首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An explanation of the complex effects of hormones on intracellular Ca2+ requires that the intracellular actions of Ins(1,4,5)P3 and the relationships between intracellular Ca2+ stores are fully understood. We have examined the kinetics of 45Ca2+ efflux from pre-loaded intracellular stores after stimulation with Ins(1,4,5)P3 or the stable phosphorothioate analogue, Ins(1,4,5)P3[S]3, by simultaneous addition of one of them with glucose/hexokinase to rapidly deplete the medium of ATP. Under these conditions, a maximal concentration of either Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 evoked rapid efflux of about half of the accumulated 45Ca2+, and thereafter the efflux was the same as occurred under control conditions. Submaximal concentrations of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 caused a smaller rapid initial efflux of 45Ca2+, after which the efflux was similar whatever the concentration of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 present. The failure of submaximal concentrations of Ins(1,4,5)P3 and Ins(1,4,5)P3[S]3 to mobilize fully the Ins(1,4,5)P3-sensitive Ca2+ stores despite prolonged incubation was not due either to inactivation of Ins(1,4,5)P3 or to desensitization of the Ins(1,4,5)P3 receptor. The results suggest that the size of the Ins(1,4,5)P3 sensitive Ca2+ stores depends upon the concentration of Ins(1,4,5)P3.  相似文献   

2.
The thiol reagent, thimerosal, has been shown to cause an increase in intracellular Ca2+ concentration ([Ca2+]i) in several cell types, and to cause Ca2+ spikes in unfertilized hamster eggs. Using single cell video-imaging we have shown that thimerosal evokes repetitive Ca2+ spikes in intact Fura-2-loaded HeLa cells that were similar in shape to those stimulated by histamine. Both thimerosal- and histamine-stimulated Ca2+ spikes occurred in the absence of extracellular (Ca2+ o), suggesting that they result from mobilization of Ca2+ from intracellular stores. Whereas histamine stimulated formation of inositol phosphates, thimerosal, at concentrations that caused sustained Ca2+ spiking, inhibited basal and histamine-stimulated formation of inositol phosphates. Thimerosal-evoked Ca2+ spikes are therefore not due to the stimulated production of inositol 1,4,5-trisphosphate (InsP3). The effects of thimerosal on Ca2+ spiking were probably due to alkylation of thiol groups on intracellular proteins because the spiking was reversed by the thiol-reducing compound dithiothreitol, and the latency between addition of thimerosal and a rise in [Ca2+]i was greatly shortened in cells where the intracellular reduced glutathione concentration had been decreased by preincubation with DL-buthionine (S,R)-sulfoximine. In permeabilized cells, thimerosal caused a concentration-dependent inhibition of Ca2+ accumulation, which was entirely due to inhibition of Ca2+ uptake into stores because thimerosal did not affect unidirectional 45Ca2+ efflux from stores preloaded with 45Ca2+. Thimerosal also caused a concentration-dependent sensitization of InsP3-induced Ca2+ mobilization: half-maximal mobilization of Ca2+ stores occurred with 161 +/- 20 nM InsP3 in control cells and with 62 +/- 5 nM InsP3 after treatment with 10 microM thimerosal. We conclude that thimerosal can mimic the effects of histamine on intracellular Ca2+ spiking without stimulating the formation of InsP3 and, in light of our results with permeabilized cells, suggest that thimerosal stimulates spiking by sensitizing cells to basal InsP3 levels.  相似文献   

3.
We have recently reported that extracellular ATP induces a transient rise in cytosolic free Ca2+ [( Ca2+]i) in individual human epidermoid carcinoma A431 cells (Gonzalez et al: Journal of Cellular Physiology 135:269-276, 1988). We have now studied nucleotide specificity and desensitization for several early responses. Extracellular ATP (5-100 microM) caused the rapid formation of inositol trisphosphate and later its metabolites, inositol bisphosphate and inositol monophosphate. ATP also induced the efflux of 45Ca2+ from pre-loaded cells. In addition, an increase in the rate of influx of 45Ca2+ stimulated by extracellular ATP was detected. Based on measurements of 45Ca2+ efflux and influx, desensitization studies, and chlortetracycline fluorimetry, we conclude that ATP mobilizes Ca2+ from internal stores and also stimulates entry across the plasma membrane. These effects were also displayed by UTP and to a lesser extent by ITP, while other nucleoside triphosphates as well as ADP, AMP, and adenosine, were inactive. Furthermore, desensitization of the response to ATP and UTP was seen after prolonged exposure to either nucleotide. This was specific for the nucleotide receptor since a response to bradykinin was not affected by the ATP pretreatment, although pretreatment with phorbol ester inhibited responses to both the nucleotides and bradykinin. Quantitative data on rate of recovery from the desensitized state and the response of desensitized cells to greatly elevated levels of ATP are presented. Extracellular ATP stimulated another early change previously reported for epidermal growth factor, namely, the phosphorylation of an 81-kDa cytoskeletal protein. The stimulation of these events involves an ATP receptor whose properties differ from other ATP receptors that have been described.  相似文献   

4.
The release of Ca2+ from intracellular stores by sub-optimal doses of inositol trisphosphate has been shown to be dose-related ('quantal'), and a simple model is proposed here to account for this phenomenon. It is suggested that there is a regulatory Ca2(+)-binding site on, or associated with, the luminal domain of the InsP3 receptor, which allosterically controls Ca2+ efflux, and the affinity for Ca2+ of that site is modulated by InsP3 binding to the cytoplasmic domain of the receptor; a similar mechanism applied to the ryanodine receptor might also explain some aspects of Ca2(+)-induced Ca2+ release. The stimulated entry of Ca2+ into a cell which occurs upon activation of inositide-linked receptors has been variously and confusingly proposed to be regulated by InsP3, InsP4, and/or a 'capacitative' Ca2+ pool; the mechanism of InsP3 receptor action suggested here is shown to lead to a potential reconciliation of all these conflicting proposals.  相似文献   

5.
The kinetics of Ca2+ release and contraction induced by photolytic release of inositol 1,4,5-trisphosphate (InsP3) were determined in permeabilized smooth muscle. The rate of Ca2+ release was half-maximal at 1 microM InsP3. The concentration-dependent delay of Ca2+ release at saturating InsP3 concentration was approximately 10 ms and within the uncertainty of the measurements. The relationship between the delay and InsP3 concentration showed no evidence of a high level (n = 4 or higher) of cooperativity but could not distinguish between no cooperativity (n = 1) or a low level (n = 2) of cooperativity. Submaximal [InsP3] caused only partial Ca2+ release from the InsP3-sensitive stores. InsP3-induced Ca2+ release was markedly potentiated by ATP or by adenosine 5'-(beta,gamma-methylene-triphosphate), but neither the rate nor the amplitude of release was significantly affected by procaine (2-5 mM). Heparin increased the delay between photolysis and Ca2+ release, indicating that the off rate of inert ligand(s) bound to InsP3 receptors may contribute to the physiological delay in Ca2+ release. There was a much longer (370 ms +/- 45 S.E.) delay between the rise of Ca2+ and force development, presumably reflecting events preceding and associated with myosin light chain phosphorylation.  相似文献   

6.
The inositol 1,4,5-trisphosphate receptor (InsP3R) is an intracellular Ca2+ release channel which upon activation initiates many cellular functions. Multiple InsP3R subtypes are expressed in most cell types but the physiological significance of this heterogeneity is poorly understood. This study has directly compared the functional properties of the three different InsP3R isoforms by analyzing their InsP3-induced Ca2+ release (IICR) properties in cell lines which predominantly express each isoform subtype. The InsP3-dependence of the amount or extent of IICR was InsP3R isoform-specific, with the type III isoform having the lowest affinity with respect to Ca2+ release. The transient kinetics of IICR, measured using stopped-flow spectrofluorimetry, however, were similar for all three InsP3R isoforms. At maximal InsP3 concentrations (20 microM) the rate constants where between 0.8 and 1.0 s(-1) for the fast phase and 0.25-0.45 s(-1) for the slow phase. The concentration of InsP3 required to induce half-maximal rates of Ca2+ release (EC50) were also similar for the three isoforms (0.2-0.4 microM for the fast phase and 0.75-0.95 microM for the slow phase). These results indicate the InsP3R channel does not significantly differ functionally in terms of Ca2+ release rates between isoforms. The temporal and spatial features of intracellular Ca2+ signals are thus probably achieved through InsP3R isoform-specific regulation or localization rather than their intrinsic Ca2+ efflux properties.  相似文献   

7.
The membrane location and mechanism of inositol 1,3,4,5-tetrakisphosphate (InsP4)-regulated Ca2+ uptake in cardiac membrane vesicles was investigated. In canine and rat membranes separated by sucrose density gradient centrifugation, InsP4-regulated Ca2+ uptake was slightly more enriched in low density than in higher density membranes. Membranes supporting InsP4-regulated Ca2+ uptake were correspondingly enriched in type 1 InsP3 receptors. Junctional sarcoplasmic reticulum (J-SR), enriched in sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and ryanodine receptors, separated predominantly with higher density membranes. In membranes supporting InsP4-regulated Ca2+ uptake, Ca2+ uptake was facilitated by a high Ca2+ affinity carrier that was insensitive to thapsigargin. Ca2+ uptake in J-SR was mediated by thapsigargin-sensitive SERCA2a. Net Ca accumulation was enhanced by oxalate in both SR subtypes. Although Ca2+-carrier-mediated Ca2+ uptake was ATP independent, ATP indirectly regulated net Ca2+ accumulation by modifying Ca2+ efflux via a Ca2+ channel with properties of type 1 InsP3 receptors. In the presence of < or = 0.1 mM ATP, InsP4 enhanced Ca2+ accumulation whereas InsP4 inhibited Ca2+ uptake at higher ATP concentrations. In the presence of 0.15 mM ATP, InsP4 stimulated Ca2+ efflux from vesicles preloaded with Ca. Several other InsP4 isomers and 1,3,4-InsP3 also stimulated Ca2+ efflux but with slightly less potency than 1,3,4,5-InsP4. Ruthenium red enhanced net Ca accumulation by the Ca2+ carrier and reduced the potency of ATP, InsP4, and InsP3 to stimulate Ca2+ efflux in vesicles. In summary, this investigation shows that a Ca2+ carrier facilitates Ca loading in a sarcoplasmic reticulum subtype distinct from J-SR. InsP4 and InsP3 are proposed to regulate Ca2+ efflux in low density SR by acting on an ATP-modulated Ca2+ channel with properties of type 1 InsP3 receptors.  相似文献   

8.
The effects of inositol phosphates (tris (InsP3), bis (InsP2), mono (InsP)) on rabbit adductor magnus and soleus muscles were determined using mechanically peeled fibers (sarcolemma removed). Isometric force generation of each fiber was continuously monitored and was used along with 45Ca to detect calcium release from internal fiber stores. All experiments were conducted at a physiological Mg2+ concentration (10(-3) M) of the bathing solutions. The inositol phosphates did not directly activate the contractile apparatus. At bath concentrations of 100-300 microM, only InsP3 was capable of stimulating Ca2+ release. In contrast, 1 microM InsP3 maximally and selectively stimulated Ca2+ release when microinjected into the myofilament lattice. Calcium releasing effects of InsP2 and InsP were manifested at 10 microM when they were microinjected. The end-to-end internal Ca2+ release and subsequent fiber force generation stimulated by the locally applied microinjected InsP3 suggests that the InsP3-induced Ca2+ release mechanism may involve propagation, but not via the Ca2+-induced Ca2+ release, since procaine did not inhibit this response. These findings support the possibility that InsP3 plays a role in skeletal muscle excitation-contraction coupling.  相似文献   

9.
L Combettes  T R Cheek    C W Taylor 《The EMBO journal》1996,15(9):2086-2093
The quantal behaviour of inositol trisphosphate (InsP3) receptors allows rapid graded release of Ca2+ from intracellular stores, but the mechanisms are unknown. In Ca2+-depleted stores loaded with Fura 2, InsP3 caused concentration dependent increases in the rates of fluorescence quench by Mn2+ that were unaffected by prior incubation with InsP3, indicating that InsP3 binding did not cause desensitization. When Fura 2 was used to report the luminal free [Ca2+] after inhibition of further Ca2+ uptake, submaximal concentrations of InsP3 caused rapid, partial decreases in fluorescence ratios. Subsequent addition of a maximal InsP3 concentration caused the fluorescence to fall to within 5% of that recorded after ionomycin. Addition of all but the lowest concentrations of InsP3 to stores loaded with the lower affinity indicator, Calcium Green-5N, caused almost complete emptying of the stores at rates that increased with InsP3 concentration. The lowest concentration of InsP3 (10 nM) slowly emptied approximately 80% of the stores, but within 3 min the rate of Ca2+ release slowed leaving approximately 7 microM Ca2+ within the stores, which was then rapidly released by a maximal InsP3 concentration. In stores co-loaded with both indicators, InsP3-evoked Ca2+ release appeared quantal with Fura 2 and largely non-quantal with Calcium Green-5N; the discrepancy is not, therefore, a direct effect of the indicators. The fall in luminal [Ca2+] after activation of InsP3 receptors may, therefore, cause their inactivation, but only after the Ca2+ content of the stores has fallen by approximately 95% to < or = 10 microM.  相似文献   

10.
In smooth muscle cells, oscillations of intracellular Ca2+ concentration ([Ca2+]i) are controlled by inositol 1,4,5-trisphosphate (InsP3) and ryanodine (Ry) receptors on the sarcoplasmic reticulum (SR). Here we show that these Ca2+ oscillations are regulated differentially by InsP3 and Ry receptors in cells dispersed from the main trunk of the pulmonary artery (conduit myocytes) or from tertiary and quaternary arterial branches (resistance myocytes). Ry receptor antagonists inhibit either spontaneous or ATP-induced Ca2+ oscillations in resistance myocytes but they do not affect the oscillations in most conduit myocytes. In contrast, agents that inhibit InsP3 production or activation of InsP3 receptors do not alter the oscillations is resistance myocytes but block them in conduit myocytes. We have also examined the degree of overlap of Ry- and InsP3-sensitive stores in myocytes along the pulmonary arterial tree. In conduit myocytes, depletion of Ry-sensitive stores with repeated application of caffeine in the presence of Ry or in Ca2+ free solutions did not prevent the ATP-induced Ca2+ release from InsP3-dependent stores. However, responsiveness to ATP was completely abolished in resistance myocytes subjected to the same experimental protocol. Thus, InsP3- and Ry-dependent stores appear to be separated in conduit myocytes but joined in resistance myocytes. These data demonstrate for the first time differential properties of intracellular Ca2+ stores and receptors in myocytes distributed along the pulmonary arterial tree and help to explain the distinct functional responses of large and small pulmonary vessels to vasoactive agents.  相似文献   

11.
In cultured human 1321N1 astrocytoma cells, muscarinic receptor stimulation leads to phosphoinositide hydrolysis, formation of inositol phosphates, and mobilization of intracellular Ca2+. Treatment of these cells with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) completely blocks the carbachol-stimulated formation of [3H]inositol mono-, bis-, and trisphosphate ( [3H]InsP, [3H]InsP2, and [3H]InsP3). The concentrations of PMA that give half-maximal and 100% inhibition of carbachol-induced [3H]InsP formation are 3 nM and 0.5 microM, respectively. Inactive phorbol esters (4 alpha-phorbol 12,13-didecanoate and 4 beta-phorbol), at 1 microM, do not inhibit carbachol-stimulated [3H]InsP formation. The KD of the muscarinic receptor for [3H]N-methyl scopolamine is unchanged by PMA treatment, while the IC50 for carbachol is modestly increased. PMA treatment also abolishes carbachol-induced 45Ca2+ efflux from 1321N1 cells. The concomitant loss of InsP3 formation and Ca2+ mobilization is strong evidence in support of a causal relationship between these two responses. In addition, our finding that PMA blocks hormone-stimulated phosphoinositide turnover suggests that there may be feedback regulation of phosphoinositide metabolism through the Ca2+- and phospholipid-dependent protein kinase.  相似文献   

12.
Smooth muscle cells were isolated from the circular muscle layer of guinea pig stomach and permeabilized by brief exposure to saponin. Both permeabilized and intact muscle cells contracted in response to cholecystokinin octapeptide (CCK-8) and acetylcholine, but only permeabilized muscle cells contracted in response to inositol 1,4,5-trisphosphate (InsP3). The contractile response to InsP3 was prompt (peak less than 5 s), concentration-dependent (EC50-0.3 microM), and insensitive to antimycin or oligomycin. Contraction induced by either InsP3 or CCK-8 was accompanied by a concentration-dependent increase in free Ca2+ that was directly correlated with the magnitude of contraction. Both InsP3 and CCK-8 caused rapid net efflux of Ca2+ from cells preloaded with 45Ca2+. Contraction, increase in free Ca2+ concentration, and net 45Ca2+ efflux elicited by a combination of maximal concentrations of InsP3 and CCK-8 were not significantly different from those elicited by maximal concentrations of either agent alone. Repeated stimulation of single muscle cells with either InsP3 or CCK-8 in Ca2+-free medium caused eventual loss of the contractile response to all agents. The response to all agents was restored upon re-exposure of the cell to a cytosol-like concentration of Ca2+, implying equal access of InsP3 and receptor-linked agonists to the same intracellular Ca2+ store. The results demonstrate that InsP3 mimics the effects of receptor-linked agonists on contraction and mobilization of intracellular Ca2+ in permeabilized smooth muscle cells that retain the functional properties of intact smooth muscle cells and support a role for InsP3 as membrane-derived messenger responsible for mobilization of intracellular Ca2+ in smooth muscle cells.  相似文献   

13.
The aim of the present study was to investigate the effect of membrane depolarization on ATP-induced changes in intracellular Ca2+ ([Ca2+]i) and the refilling of intracellular Ca2+ stores in thyroid follicular FRTL-5 cells. Depolarizing the cells with 50 mM K+, an amount sufficient to almost totally depolarize the cells as determined by bisoxonal, significantly reduced the ATP-induced uptake of 45Ca2+. This effect was not dependent on an enhanced efflux of Ca2+, as no difference in the ATP-induced efflux of 45Ca2+ was obtained between control cells and depolarized cells. The ATP-induced transient increase in [Ca2+]i in Fura-2 loaded cells was not altered by depolarization, whereas the ATP-induced plateau in [Ca2+]i was decreased compared with control cells. Furthermore, in cells stimulated with ATP in a Ca(2+)-free buffer, readdition of Ca2+ after the termination of the ATP response induced a decreased response in [Ca2+]i in depolarized cells. Refilling of intracellular Ca2+ stores was investigated by first stimulating the cells with noradrenaline (NA). The effect of NA was then terminated with prazosin, and the cells restimulated with ATP. In cells depolarized with high K+, the response to ATP was decreased compared with that seen in control cells. The results thus suggest that both the ATP-induced influx of extracellular Ca2+ and the refilling of intracellular Ca2+ stores is decreased in depolarized FRTL-5 cells.  相似文献   

14.
The fluorescent chelating agent quin 2 has been employed to monitor alterations of intracellular free Ca2+ concentrations ([Ca2+]i) in response to alpha 1-adrenergic receptor activation in adherent BC3H-1 cells. To correlate the kinetics of [Ca2+]i changes with transmembrane fluxes of this ion, continuous monitoring of [Ca2+]i has been undertaken on a monolayer of cells. Previous measurements of the transmembrane efflux of Ca2+ show a distinct lag in the response over a range of phenylephrine concentrations. By contrast, the elevation of [Ca2+]i is rapid (t1/2 approximately 2 s) and maintained for 30 s before it begins to decline to basal concentrations. The differences in kinetics indicate that the temporal delay in cellular Ca2+ efflux results from either activation of the transport system for Ca2+ extrusion or translocation of free Ca2+ to the transport site. The decline of [Ca2+]i with continued agonist exposure parallels both the efflux kinetics from the cell and the decline of total cellular Ca2+. At a time when free [Ca2+]i approaches the resting concentration, total cellular Ca2+ is reduced to a steady state value of 60% of that seen prior to stimulation. The Kact for phenylephrine-stimulated elevation in [Ca2+]i on the monolayer is 0.51 microM, which is similar to the Kact of 0.90 microM observed for phenylephrine-activated 45Ca2+ efflux. Addition of phentolamine subsequent to phenylephrine addition immediately reverses the agonist-stimulated Ca2+ mobilization, initiating a rapid return of [Ca2+]i to resting levels. A comparison of the kinetics of Ca2+ mobilization with its transmembrane flux suggests that the agonist augments the rate of recycling of intracellular Ca2+ between the free and bound states rather than causing release as a single bolus from the bound stores.  相似文献   

15.
I Parker  Y Yao    V Ilyin 《Biophysical journal》1996,70(1):222-237
Inositol 1,4,5-trisphosphate (InsP3) acts on intracellular receptors to cause liberation of Ca2+ ions into the cytosol as repetitive spikes and propagating waves. We studied the processes underlying this regenerative release of Ca2+ by monitoring with high resolution the kinetics of Ca2+ flux evoked in Xenopus oocytes by flash photolysis of caged InsP3. Confocal microfluorimetry was used to monitor intracellular free [Ca2+] from femtoliter volumes within the cell, and the underlying Ca2+ flux was then derived from the rate of increase of the fluorescence signals. A threshold amount of InsP3 had to be photoreleased to evoke any appreciable Ca2+ signal, and the amount of liberated Ca2+ then increased only approximately fourfold with maximal stimulation, whereas the peak rate of increase of Ca2+ varied over a range of nearly 20-fold, reaching a maximum of approximately 150 microMs-1. Ca2+ flux increased as a first-order function of [InsP3]. Indicating a lack of cooperativity in channel opening, and was half-maximal with stimuli approximately 10 times threshold. After a brief photolysis flash, Ca2+ efflux began after a quiescent latent period that shortened from several hundred milliseconds with near-threshold stimuli to 25 ms with maximal flashes. This delay could not be explained by an initial "foot" of Ca2+ increasing toward a threshold at which regenerative release was triggered, and the onset of release seemed too abrupt to be accounted for by multiple sequential steps involved in channel opening. Ca2+ efflux increased to a maximum after the latent period in a time that reduced from > 100 ms to approximately 8 ms with increasing [InsP3] and subsequently declined along a two-exponential time course: a rapid fall with a time constant shortening from > 100 ms to approximately 25 ms with increasing [InsP3], followed by a much smaller fail persisting for several seconds. The results are discussed in terms of a model in which InsP3 receptors must undergo a slow transition after binding InsP3 before they can be activated by cytosolic Ca2+ acting as a co-agonist. Positive feedback by liberated Ca2+ ions then leads to a rapid increase in efflux to a maximal rate set by the proportion of receptors binding InsP3. Subsequently, Ca2+ efflux terminates because of a slower inhibitory action of cytosolic Ca2+ on gating of InsP3 receptor-channels.  相似文献   

16.
Inositol 1,4,5-trisphosphate (InsP(3)) production in single cerebellar granule neurons (CGNs) grown in culture was measured using the PH domain of phospholipase C delta1 tagged with enhanced green fluorescent protein (eGFP-PH(PLCdelta1)). These measurements were correlated with changes in intracellular free Ca2+ determined by single cell imaging. In control CGNs, intracellular Ca2+ stores appeared replete. However, the refilling state of these stores appeared dependent on the fluorophore used to measure Ca2+-release. Thus, methacholine (MCH), acting via muscarinic acetylcholine-receptors (mAchRs), mobilised intracellular Ca2+ in cells loaded with fluo-3 and fura-4f, but not fura-2. Confocal measurements of single CGNs expressing eGFP-PH(PLCdelta1) demonstrated that MCH stimulated a robust peak increase in InsP(3), which was followed by a sustained plateau phase of InsP(3) production. In contrast, glutamate-induced InsP(3) signals were weak or not detectable. MCH-stimulated InsP(3) production was reduced by chelation of intracellular Ca2+ with BAPTA, and emptying of intracellular stores with thapsigargin, indicated a positive feedback effect of Ca2+ mobilisation onto PLC activity. In CGNs, NMDA- and KCl-mediated Ca2+-entry significantly enhanced MCH-induced InsP(3) production. Furthermore, mAchR-mediated PLC activation appeared sensitive to the full dynamic range of intracellular Ca2+ increases stimulated by 100 microm NMDA. This dynamic regulation was also observed at the level of PKC activation indicated by an enhanced translocation of eGFP-tagged myristoylated alanine-rich C kinase substrate (MARCKS) protein in cells stimulated with MCH. Thus, NMDA-mediated Ca2+ influx and PLC activation may represent a coincident-detection system whereby ionotropic and metabotropic signals combine to stimulate InsP(3) production and PKC-mediated phosphorylation events in CGNs.  相似文献   

17.
Many hormones and neurotransmitters raise intracellular calcium (Ca(2+)) by generating InsP(3) and activating the inositol 1,4, 5-trisphosphate receptor (InsP(3)R). Multiple isoforms with distinct InsP(3) binding properties () have been identified (). The type III InsP(3)R lacks Ca(2+)-dependent inhibition, a property that makes it ideal for signal initiation (). Regulation of the type III InsP(3)R by InsP(3) and ATP was explored in detail using planar lipid bilayers. In comparison to the type I InsP(3)R, the type III InsP(3)R required a higher concentration of InsP(3) to reach maximal channel activity (EC(50) of 3.2 microM versus 0.5 microM for the types III and I InsP(3)R, respectively). However, the type III InsP(3)R did reach a 2.5-fold higher level of activity. Although activation by InsP(3) was isoform-specific, regulation by ATP was similar for both isoforms. In the presence of 2 microM InsP(3), low ATP concentrations (<6 mM) increased the open probability and mean open time. High ATP concentrations (>6 mM) decreased channel activity. These results illustrate the complex nature of type III InsP(3)R regulation. Enhanced channel activity in the presence of high InsP(3) may be important during periods of prolonged stimulation, whereas allosteric modulation by ATP may help to modulate intracellular Ca(2+) signaling.  相似文献   

18.
2-Aminoethoxydiphenyl borate (2APB) is a membrane-permeable blocker of the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release in bi-directional Ca2+ -flux conditions. We have now studied the effects of 2APB on the 45Ca2+ uptake into, and on the basal and IP(3)-stimulated unidirectional 45Ca2+ efflux from the non-mitochondrial Ca2+ stores in permeabilized A7r5 smooth-muscle cells. 2APB inhibited the IP3 -induced Ca2+ release, with a half maximal inhibition at 36 microM 2APB, without affecting [3H]IP3 binding to the receptor. This inhibition did not depend on the IP3, ATP or free Ca2+ concentration. The Ca2+ pumps of the non-mitochondrial Ca2+ stores were half-maximally inhibited at 91microM 2APB. Higher concentrations of 2APB increased the non-specific leak of Ca2+ from the stores. We conclude that 2APB can not be considered as a selective blocker of the IP3 -induced Ca2+ release. Our results can explain the various effects of 2APB observed in intact cells.  相似文献   

19.
Stimulation of suspensions of fura-2-loaded human neutrophils with ATP resulted in an elevation in cytosolic free calcium concentration ([Ca2+]i) from a basal value of 0.1 microM to a transient peak of 1 microM. The response is due to Ca2+ release from intracellular stores and influx of extracellular Ca2+. Release from intracellular stores is shown by the response in the absence of extracellular Ca2+. The greater and more maintained response in the presence of extracellular Ca2+ is indicative of stimulated Ca2+ entry and a stimulated influx pathway was confirmed by using Mn2+ as a surrogate for Ca2+. A variety of purinergic agonists were used to characterize the pharmacology of this [Ca2+]i response. Their rank order of potency was ATP greater than adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) greater than ADP much greater than 2-methylthioadenosine 5'-triphosphate (2Me-SATP), where ATP had an EC50 value of 3 microM and 2MeSATP had an EC50 value of 1000 microM. Adenosine 5'-O-(2-thiodiphosphate) (ADP beta S), adenylyl (alpha,beta-methylene)- diphosphonate (AMPCPP) and adenosine were inactive at 1 mM. These results suggest that neutrophils have a novel type of purinergic P2 receptor that is neither P2x nor P2y.  相似文献   

20.
Thapsigargin stimulates an increase of cytosolic free Ca2+ concentration [( Ca2+]c) in, and 45Ca2+ efflux from, a clone of GH4C1 pituitary cells. This increase in [Ca2+]c was followed by a lower sustained elevation of [Ca2+]c, which required the presence of extracellular Ca2+, and was not inhibited by a Ca2(+)-channel blocker, nimodipine. Thapsigargin had no effect on inositol phosphate generation. We used thyrotropin-releasing hormone (TRH) to mobilize Ca2+ from an InsP3-sensitive store. Pretreatment with thapsigargin blocked the ability of TRH to cause a transient increase in both [Ca2+]c and 45Ca2+ efflux. The block of TRH-induced Ca2+ mobilization was not caused by a block at the receptor level, because TRH stimulation of InsP3 was not affected by thapsigargin. Rundown of the TRH-releasable store by Ca2(+)-induced Ca2+ release does not appear to account for the action of thapsigargin on the TRH-induced spike in [Ca2+]c, because BAY K 8644, which causes a sustained rise in [Ca2+]c, did not block Ca2+ release caused by TRH. In addition, caffeine, which releases Ca2+ from intracellular stores in other cell types, caused an increase in [Ca2+]c in GH4C1 cells, but had no effect on a subsequent spike in [Ca2+]c induced by TRH or thapsigargin. TRH caused a substantial decrease in the amount of intracellular Ca2+ released by thapsigargin. We conclude that in GH4C1 cells thapsigargin actively discharges an InsP3-releasable pool of Ca2+ and that this mechanism alone causes the block of the TRH-induced increase in [Ca2+]c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号