首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the muscarinic agonist carbamylcholine on cytoplasmic Ca2+ concentration ([Ca2+]i was examined at the single cell level in clonal pancreatic beta-cells (HIT). Cells were loaded with the indicator dye fura 2, and [Ca2+]i was measured by microfluorimetry. Carbamylcholine induced changes in Ca2+ that differed from cell to cell and provoked in some cells oscillatory Ca2+ fluctuations. During a transient, free Ca2+ rose to a peak within 1-3 s. The frequency of the oscillations increased with agonist concentration. Oscillations in [Ca2+]i occurred in the absence of external Ca2+. When cells were perifused for a sufficient period of time without carbamylcholine, near identical Ca2+ responses were elicited in each cell by successive applications of the agonist. Thus, individual cells displayed characteristic and reproducible Ca2+ responses with respect to amplitude, frequency, and shape of the transients as well as latency in onset of the initial Ca2+ rise. We propose that the biological response to a Ca2+ agonist in a given cell is not only determined by the frequency and amplitude of Ca2+ oscillations but is governed by the unique pattern of the Ca2+ signal of each cell, which may be termed "Ca2+ fingerprint."  相似文献   

2.
A basic endopolygalacturonase (PG) isoform, produced early by Sclerotinia sclerotiorum when infecting soybean seedlings, was used to examine the signaling role of the enzyme in aequorin-expressing soybean cells. A cytosolic Ca2+ elevation was induced, with a rapid increase (phase 1) and a very slow decrease (phase 2) of Ca2+ concentration, indicating the involvement of Ca2+ ions in PG signaling. Within 1 h of PG-cell contact a remarkable level of cell death was recorded, significantly higher than the control cell culture turnover. The observed morphological and biochemical changes were indicative of the activation of programmed cell death; in particular, cytochrome c release in the cytoplasm and activation of both caspase 9-like and caspase 3-like proteases were found. When a polygalacturonase-inhibiting protein (PGIP) and the PG were simultaneously applied to cells, both the Ca2+ increase and cell death were annulled. The possible roles of prolonged sustained cytosolic Ca2+ concentrations in inducing cell death and of the PG-PGIP interaction in preventing PG signaling are discussed.  相似文献   

3.
The effect of anoxia and substrate removal on cytosolic free calcium (Ca2+i), cell calcium, ATP content, and calcium efflux was determined in cultured monkey kidney cells (LLC-MK2) exposed to 95% N2, 5% CO2 for 60 min. In the control period, the basal Ca2+i level was 70.8 +/- 9.4 nM. During 1 h of anoxia without substrate, ATP content decreased 70%, Ca2+i and calcium efflux increased 2.5-fold, while the total cell calcium did not change. When the cells were perfused again with O2 and 5 mM glucose, the ATP concentration, Ca2+i, and calcium efflux returned to control levels within 15-20 min. In the presence of 20 mM glucose, anoxia did not produce any change in ATP, in Ca2+i or in calcium efflux. An important source of calcium contributing to the rise in Ca2+i induced by anoxia appears to be extracellular because the rate of rise in Ca2+i is proportional to the extracellular calcium concentration, and because La3+ which blocks calcium influx greatly reduces the rise in Ca2+i. Mitochondria appear to control Ca2+i as well since the early rise in Ca2+i cannot be blocked by La3+ during the initial phase of anoxia, and since the mitochondrial inhibitor carbonyl cyanide p-trifluoromethoxyphenylhydrazone increases Ca2+i further during reoxygenation and slows the return of Ca2+i to control levels.  相似文献   

4.
Tucker EB  Boss WF 《Plant physiology》1996,111(2):459-467
The relationship of Ca2+ and plasmodesmatal closure was examined in staminal hairs of Setcreasea purpurea by microinjecting cells with active mastoparan (Mas-7), inactive mastoparan (Mas-17), active inositol-1,4,5-trisphosphate (IP3), or inactive IP3. Calcium green dextran 10,000 was used to study cellular free Ca2+, and carboxyfluorescein was used to monitor plasmodesmatal closure. When Mas-7 was microinjected into the cytoplasm of cell 1 (the tip cell of a chain of cells), a rapid increase in calcium green dextran-10,000 fluorescence was observed in the cytoplasmic areas on both sides of the plasmodesmata connecting cells 1 and 2 during the same time that the diffusion of carboxyfluorescein through them was blocked. The inhibition of cell-to-cell diffusion was transient, and the closed plasmodesmata reopened within 30 s. The elevated Ca2+ level near plasmodesmata was also transient and returned to base level in about 1.5 min. The transient increase in Ca2+, once initiated in cell 1, repeated with an oscillatory period of 3 min. Elevated Ca2+ and oscillations of Ca2+ were also observed near interconnecting cell walls throughout the chain of cells, indicating that the signal had been transmitted. Previously, we reported that IP3 closed plasmodesmata; now we report that it stimulated Ca2+ and oscillations similar to Mas-7. The effect was specific for similar concentrations of Mas-7 over Mas-17 and active IP3 over inactive IP3. It is important that the Ca2+ channel blocker La3+ eliminated the responses from Mas-7 and IP3, indicating that an influx of Ca2+ was required. These results support the contention that plasmodesmata functioning is regulated via Ca2+ and that IP3 may be an intermediary between the stimulus and Ca2+ elevations.  相似文献   

5.
By using the Ca2+-sensitive dye indo-1, an antigen-specific increase in intracellular Ca2+ in cloned cytolytic T lymphocytes (CTL) was measured under conditions that were permissive for T cell-mediated cytolysis. To synchronize lethal hit delivery in a suspension of effector and target cells, a modification of the cation pulse method in which Ca2+ is added to preformed conjugates of CTL and target cells was used. Conjugate formation was unaffected by the absence of extracellular Ca2+ under these conditions. Lytic activity of these cloned CTL was markedly reduced in the absence of extracellular Ca2+ and was restored upon Ca2+ repletion. When indo-1-loaded CTL were preincubated with target cells in the absence of extracellular Ca2+, a marked antigen-specific increase in indo-1 fluorescence, indicative of an increase in intracellular Ca2+, was observed after repletion of extracellular Ca2+. This increase in intracellular Ca2+ was shown to be due solely to changes in the CTL and not the target cell within the time course of the experiment, and results from the influx of extracellular Ca2+. Antibody to the T cell receptor for antigen also evokes a similar increase in intracellular Ca2+ in CTL under these conditions. This method provides a means for the direct examination of the response of CTL to cellular antigen as well as soluble antibody and is a versatile and valuable tool for the study of CTL function.  相似文献   

6.
The changes of Ca2+ localization in ceils of rice (Oryza sativa L. ) seedlings under chilling stress were investigated with calcium antimonate precipitate-electromicroscopic-cyto- chemical methods. When rice seedlings grew at the optimum temperature, it was shown that the deposits of calcium antimonate, being the indicator for Ca2+ localization, mainly concen-trated within the vacuoles and intercellular spaces, and that there was also some Caz+ deposits in plastid, mitochondria, cytoplasm and nucleus. This indicates that under the normal condition, the vacuoles are the main pool of Ca2+ in plant cells, and that there is quite an amount of Ca2+ in the intercellular spaces. On the contrary, the free Ca2+ in cytoplasm and nucleus is very low under the normal condition. When the rice seedlings were treated at the temperature of 1 ℃ for 24 h, there nearly appeared a ring of well arranged Ca2+ precipitates in the inner side of plasmalemma. Meanwhile, the level of Ca2+ in cytoplasm and nucleus increased considerably. When the chilling stress of 1 ℃ continued for 48 h, a great amount of Ca2+ distributed within the cytoplasm and nucleus, and there was also a large quantity of Ca2+ deposits on vacuolar membranes and envelope of plastid. However, the ultrastructures of the cells remained normal. Based on the above observations, the authors proposed that the increase of Ca2+ in cytoplasm and nucleus under chilling stress might be related to the ulterior changes of physiological-biochemical processes.  相似文献   

7.
用焦锑酸钙沉淀的电镜细胞化学方法,研究了低温胁迫下董棕(Garyota urensL.) 幼苗叶肉细胞内Ca2+水平的变化。研究结果表明,未经低温处理的董棕幼苗叶肉细胞,焦锑 酸钙沉淀颗粒大量出现在液泡和细胞间隙中,细胞壁中也可见少量沉淀,而细胞基质中则看 不到焦锑酸钙沉淀;经2 ℃ 48 h低温处理后,细胞基质和细胞膜上焦锑酸钙沉淀增加,而液泡和细胞间隙中的焦锑酸钙沉淀则显著减少,并且超微结构已初步显示出寒害的特征,叶绿体外膜部分破损,类囊体片层稀疏且排列不规则,光合速率明显下降等;经2℃ 120 h低温处理后,细胞间隙内的焦锑酸钙沉淀极少,有的也紧贴在细胞外壁上,而细胞基质和细胞膜上则分布有非常多的焦锑酸钙沉淀,在核基质和液泡中也可见到少量的焦锑酸钙沉淀,并且超微结构遭到了显著破坏,叶绿体结构完全被破坏,核膜与液泡膜严重破损,内部结构模糊,细胞只表现为呼吸作用,不进行光合作用。表明Ca2+的区域性分布的变化与植物抗寒性存在一定关系。  相似文献   

8.
A possible role in secretory processes is proposed for inositol 1,4,5-triphosphate (IP3), based upon investigations of the Ca2+ steady state maintained by "leaky', insulin-secreting RINm5F cells. These cells had been treated with digitonin to permeabilize their plasma membranes and thereby ensure that only intracellular Ca2+ buffering mechanisms were active. When placed in a medium with a cation composition resembling that of the cytosol, cells rapidly took up Ca2+ as measured by a Ca2+-specific minielectrode. Two Ca2+ steady states were observed. A lower level of around 120nM required ATP-dependent Ca2+ uptake and was probably determined by the endoplasmic reticulum. The higher steady state (approx. 800 nM), seen only in the absence of ATP, was shown to be due to mitochondrial activity. IP3 specifically released Ca2+ accumulated in the ATP-dependent pool, but not from mitochondria, since Ca2+ release was demonstrated in the presence of the respiratory poison antimycin. The IP3-induced Ca2+ release was rapid, with 50% of the response being seen within 15s. The apparent Km was 0.5 microM and maximal concentrations of IP3 (2.5 microM) produced a peak Ca2+ release of 10 nmol/mg of cell protein, which was followed by re-uptake. A full Ca2+ response was seen if sequential pulses of 2.5 microM-IP3 were added at 20 min intervals, although there was a slight (less than 20%) attenuation if the intervening period was decreased to 10 min. These observations could be related to the rate of IP3 degradation which, in this system, corresponded to a 25% loss of added 32P label within 2 min, and a 75% loss within 20 min. The results suggest that IP3 might act as a link between metabolic, cationic and secretory events during the stimulation of insulin release.  相似文献   

9.
Isolated single smooth muscle cells from the fundus of a guinea-pig stomach were permeabilized by use of streptolysin-O (0.5 U/ml). Most of the permeabilized cells responded to 0.6 microM Ca2+, but not to 0.2 microM Ca2+, with a resulting maximal cell shortening to approximately 71% of the resting cell length. These cells were relaxed again by washing with the Ca2+-free solution (2.5 nM free Ca2+) for 3-5 min. Addition of 10 microM acetylcholine (ACh) resulted in both a marked decrease in the concentration of Ca2+ required to trigger a threshold response and an increase in the maximal cell shortening, indicating that the cells retained the muscarinic receptor function. When the cell treated with a protein kinase C (PKC) inhibitor, K-252b (1 microM), for 3 min was exposed to 10 microM ACh in the presence of K-252b, the cell shortened within 2 min with a maximal cell shortening. When the cell shortening was induced by 10 microM ACh plus 1 microM Ca2+ in the presence of K-252b (1 microM) or more selective PKC inhibitors, such as calphostin C (1 microM) or PKC pseudosubstrate peptide (100 microM), the extension of the shortened cells, by washing with the Ca2+-free solution, was significantly inhibited. In contrast, K-252b (1 microM) did not inhibit the relaxation of Ca2+-induced shortened cells. These results suggest that the receptor-mediated activation of PKC in the process of ACh-induced cell shortening plays a role in the subsequent relaxation of the shortened cells.  相似文献   

10.
The effects of nutrient deprivation on normal and Duchenne muscular dystrophy fibroblasts were examined. The requirements for Ca2+ and fetal bovine serum were assessed by their effects on the cells' ability to support viral replication, and by ability of the cells to divide in the presence of low levels of these nutrients. When grown in Ca2+-deficient media, Duchenne fibroblasts supported viral replication at a rate 2- to 2.5-fold greater than did normal fibroblasts. At normal Ca2+ levels, Duchenne fibroblasts supported viral replication at levels slightly lower than their normal counterparts. After 48 hr in medium containing 0.2 mM Ca2+, the growth of normal cells was arrested, while Duchenne fibroblasts were relatively unaffected. When grown in medium containing either 0.2 or 2.0% serum, the growth of normal cells was arrested within 48 hr, with cell death occurring within 72 hr. Duchenne fibroblasts continued to divide at these serum levels for 72 hr, reaching higher cell densities than normal cells. These results suggest that a defect related to Ca2+ metabolism may be part of the Duchenne phenotype, which could be used to identify Duchenne muscular dystrophy cells.  相似文献   

11.
In order to monitor changes in cytosolic Ca2+ levels, brown-fat cells were incubated with the fluorescent Ca2+-indicator fura-2 and the fluorescence intensity ratio followed. The addition of norepinephrine led to a rapid and persistent increase in the cytosolic Ca2+ level, which was dose-dependent with a maximal effect at about 1 microM. The response was diminished in the absence of extracellular Ca2+ and was inhibited more efficiently by phentolamine and prazosin than by propranolol or yohimbine, indicating alpha 1-adrenergic mediation. Accordingly, selective alpha 1-adrenergic stimulation also increased the cytosolic Ca2+ level. However, selective beta-adrenergic stimulation, as well as the adenylate cyclase activator forskolin, were also able to increase the cytosolic Ca2+ level in these cells to a certain extent. It was concluded that the major part of the increase in cytosolic Ca2+ was mediated, as in other cell types, via alpha 1-adrenergic receptors, but that Ca2+ levels were also positively modulated by a cAMP-mediated process. These observations are discussed in relation to known alpha 1/beta synergisms in brown adipose tissue.  相似文献   

12.
以辣椒 (Capsicum annuum)幼苗的叶片为材料 ,研究了外源 Ca2 预处理对热胁迫下细胞质膜透性和谷胱甘肽 (GSH)、抗坏血酸 (As A)含量变化及 Ca2 分布的影响。结果表明 :外源 Ca2 预处理能减轻热胁迫引起的细胞膜破坏 ,能够减少叶片中 GSH和 As A的破坏。热胁迫后 ,Ca2 具有从胞外转运到胞质内和叶绿体中的趋势 ;外施Ca2 预处理能够明显增加细胞间隙、液泡和叶绿体中的 Ca2 颗粒密度 ,能够稳定热胁迫下叶肉细胞膜和叶绿体的超微结构。结果表明 ,外施 Ca2 预处理可能通过改变细胞内外的 Ca2 分布 ,减轻热胁迫对叶肉细胞的伤害  相似文献   

13.
We established an experimental system for measuring the cytosolic-free Ca2+ concentration ([Ca2+]i) in individual Saccharomyces cerevisiae cells using fura-2 as a Ca2(+)-specific probe in conjunction with digital image processing and examined changes in [Ca2+]i in response to alpha-factor in single cells of a mating type. The addition of alpha-factor to a cells raised [Ca2+]i to several hundred nanomolar in the cells from a basal level of approximately 100 nM, simultaneous with the induction of Ca2+ influx. When the cells were incubated with alpha-factor in a Ca2(+)-deficient medium, Ca2+ influx was greatly reduced, and the rise in [Ca2+]i was not detected. This indicates that the alpha-factor-induced rise in [Ca2+]i is generated by Ca2+ influx through the plasma membrane and not by release from internal stores. In the Ca2(+)-deficient medium, a cells died specifically after they had changed into cells with one projection on the cell surface. This indicates that the rise in [Ca2+]i is essential for the late response to alpha-factor. The duration of Ca2+ requirement for maintaining viability was limited to this stage, and the earlier and later stages were not affected by Ca2+ deprivation. Mating between a and alpha mating type cells was impaired in this medium due to cell death at and before the stage of conjugation. These findings are the first evidence for an essential role for mobilized Ca2+ in the yeast life cycle.  相似文献   

14.
Stomatal movement is accomplished by changes in the ionic content within guard cells as well as in the cell wall of the surrounding stomatal pore. In this study, the sub-stomatal apoplastic activities of K+, Cl-, Ca2+ and H+ were continuously monitored by inserting ion-selective micro-electrodes through the open stomata of intact Vicia faba leaves. In light-adapted leaves, the mean activities were 2.59 mM (K+), 1.26 mM (Cl-), 64 microM (Ca2+) and 89 microM (H+). Stomatal closure was investigated through exposure to abscisic acid (ABA), sudden darkness or both. Feeding the leaves with ABA through the cut petiole initially resulted in peaks after 9-10 min, in which Ca2+ and H+ activities transiently decreased, and Cl- and K+ activities transiently increased. Thereafter, Ca2+, H+ and Cl- activities completely recovered, while K+ activity approached an elevated level of around 10 mM within 20 min. Similar responses were observed following sudden darkness, with the difference that Cl- and Ca2+ activities recovered more slowly. Addition of ABA to dark-adapted leaves evoked responses of Cl- and Ca2+ similar to those observed in the light. K+ activity, starting from its elevated level, responded to ABA with a transient increase peaking around 16 mM, but then returned to its dark level. During stomatal closure, membrane potential changes in mesophyll cells showed no correlation with the K+ kinetics in the sub-stomatal cavity. We thus conclude that the increase in K+ activity mainly resulted from K+ release by the guard cells, indicating apoplastic compartmentation. Based on the close correlation between Cl- and Ca2+ changes, we suggest that anion channels are activated by a rise in cytosolic free Ca2+, a process which activates depolarization-activated K+ release channels.  相似文献   

15.
The endoplasmic reticulum is not the only major agonist-releasable Ca2+ store within cells; it is now clear that virtually all organelles so far studied have the ability to act as mobilizable Ca2+ stores. From recent findings with regard to Ca2+ transportation and Ca2+ homeostasis within a variety of cell organelles such as the mitochondria, nucleus, Golgi and lysosomes, it emerges that many of these organellar Ca2+ stores appear to interact with each other, adding a further level of complexity to Ca2+ signalling events.  相似文献   

16.
The regulation of Ca2+ transport by intracellular compartments was studied in digitonin-permeabilized human neutrophils, using a Ca2+-selective electrode. When incubated in a medium containing ATP and respiratory substrates, the cells lowered within 6 min the ambient [Ca2+] to a steady state of around 0.2 microM. A vesicular ATP-dependent and vanadate-sensitive non-mitochondrial pool maintained this low [Ca2+] level. In the absence of ATP, a higher Ca2+ steady state of 0.6 microM was seen, exhibiting the characteristics of a mitochondrial Ca2+ "set point." Both pools were shown to act in concert to restore the previous ambient [Ca2+] following its elevation. Thus, the mitochondria participate with the other pool(s) in decreasing [Ca2+] to the submicromolar range whereas only the nonmitochondrial pool(s) lowers [Ca2+] to the basal level. The action of inositol 1,4,5-triphosphate (IP3) which has been inferred to mediate Ca2+ mobilization in a few cell types was studied. IP3 released (detectable within 2 s) Ca2+ accumulated in the ATP-dependent pool(s) but had no effect on the mitochondria. The response was transient and resulted in desensitization toward subsequent IP3 additions. Under experimental conditions in which the ATP-dependent Ca2+ influx was blocked, the addition of IP3 resulted in a very large Ca2+ release from nonmitochondrial pool. The results strongly suggest that IP3 is a second messenger mediating intracellular Ca2+ mobilization in human neutrophils. Furthermore, the nonmitochondrial pool appears to have independent influx and efflux pathways for Ca2+ transport, a Ca2+ ATPase (the influx component) and an IP3-sensitive efflux component activated during Ca2+ mobilization.  相似文献   

17.
Cell cycle control by Ca2+ in Saccharomyces cerevisiae   总被引:11,自引:0,他引:11  
We established an experimental system suitable for study of cell cycle regulation by Ca2+ in the yeast Saccharomyces cerevisiae. Systematic cell cycle analysis using media containing various concentrations of Ca2+, a Ca2(+)-ionophore (A23187), and a Ca2(+)-chelator [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) revealed that simultaneous addition of 10 microM A23187 and 10 mM EGTA to cells growing in a Ca2(+)-deficient medium at 22 degrees C caused rapid decrease in intracellular Ca content and resulted in transient G1 arrest followed by block mostly at G2/M, as revealed by flow cytometry. Recovery from G1 arrest was not due to coordinated initiation of DNA synthesis and bud emergence: unbudded cells with S or G2/M DNA were observed. Examination of terminal phenotype suggested that Ca2+ was required at all the stages of the cell cycle except for the initiation of DNA synthesis. The intracellular cAMP level decreased within 10 min of addition of A23187 and EGTA. No significant transient G1 arrest was observed in cells incubated with 8-Br-cAMP, or RAS2val19 and delta bcy1 mutants, which produce a high level of cAMP and have constitutively activated cAMP-dependent protein kinase, respectively. These results indicate that Ca2+ is essential for cell cycle progression and suggest that Ca2+ may regulate the cAMP level. This system will be useful for genetic and molecular studies on cell cycle events regulated by Ca2+.  相似文献   

18.
Measurements of free cystolic Ca2+ ([Ca2+]i) and Ba2+ ([Ba2+]i) concentrations with Fura 2 were used to identify and characterize the properties of a depolarization-activated Ca2+ and Ba2+ entry in the plasma membrane of osteoblast-like cells. The presence of this pathway was demonstrated in two osteoblastic cell lines, UMR-106 and MC3T3-E1 and osteoblasts isolated from rat long bone and rat neonatal calvariae. Subsequent characterization of the pathway was performed in the osteosarcoma cell line UMR-106. Depolarization of the cells with high medium K+ was followed by an increase in [Ca2+]i which was dependent on medium Ca2+. Ba2+ ions depolarized the cells and were transported by this pathway. Mg2+ ions interfered with Ca2+ and Ba2+ entry. At 140 mM KCl and 1 mM MgCl2, the pathway could be saturated with Ca2+ or Ba2+. The apparent affinity for Ca2+ was 0.78 mM and for Ba2+ 1.82 mM. Ca2+ or Ba2+ entry into the cells was blocked by low concentrations of nicardipine, diltiazem, verapamil, and La3+. In the absence of an increase in [Ca2+]i or [Ba2+]i, the pathway inactivated within about 5 min after depolarization. When [Ca2+]i or [Ba2+]i was allowed to increase, the pathway inactivated within about 20 s. These properties suggest that Ca2+ and Ba2+ entry are mediated by an L-type, depolarization-activated Ca2+ channel in osteoblasts. The activity of these channels changes little with an increase or decrease in cell volume. Thus, it is concluded that these pathways do not provide the Ca2+ entry pathway required for initiation of volume decrease by osteoblasts.  相似文献   

19.
Transient Ca2+ and Ca2+-dependent Cl- currents of plasmatic membranes of voltage-clamped Chara corallina freshwater alga cells were studied. Our earlier described method was used for rapid (approximately 10 ms) injection of Ca2+ ions into the cell during the deactivation period of calcium channels following their activation by a positive voltage pulse (injection by "tail" Ca2+ current). This procedure allowed one to determine the amplitude of the Ca2+ component, as well as the amplitude and kinetics of the submembrane Ca2+ concentration-dependent Cl- component for the transient current. Calculations based on the cell model allowing for Ca2+ diffusion, the Ca2+-buffering properties of the cytoplasm, and the nonlinear dependency of iCl on [Ca2+]cyt, as well as the presence of chloroplasts agreed well with the experimentally observed behavior of the transient current. The slow stage of the [Ca2+]cyt relaxation to the resting level (approximately 10(-7) M), related to the functioning of Ca2+-ATPases, was shown to take approximately 10(2) s. We assume this stage to determine the duration of the refractory period after the generation of action potential.  相似文献   

20.
Various prostaglandins (PGs) (10 nM-30 microM) were added to NG108-15 cells in culture, and changes in the levels of intracellular cyclic GMP and Ca2+ were investigated. Exposure of the cells to PGF2 alpha, PGD2, and PGE2 (10 microM) transiently increased the cyclic GMP content 7.5-, 3.9-, and 3.1-fold, respectively. Furthermore, the increased levels of cyclic GMP correlated well with the rise in cytosolic free Ca2+ concentrations induced by the PGs. Other PGs (10 microM), including metabolites and synthetic analogs, which had no effect on intracellular Ca2+, failed to increase the cyclic GMP content in the cells. When extracellular Ca2+ was depleted from the culture medium, the PG-induced increase in cyclic GMP level was almost completely abolished. In addition, treatment of the cells with quin 2 tetraacetoxymethyl ester dose-dependently inhibited the PG-induced cyclic GMP formation. The increase in cyclic GMP content caused by treatment of the cells with a high K+ level (50 mM) was completely blocked by voltage-dependent Ca2+ entry blockers, such as verapamil (10 microM), nifedipine (1 microM), and diltiazem (100 microM); however, the PG (10 microM)-induced increase in cyclic GMP content was not affected by such Ca2+ entry blockers. These findings indicate that PG-induced cyclic GMP formation may require the rise in intracellular Ca2+ level and that the voltage-dependent Ca2+ channels may not be involved in the PG-induced rise in Ca2+ content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号