首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Fibroblasts from Xenopus laevis, which possess photoreactivating enzyme were used to study the influence of photoreactivating light on the frequency of pyrimidine dimers in DNA, chromosomal aberrations, sister chromatid exchanges, cell killing and the induction of gene mutations (ouabain-resistance) induced by 254 nm ultraviolet irradiation. The frequency of all biological endpoints studied were reduced following exposure to photoreactivating light parallel to the reduction in the frequencies of pyrimidine dimers (determined as endonuclease sensitive sites). However there was not always an absolute quantitative relationship between the reduction in the frequency of pyrimidine dimers and the reduction in the biological effects. This probably reflects a fast fixation process for the biological effects prior to removal of the dimers by photoreactivation.Abbreviations UV ultraviolet - PR photoreactivating - ESS endonuclease sensitive site - SCE sister chromatid exchanges - BrdUrd 5-brothodeoxyuridine  相似文献   

2.
Exposure of ICR 2A frog cells to 265 nm, 289 nm, 302 nm or 313 nm monochromatic ultraviolet (UV) wavelengths induced the formation of sister-chromatid exchanges (SCEs). However, treatment of cells with photoreactivating light (PRL) following the UV irradiations resulted in a lower level of SCEs compared with cells incubated in the dark. Hence, it can be concluded that pyrimidine dimers are the principal photoproducts responsible for the induction of SCEs in cells exposed to 265-313 nm UV due to the specificity of DNA photolyase for the light-dependent monomerization of dimers in DNA. It was also found that the maximum yield of induced SCEs in 313 nm-irradiated cells was only about 7 SCEs per cell whereas the plateau values for the shorter wavelengths were approximately 15-20 SCEs per cell. In addition, treatment of cells with 313 nm plus 265 nm light resulted in a lower level of SCEs than in cells exposed to 265 nm UV alone. These results can be interpreted in the context of a replication model for SCE, in which the high level of non-dimer damages produced in the DNA of 313 nm-irradiated cells inhibits the induction of SCEs by the pyrimidine dimers that are also produced by this wavelength.  相似文献   

3.
The induction and photorepair of pyrimidine dimers in DNA have been measured in the ultraviolet-irradiated, corneal epithelium of the marsupial, Monodelphis domestica, using damage-specific nucleases from Micrococcus luteus in conjunction with agarose gel electrophoresis. We observed that FS-40 sunlamps (280-400 nm) induced 7.2 +/- 1.0 X 10(-5) pyrimidine dimers per kilobase (kb) of DNA per J/m2. Following 100 J/m2, 50% and greater than 90% of the dimers were photorepaired during a 10- and 30-min exposure to photoreactivating light (320-400 nm), respectively. In addition, approximately 70% and approximately 60% of the dimers induced by 300 and 500 J/m2, respectively, were repaired by a 60-min exposure to photoreactivating light. The capacity of the corneal epithelium of M. domestica to photorepair pyrimidine dimers identifies this animal as a potentially useful model with which to determine whether pyrimidine dimers are involved in pathological changes of the irradiated eye.  相似文献   

4.
CHO cells were pre-treated with sodium butyrate (SB) for 24 h and then X-irradiated in G1. Metaphases were scored for the induction of chromosomal aberrations and sister chromatid exchanges (SCEs). The data were compared with those obtained after irradiation of cells not pre-treated with SB and showed that SB has different effects on the endpoints examined. The frequencies of dicentric chromosomes were elevated and of small acentric rings (double minutes, DMs) reduced. These results are discussed to be a consequence of conformational changes in hyperacetylated chromatin which could lead to more interchromosomal and to less intrachromosomal exchanges. SB itself induces a few SCEs but suppresses the induction of SCEs by X-rays. We assume that a minor part of radiation induced SCEs are 'false' resulting from structural chromosomal aberrations, such as inversions, induced in G1. Inversions are the symmetrical counterparts of DMs. If inversions are suppressed by SB treatment to a similar extent as DMs a small reduction of SCEs by SB can be expected.  相似文献   

5.
The existence of a high frequency of spontaneous sister-chromatid exchanges (SCEs) in Bloom syndrome (BS) has thus far been supported by data on a small number of BS cell lines. To examine the cause of baseline SCEs more broadly, the frequencies of SCEs, as well as chromosomal aberrations (CAs) in 4 additional BS fibroblast strains were compared, under different assay and cell culture conditions, with those of normal cells in the range of approximately 0.9-90% 5-bromodeoxyuridine (BrdUrd) substitution into template DNA. SCEs at low levels of BrdUrd substitution were detected by an extremely sensitive immunofluorescent technique. From approximately 0.9% to 4.5% BrdUrd substitution, the SCE frequency in BS cells remained constant, at a level (40/cell) 8 times higher than that of normal cells. As BrdUrd substitution increased further, the SCE frequency in BS cells increased almost linearly, reaching 70-100 per cell at approximately 90% substitution, while the SCE increment in control fibroblasts was less than 5 per cell. Analysis of SCEs in 3 successive replication cycles similarly revealed that the SCE increment in BS cells depended on BrdUrd only at a high BrdUrd substitution level. In contrast to data on SCEs, CA induction by incorporated BrdUrd in BS cells was only slightly higher than that in normal cells. Thus, BS cells are extremely sensitive to BrdUrd for SCE induction, but much less so for CA induction.  相似文献   

6.
We carried out a cross-sectional analysis of sister-chromatid exchanges (SCEs) and chromosomal aberrations induced by diepoxybutane (DEB) in lymphocyte cultures from 58 normal blood donors. DEB-induced SCE frequencies were measured in all subjects and chromosomal aberrations in 18. Analysis of variance was used to assess the contributions of exposure to organic solvents, age, smoking history, alcohol and coffee consumption, and red and white blood cell counts to variations in DEB-induced SCEs. In 10 individuals, the epoxide-detoxifying enzyme, glutathione (GSH)-S-transferase mu, was also measured. We observed a bimodal distribution of DEB-induced SCEs in the study population. Approx. 24% of the individuals were twice as sensitive to the induction of SCEs by DEB as the remaining 76%. Lymphocytes from persons sensitive to SCE induction by DEB contained a 4.4-fold increase in the number of DEB-induced chromatid deletions and exchanges. Within sensitive and resistant groups, significant interindividual variations in DEB-induced SCE frequencies were noted. Cigarette smoking was weakly associated with lower SCE frequencies within each group. Genetic deficiency in GSH-S-transferase mu was not correlated with increased sensitivity to SCE induction by DEB. Sensitivity to induction of SCEs by DEB can be rapidly determined and may be a marker of sensitivity to the induction of genotoxicity by certain classes of mutagens.  相似文献   

7.
The induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) by short-wave ultraviolet (UV) and X-irradiation was studied in Chinese hamster ovary (CHO) wild-type (WT) cells and one of its UV-hypersensitive mutants, 43-3B. The results indicate that CHO 43-3B show high levels of spontaneously occurring chromosomal aberrations and SCEs; these levels are, respectively, approximately 4 and 1.7 times those found in WT CHO. Treatment with UV produced a considerable delay in the cell-cycle progression of the mutant cells compared to the WT cells. Doses of UV that had no effect on WT cells, significantly induced chromosomal alterations in the mutant in a dose-dependent manner. An approximately 5-fold increase in the induced frequencies of SCEs was obtained in 43-3B cells after UV treatment. No synergistic effect was observed with UV irradiation and the inhibitor of poly(ADP-ribose) synthetase, 3-aminobenzamide (3AB), in either cell type. The frequency of SCEs in the mutant cell lines was lower than would be expected if the effects of UV and the inhibitor were additive. X-Ray alone in G1 and in combination with 3AB in G2 did not induce increased frequencies of chromosomal aberrations in mutant cells in comparison to the WT cells.  相似文献   

8.
In cultures of human peripheral lymphocytes the frequencies of Trenimon-induced SCEs in second post-treatment metaphases and of structural chromosomal aberrations in first, second and third post-treatment metaphases were clearly lower at late as compared with early fixation times. These results, which are discussed, indicate that T cells (early dividing) are more sensitive with respect to the induction of SCEs and structural chromosomal aberrations by Trenimon as compared with B cells (late dividing).  相似文献   

9.
Previously we compared the mutational specificities of polychromatic UVB (285-320 nm) and UVC (254 nm) light in the SUP4-o gene of the yeast Saccharomyces cerevisiae. Striking similarities in the types and distributions of induced SUP4-o mutations were consistent with roles for cyclobutane dimers and pyrimidine(6-4)pyrimidone photoproducts in mutation induction by UVB. To assess the relative importance of cyclobutane dimers, we have now examined the effect of photoreactivation (PR), which specifically reverses these lesions, on UVB and UVC induction of SUP4-o mutations. PR reduced the frequencies of both UVB and UVC mutagenesis by approximately 75%. Collections of 138 and 158 SUP4-o mutants induced by treatment with UVB plus PR or UVC plus PR, respectively, were characterized by DNA sequencing and the results were compared to those for 208 UVB and 211 UVC-induced mutants analyzed earlier. PR decreased the frequency of UVB-induced G.C----A.T transitions by 85%, diminished the substitution frequencies at individual sites by 64% on average, and reduced the mutation frequencies at the five UVB hotspots by 87%. A more detailed examination revealed that the transition frequencies at the 3' base of 5'-TC-3' and 5'-CC-3' sequences were decreased by 90% and 72%, respectively. Finally, PR appeared to occur to the same extent on both the transcribed and non-transcribed strands of SUP4-o. Similar results were obtained for PR following UVC irradiation. Our findings indicate that cyclobutane dimers are responsible for the majority of UVB mutagenesis in yeast.  相似文献   

10.
The clastogenic potential of the intercalating compound ellipticine, an antitumor alkaloid, has been demonstrated in mammalian cells. To characterize the mechanism of action of this drug over the cell cycle, human lymphocyte cultures from 2 healthy donors were treated with 3 micrograms/ml ellipticine in 30-min pulses during different phases of the cell cycle and analyzed for chromosomal aberrations and sister-chromatid exchanges. The G2 phase was most sensitive in terms of induction of aberrations, followed by S and G1. Chromatid-type aberrations were the most common type of chromosomal damage. Induction of SCEs was significantly high only after treatment at G1, when the frequencies of SCEs doubled. The post-treatment effect of lymphocytes with inhibitors of DNA repair, 10(-3) M caffeine and 5 x 10(-6) M 1-beta-D-arabinofuranosylcytosine, was also tested by adding 3 micrograms/ml ellipticine at G2 in 30-min pulses and immediately followed by caffeine and/or ara-C during the last 3 h before harvesting. Three experiments performed on blood from 3 donors showed a moderate potentiation effect on the frequency of chromatid-type aberrations (about 2-3 times) by both inhibitors. Likewise, a 3-fold increase was observed in the frequencies of chromosomal aberrations when caffeine and ara-C were combined. The present data demonstrate that posttreatment with caffeine and ara-C at G2 can modify the response of human lymphocytes treated with ellipticine by increasing the clastogenic action of this compound or by changing the cell-cycle progression.  相似文献   

11.
The dose curves for 5 chemicals were studied to compare the efficiency of induction of SCEs and chromosomal aberrations by "polycentric" mutagens. The number of SCEs was found to increase linearly with the dose while that of chromosomal aberrations--nonlinearly. The efficiency of SCEs induction by these mutagens was found to be 25-50 times as high as in the induction of chromosomal aberrations. Division of alkylating mutagens into "monocentric" and "polycentric" is shown to be useful. It reflects their different efficiency in damaging one or simultaneously two DNA strands. The correlation between SCEs and formation of aberrations of the chromatid type is stated.  相似文献   

12.
The induction of cytotoxicity, chromosomal aberrations, and sister chromatid exchanges (SCEs) was measured in CHO K-1c cells and in isogenic X-ray-sensitive mutant xrs-6c cells that had been irradiated with X rays and alpha particles in isoleucine-deficient alpha-minimal essential medium in G1 phase of the cell cycle. There was a noticeable shoulder region on the survival curve for CHO K-1c cells irradiated with very low doses of alpha particles, whereas this feature was absent for xrs-6c cells with alpha-particle doses as low as 0.5 cGy. Higher frequencies of chromatid-type aberrations were induced in G1-phase xrs-6c cells than in G1-phase CHO K-1c cells by both gamma- and alpha-particle irradiation. Induction of nonlethal chromosomal aberrations was observed following exposure to 2-6 cGy of alpha particles, doses yielding 97-100% cell survival. Irradiation with 0.5 cGy of alpha particles induced SCE; nearly 60% of irradiated cells contained significantly increased levels of SCE. However, only 3% of the nuclei of cells exposed to 0.5 cGy of alpha-particle radiation were actually traversed by an alpha particle. The observation that a large fraction of cells apparently survive exposure to very low doses of alpha-particle radiation with persistent genetic damage manifested by both chromosomal aberrations and SCEs may have important implications for the carcinogenic hazards of high-LET radiation.  相似文献   

13.
Incorporation of BrdUrd into nuclear DNA sensitizes CHO cells (1) to the induction of chromosomal aberrations by X-rays and 0.5 MeV neutrons and (2) to induction of chromosomal aberrations and SCEs by lw-UV. We have attempted to establish a correlation between induced chromosomal alterations and induced single- or double-strand breaks in DNA. The data show that while DSBs correlate very well with X-ray-induced aberrations, no clear correlation could be established between lw-UV induced SSBs (including alkali-labile sites) and chromosomal alterations.

In addition the effect of 3-aminobenzamide (3AB) on the induction of chromosomal aberrations and SCEs induced by lw-UV has been determined. It is shown that 3AB is without any effect when lw-UV-irradiated cells are posttreated with this inhibitor.

The significance of these results is discussed.  相似文献   


14.
Pimephales promelas (fathead minnow) embryos were used to show a correlation between induction of pyrimidine dimers in DNA and embryo death. Embryo killing was measured by a lack of heart-beat and blood circulation at 48 h post-ultraviolet radiation (UVR). When the embryos were exposed to various doses of UVR from a FS-40 sunlamp followed by exposure to photoreactivating light (PRL) (320-400 nm), the number of pyrimidine dimers decreased significantly. The photorepair of dimers was accompanied by a substantial increase in embryo survival. When embryo killing was examined as a function of the number of dimers present, dimers were identified as a major lesion involved in UVR-induced killing in these fish embryos. This in vivo study on photoreactivation treatment of fish embryos shows a direct association between UVR-induced pyrimidine dimers and embryo killing. In addition, when embryos were held in the dark for 9 h after UVR, 50% of the dimers were removed by excision repair.  相似文献   

15.
Genotoxic effects of o-phenylphenol metabolites in CHO-K1 cells   总被引:1,自引:0,他引:1  
The effects of microsomal activation and/or deactivation on the induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) in cultured Chinese hamster ovary cells (CHO-K1 cells) by o-phenylphenol (OPP) were studied, and concurrently the metabolites were determined. After a 3-h incubation in the presence of 15% S9 mix (45 microliters/ml of S9), OPP (25-150 micrograms/ml) dose-independent SCEs and chromosomal aberrations were induced, while the amount of phenylhydroquinone (PHQ) metabolite produced from OPP did not increase linearly in the higher doses. The maximum induction of chromosomal aberrations was 18% at the 150 micrograms/ml dose, and of SCEs 13.8/cell at 75 micrograms/ml. The corresponding control values were 3% and 5.8/cell. The lowest dose required to induce SCEs in the presence of S9 mix was 25 micrograms/ml. Changing the percent of S9 mix (0-50%) while holding the OPP dose constant (100 micrograms/ml) produced a correlation between SCEs and the production of PHQ. PHQ caused cytogenetic effects both with and without S9 mix, however, in the absence of S9 mix it was more lethal and was oxidized to phenylbenzoquinone (PBQ). These results suggest that the enhanced cytogenetic effects of OPP by the addition of S9 mix correlated with the amount of PHQ produced or with the further oxides of PHQ such as phenylsemiquinone and/or PBQ which are capable of being produced from PHQ spontaneously or by the mixed-function oxidase system.  相似文献   

16.
A comparative study on the biological responses to different mutagens (UV, 4NQO, MMC, MMS and EMS) was made on CHO wild-type cells (CHO-9), its UV-hypersensitive mutant 43-3B, and 2 types of its transferants, i.e., one containing a few copies of the human repair gene ERCC-1 and the other having more than 100 copies of ERCC-1 (due to gene amplification). Cell survival, chromosomal aberrations and SCEs were used as biological end-points. The spontaneous frequency of chromosomal aberrations in the transferants was less than found in 43-3B mutant cells, but still 2-3 times higher than in wild-type CHO cells. The spontaneous frequency of SCEs in the transferants was less than in 43-3B and similar to that of wild-type cells. The induction of SCEs by all tested agents in transferants was similar to that found in CHO-9 cells, while the mutant is known to respond with higher frequencies. ERCC-1 also bestowed resistance to MMS and EMS on the mutant to induction of chromosomal aberrations and cell killing to levels comparable with those of the wild-type strain. On the other hand ERCC-1 could not completely regain the repair proficiency against cell killing and induction of chromosomal aberrations by UV or MMC to the wild-type level. These results suggest that the ERCC-1 corrects the repair defect in CHO mutant cells, but it is unable to rectify fully the defect; probable reasons for this are discussed. However, amplified transferants (having more than 100 copies of the ERCC-1 gene) restored the impaired repair function in 43-3B to UV-, MMC- or 4NQO-induced DNA damage better than non-amplified transferants with a few copies of the ERCC-1. This difference may be due to the high amount of gene product involved in the excision repair process in the amplified cells.  相似文献   

17.
Peripheral blood lymphocytes of 9 patients under CCNU therapy were examined for frequency of sister-chromatid exchanges (SCEs) and chromosomal aberrations (CAs). 7 out of 9 patients were treated with only CCNU, whereas the remaining 2 were treated with other chemotherapeutic agents in combination with CCNU. Compared to normal individuals, a significantly increased frequency of SCE was observed in the patients before starting anticancer therapy (P less than 0.001). Increased incidences of structural changes in chromosomes were observed in cells from all the treated patients. The most frequent aberrations were of chromatid type. After administration of a single dose of CCNU, an increase in SCE frequencies was observed which remained elevated even after 6 weeks. It was concluded that increases in SCEs and CAs in lymphocytes were caused by CCNU treatment. Further studies are needed to elucidate whether any CAs observed in the present study could participate in the induction of second neoplasm.  相似文献   

18.
Light-dependent repair of UV-induced cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidinone dimers (6-4 products) was investigated in an excision repair-deficient Arabidopsis mutant. As previously described, exposure to broad-spectrum lighting was found to greatly enhance the rate of repair of CPDs. We demonstrate that 6-4 products are also efficiently eliminated in a light-dependent manner and that this photoreactivation of 6-4 products occurs independently of the previously described 6-4 product dark repair pathway. The light-dependent repair of both 6-4 products and CPDs occurs in the presence of blue light (435 nm) but not upon exposure to light of longer wavelengths. We also found that high-level expression of the CPD-specific photoreactivating activity in the Arabidopsis seedling requires induction by exposure to light prior to as well as during the period of repair while the 6-4 photoreactivating activity is constitutively expressed. This differential regulation of the photoreactivating activities suggests that the Arabidopsis seedling produces at least two distinct photolyases: one specific for CPDs and the other specific for 6-4 products.  相似文献   

19.
Dose curves of five chemicals were studied to compare the efficiency of SCE and chromosomal aberration induction by different chemical mutagens. SCEs were found to increase linearly with the dose, whereas chromosomal aberrations--nonlinearly. Using regression coefficients obtained from the dose curves it was found that the efficiency of the studied chemical mutagens in induction of SCEs is 100-300 times as high as that in the induction of chromosomal aberrations.  相似文献   

20.
Studies on the induction and persistence of ethylene oxide (EO) induced chromosomal alterations in rat bone-marrow cells and splenocytes following in vivo exposure were carried out. Rats were exposed to ethylene oxide either chronically by inhalation (50-200ppm, 4 weeks, 5 days/week, 6h/day) or acutely by intraperitoneal injection (i.p.) at dose levels of 50-100ppm.Spontaneous- and induced-frequencies of micronuclei (MN), sister-chromatid exchanges (SCEs) and chromosomal aberrations were determined in rat bone-marrow cells, and in splenocytes following in vitro mitogen stimulation. Unstable chromosomal aberrations were studied in whole genome using standard Giemsa staining technique and fluorescence in situ hybridisation using probe for chromosome #2 was employed to detect chromosome translocations.Following chronic exposure, the cytogenetic analyses were carried out at days 5 and 21 in rat splenocytes, to study the induction and persistence of sister-chromatid exchanges. Following chronic exposure, ethylene oxide was effective in inducing SCEs, and markedly cells with high frequency SCEs were observed and they in-part persisted until day 21 post-exposure. However, no significant effect was observed in rat splenocytes for induction of MN and chromosomal aberrations. Following acute exposure, both SCEs and MN were increased significantly in rat bone-marrow cells as well as splenocytes.In conclusion, this study indicates that ethylene oxide at the concentrations employed by intraperitoneal injection or inhalation in adult rats is mutagenic and can induce both SCEs and MN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号