains two conserved Cys-X-X-Cys motifs. To determine the importance of these domains to the function of the E7 protein, a series of mutants carrying substitutions at amino acids in the region of E1a-LT homology and at the Cys-X-X-Cys motifs were constructed. The mutated E7 sequences were placed under the control of a strong heterologous promoter (Moloney long terminal repeat), and the activity of the mutants was assayed in NIH 3T3 cells, a cell line in which both the transforming function and the trans-activating function of E7 could be determined. A single amino acid substitution analogous to a mutation in E1a which destroys the transforming ability of this protein abolished both transformation and trans-activation by E7. Mutations at the Cys-X-X-Cys motifs demonstrated that this region contributes to the transforming potential of E7, although proteins in which both motifs were interrupted retained a low level of transforming activity. Mutations in the region of E1a-LT homology which occur within a recognition sequence for casein kinase II did not markedly affect transforming activity of E7 but severely reduced trans-activating ability. This indicates that efficient trans-activation is not required for transformation by HPV16 E7 in these cells.  相似文献   

6.
A highly oncogenic monkey adenovirus SA7(C8) facilitates the reproduction of human adenovirus type 2 (Ad2) in monkey cells. Upon mixed infection of monkey cells with both viruses, these viruses recombine producing defective adeno-adeno hybrids Ad2C8 serologically identical to Ad2 and capable of assisting Ad2 to reproduce in monkey cells. Ad2C8 and Ad2 form an intercomplementary pair inseparable in monkey cells. Unlike oncogenic SA7(C8), Ad2C8 is a nononcogenic virus for hamsters but is able to induce tumor antigens of this virus (T and TSTA). Molecular genetic analysis of 68 clones of adeno-adeno hybrids revealed that the left part of their genome consists of Ad2 DNA, and the right part contains no less than 40% of the viral SA7(C8) genome where E2A, E3, and E4 genes are located. Apparently, the products of these genes contribute to the composition of adenoviral tumor antigens, while the E4 gene is involved in complementation of monkey and human adenoviruses and makes a contribution to host range determination of these viruses.  相似文献   

7.
8.
Replication-Defective Vector Based on a Chimpanzee Adenovirus   总被引:5,自引:0,他引:5       下载免费PDF全文
An adenovirus previously isolated from a mesenteric lymph node from a chimpanzee was fully sequenced and found to be similar in overall structure to human adenoviruses. The genome of this virus, called C68, is 36,521 bp in length and is most similar to subgroup E of human adenovirus, with 90% identity in most adenovirus type 4 open reading frames that have been sequenced. Substantial differences in the hexon hypervariable regions were noted between C68 and other known adenoviruses, including adenovirus type 4. Neutralizing antibodies to C68 were highly prevalent in sera from a population of chimpanzees, while sera from humans and rhesus monkeys failed to neutralize C68. Furthermore, infection with C68 was not neutralized from sera of mice immunized with human adenovirus serotypes 2, 4, 5, 7, and 12. A replication-defective version of C68 was created by replacing the E1a and E1b genes with a minigene cassette; this vector was efficiently transcomplemented by the E1 region of human adenovirus type 5. C68 vector transduced a number of human and murine cell lines. This nonhuman adenoviral vector is sufficiently similar to human serotypes to allow growth in 293 cells and transduction of cells expressing the coxsackievirus and adenovirus receptor. As it is dissimilar in regions such as the hexon hypervariable domains, C68 vector avoids significant cross-neutralization by sera directed against human serotypes.  相似文献   

9.
It was for the first time that complementation between the human and simian adenoviruses in human cells as well as the ability of the human adenovirus Ad2 (HADv2) genome to transform completely into the simian adenovirus SA7(C8) (SADv15) capsid (transcapsidation) was demonstrated. A defective adeno-adeno hybrid (recombinant) between the above viruses is described; the recombinant has the SA7(C8) capsid and Ad2 genome with a 10% insertion of SA7(C8) in the central region. Defective hybrid virions are able to replicate both in human and simian cells by using the SA7(C8) virus as helper. The hybrid virions help the above virus to replicate in human cells: they form a mutually complementing virion pair.  相似文献   

10.
N Dyson  K Buchkovich  P Whyte  E Harlow 《Cell》1989,58(2):249-255
The association between the retinoblastoma protein (p105-RB) and either the large T antigen of SV40 or the E1A proteins of adenovirus is thought to be an important step in transformation by these viral oncogenes. E1A and large T antigen share a small region of amino acid homology that is necessary for high affinity binding with p105-RB. Mutations of this homology region were shown to reduce drastically the frequency of transformation mediated by the E1A or large T oncogenes. Previously, this small region in E1A was shown to be sufficient for interaction with a second cellular protein of 107,000 daltons (107K). Here we show that in human cells, the large T antigens of SV40 or JC virus also form complexes with 107K. Demonstration of complexes between 107K and the large T antigens of SV40 and JC virus suggests that these associations may represent another component of a common mechanism for transformation between adenoviruses and polyoma viruses.  相似文献   

11.
Virus specific, major histocompatibility complex-restricted, cytotoxic T lymphocytes (CTL) generated in Fischer strain rats infected with human adenovirus type 5 (Ad5) were found to recognize antigenic determinants encoded within the Ad5 early region 1A (E1A) gene. Preliminary mapping studies suggest that the E1A CTL epitopes are encoded within the regions between bp 625 to 810 and 916 to 974 in the first exon of this gene. These epitope-coding regions occur within subregions of E1A that are conserved functionally, and to some extent structurally (approximately 50% sequence homology), among adenoviruses of different groups. Nevertheless, Ad5-specific CTL lysed only targets infected with adenoviruses of the same group (group C; e.g., Ad2) and not targets infected with adenoviruses of different groups (groups A, B, and E). These results suggest that virus-specific CTL may limit adenoviral dissemination by destroying virus-infected cells at an early stage in the viral replicative cycle, during E1A gene expression. Expression of other adenovirus genes does not appear to be required to target infected cells for elimination by CTL.  相似文献   

12.
The left end of the genome of mouse adenovirus type 1 (also known as strain FL) was characterized by determination of the DNA sequence, amino acid similarities with early region proteins of primate adenoviruses, and a functional assay. Several specific DNA sequence features were similar to those found in human adenoviruses, and open reading frames from this region could encode proteins similar to human adenovirus early region 1A and early region 1B proteins. DNAs from this region were tested in transient-expression assays in human and mouse cells were found to transactivate the human adenovirus type 5 early region 3 promoter fused to the chloramphenicol acetyltransferase gene. The data indicate structural and functional homologies between mouse adenovirus type 1 early region 1 and early region 1 of primate adenoviruses.  相似文献   

13.
14.
J W Lillie  M Green  M R Green 《Cell》1986,46(7):1043-1051
  相似文献   

15.
16.
The avian adenovirus CELO can, like the human adenoviruses, transform several mammalian cell types, yet it lacks sequence homology with the transforming, early regions of human adenoviruses. In an attempt to identify how CELO virus activates the E2F-dependent gene expression important for S phase in the host cell, we have identified two CELO virus open reading frames that cooperate in activating an E2F-inducible reporter system. The encoded proteins, GAM-1 and Orf22, were both found to interact with the retinoblastoma protein (pRb), with Orf22 binding to the pocket domain of pRb, similar to other DNA tumor virus proteins, and GAM-1 interacting with pRb regions outside the pocket domain. The motif in Orf22 responsible for the pRb interaction is essential for Orf22-mediated E2F activation, yet it is remarkably unlike the E1A LxCxD and may represent a novel form of pRb-binding peptide.  相似文献   

17.
18.
Physical organization of subgroup B human adenovirus genomes.   总被引:21,自引:13,他引:8       下载免费PDF全文
Cleavage sites of nine bacterial restriction endonucleases were mapped in the DNA of adenovirus type 3 (Ad3) and Ad7, representative serotypes of the "weakly oncogenic" subgroup B human adenoviruses. Of 94 sites mapped, 82 were common to both serotypes, in accord with the high overall sequence homology of DNA among members of the same subgroups. Of the sites in Ad3 and Ad7 DNA, fewer than 20% corresponded to mapped restriction sites in the DNA of Ad2 or Ad5. The latter serotypes represent the "nononcogenic" subgroup C, having only 10 to 20% overall sequence homology with the DNA of subgroup B adenoviruses. Hybridization mapping of viral mRNA from Ad7-infected cells resulted in a complex physical map that was nearly identical to the map of early and late gene clusters in Ad2 DNA. Thus the DNA sequences of human adenoviruses of subgroups B and C have significantly diverged in the course of viral evolution, but the complex organization of the adenovirus genome has been rigidly conserved.  相似文献   

19.
The E1A gene of highly oncogenic type 12 adenovirus (Ad12) possesses a segment unique to this serotype and comprising 60 base pairs contiguous with and separating conserved regions 2 and 3 in the gene. A similar but slightly longer segment is also present in the E1A gene of highly oncogenic simian adenovirus type 7 (D. Kimelman, J. S. Miller, D. Porter, and B. E. Roberts, J. Virol. 53:399-409, 1985). This segment is missing entirely from the E1A gene of type 5 adenovirus, which is nononcogenic. To test the hypothesis that this unique separating or "spacer" region influences the oncogenicity of Ad12, we constructed ClaI and SmaI restriction sites on either side of it, which allowed reciprocal exchange between this and the equivalent cassette from type 5 adenovirus E1A, bounded by the same restriction sites intrinsic to that gene. The resultant Ad12-based chimeric viruses, ch702 and ch704, in which the spacer region is replaced with (in-frame) type 5 sequence, grow normally on human A549 cells and display wild-type transformation frequencies on baby rat and mouse kidney cells. In contrast, the oncogenic capacity of these chimeric viruses, as measured by tumor induction following virus inoculation in Hooded Lister rats, is greatly reduced. Likewise, cells transformed by ch702 and ch704 display reduced tumorigenicity compared with wild-type transformants in syngeneic rats. These results, coupled with recent preliminary tests using a mutant with a point mutation in this region, support the view that the unique spacer region of type 12 is an oncogenic determinant of this virus.  相似文献   

20.
Mutational analysis of human papillomavirus type 16 E7 functions.   总被引:20,自引:12,他引:8       下载免费PDF全文
The human papillomavirus type 16 E7 gene encodes a nuclear oncoprotein (98 amino acids [AAs] long) consisting of three regions: regions 1 (AAs 1 to 20) and 2 (AAs 21 to 40), which show high homology to the sequences of conserved domains 1 and 2, respectively, of adenovirus E1A; and region 3 (AAs 41 to 98) containing two metal-binding motifs Cys-X-X-Cys (AAs 58 and 91 to 94). We constructed AA deletion (substitution) mutants and single-AA substitution mutants of E7 placed under the control of the simian virus 40 promoter and examined their biological functions. Stable expression of E7 protein in monkey COS-1 cells required almost the entire length of E7 and was markedly lowered by the mutations in region 3. Transactivation of the adenovirus E2 promoter in monkey CV-1 cells was lowered by the mutations. It was abolished by changing Cys-24 to Gly and markedly decreased by a mutation at His-2 or at the metal-binding motifs in region 3. Focal transformation of rat 3Y1 cells by E7 was eliminated by changing His-2 to Asp or Cys-24 to Gly and was greatly impaired by changing Cys-61 or Cys-94 to Gly. The transforming function survived mutations at Leu-13 and Cys-68 and deletion of Asp-Ser-Ser (AAs 30 to 32). The data suggest that regions 1 to 3 are required for its functions and that the meta-binding motifs in region 3 are required to maintain a stable or functional structure of the E7 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号