首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Stimulation of human colon cancer cells with insulin-like growth factor 1 (IGF-1) induces expression of the VEGF gene, encoding vascular endothelial growth factor. In this article we demonstrate that exposure of HCT116 human colon carcinoma cells to IGF-1 induces the expression of HIF-1 alpha, the regulated subunit of hypoxia-inducible factor 1, a known transactivator of the VEGF gene. In contrast to hypoxia, which induces HIF-1 alpha expression by inhibiting its ubiquitination and degradation, IGF-1 did not inhibit these processes, indicating an effect on HIF-1 alpha protein synthesis. IGF-1 stimulation of HIF-1 alpha protein and VEGF mRNA expression was inhibited by treating cells with inhibitors of phosphatidylinositol 3-kinase and MAP kinase signaling pathways. These inhibitors also blocked the IGF-1-induced phosphorylation of the translational regulatory proteins 4E-BP1, p70 S6 kinase, and eIF-4E, thus providing a mechanism for the modulation of HIF-1 alpha protein synthesis. Forced expression of a constitutively active form of the MAP kinase kinase, MEK2, was sufficient to induce HIF-1 alpha protein and VEGF mRNA expression. Involvement of the MAP kinase pathway represents a novel mechanism for the induction of HIF-1 alpha protein expression in human cancer cells.  相似文献   

12.
The induction of vascular endothelial growth factor (VEGF) is an essential feature of tumor angiogenesis. Hypoxia is a potent stimulator of VEGF expression, and hypoxia-inducible factor-1 (HIF-1) is considered to be critical for this induction. However, we have previously demonstrated that induction of VEGF by hypoxia was preserved when HIF-1alpha was silenced. We sought to better define the molecular basis of this HIF-1-independent regulation. In colon cancer cells, hypoxia stimulated multiple K-ras effector pathways including phosphatidylinositol 3-kinase. VEGF promoter deletion studies identified a novel promoter region between -418 and -223 bp that was responsive to hypoxia in a PI3K/Rho/ROCK-dependent manner. Electrophoretic mobility shift assays identified a fragment between -300 and -251 bp that demonstrated a unique shift only in hypoxic conditions. Inhibition of PI3K or ROCK blocked the formation of this complex. A binding site for c-Myc, a target of ROCK, was identified at -271 bp. A role for c-Myc in the hypoxic induction of VEGF was demonstrated by site-directed mutagenesis of the VEGF promoter and silencing of c-Myc by small interfering RNA. Collectively, these findings suggest an alternative mechanism for the hypoxic induction of VEGF in colon cancer that does not depend upon HIF-1alpha but instead requires the activation of PI3K/Rho/ROCK and c-Myc.  相似文献   

13.
Activation of vascular smooth muscle cells (VSMCs) by proinflammatory cytokines is a key feature of atherosclerotic lesion formation. Transforming growth factor (TGF)-beta1 is a pleiotropic growth factor that can modulate the inflammatory response in diverse cell types including VSMCs. However, the mechanisms by which TGF-beta1 is able to mediate these effects remains incompletely understood. We demonstrate here that the ability of TGF-beta1 to inhibit markers of VSMC activation, inducible nitric-oxide synthase (iNOS) and interleukin (IL)-6, is mediated through its downstream effector Smad3. In reporter gene transfection studies, we found that among a panel of Smads, Smad3 could inhibit iNOS induction in an analogous manner as exogenous TGF-beta1. Adenoviral overexpression of Smad3 potently repressed inducible expression of endogenous iNOS and IL-6. Conversely, TGF-beta1 inhibition of cytokine-mediated induction of iNOS and IL-6 expression was completely blocked in Smad3-deficient VSMCs. Previous studies demonstrate that CCAAT/enhancer-binding protein (C/EBP) and NF-kappaB sites are critical for cytokine induction of both the iNOS and IL-6 promoters. We demonstrate that the inhibitory effect of Smad3 occurs via a novel antagonistic effect of Smad3 on C/EBP DNA-protein binding and activity. Smad3 mediates this effect in part by inhibiting C/EBP-beta and C/EBP-delta through distinct mechanisms. Furthermore, we find that Smad3 prevents the cooperative induction of the iNOS promoter by C/EBP and NF-kappaB. These data demonstrate that Smad3 plays an essential role in mediating TGF-beta1 anti-inflammatory response in VSMCs.  相似文献   

14.
15.
16.
Insulin-like growth factor binding protein 1 (IGFBP-1) is a hypoxia-inducible gene that plays an important role in regulating embryonic growth and development under hypoxic stress. The molecular mechanisms underlying hypoxia-induced IGFBP-1 gene expression in the embryonic tissues are not well understood. Here we report that the hypoxia-inducible factor 1 (HIF-1) pathway is established in early embryogenesis and mediates hypoxia-induced IGFBP-1 expression. Hypoxia increased the HIF-1 activity, and HIF-1alpha overexpression or CoCl2 treatment resulted in elevated IGFBP-1 expression in zebra fish embryos. Although the zebra fish IGFBP-1 promoter contains 13 consensus hypoxia response elements (HREs), deletion and mutational analysis revealed that only the HRE positioned at -1090/-1086 is required for the hypoxia and HIF-1 induction. Further experiments revealed that there is an HIF-1 ancillary sequence (HAS) adjacent only to the functional HRE. Mutation of this HAS greatly reduced the responsiveness of the IGFBP-1 promoter to hypoxia and HIF-1. The HAS does not directly bind to HIF-1 or affect the binding of the HRE to HIF-1. The HAS is bound to a nuclear protein(s), and this HAS binding activity is reduced by hypoxia. These results suggest that HIF-1 mediates hypoxia-induced IGFBP-1 gene expression in early development by selectively interacting with the -1090/-1086 HRE and its adjacent HAS.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号