首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Eight terminally deleted Drosophila melanogaster chromosomes have now been found to be "healed." In each case, the healed chromosome end had acquired sequence from the HeT DNA family, a complex family of repeated sequences found only in telomeric and pericentric heterochromatin. The sequences were apparently added by transposition events involving no sequence homology. We now report that the sequences transposed in healing these chromosomes identify a novel transposable element, HeT-A, which makes up a subset of the HeT DNA family. Addition of HeT-A elements to broken chromosome ends appears to be polar. The proximal junction between each element and the broken chromosome end is an oligo(A) tract beginning 54 nucleotides downstream from a conserved AATAAA sequence on the strand running 5' to 3' from the chromosome end. The distal (telomeric) ends of HeT-A elements are variably truncated; however, we have not yet been able to determine the extreme distal sequence of a complete element. Our analysis covers approximately 2,600 nucleotides of the HeT-A element, beginning with the oligo(A) tract at one end. Sequence homology is strong (greater than 75% between all elements studied). Sequence may be conserved for DNA structure rather than for protein coding; even the most recently transposed HeT-A elements lack significant open reading frames in the region studied. Instead, the elements exhibit conserved short-range sequence repeats and periodic long-range variation in base composition. These conserved features suggest that HeT-A elements, although transposable elements, may have a structural role in telomere organization or maintenance.  相似文献   

3.
Telomeres of Drosophila melanogaster contain arrays of the retrotransposon-like elements HeT-A and TART. Their transposition to broken chromosome ends has been implicated in chromosome healing and telomere elongation. We have developed a genetic system which enables the determination of the frequency of telomere elongation events and their mechanism. The frequency differs among lines with different genotypes, suggesting that several genes are in control. Here we show that the Su(var)2-5 gene encoding heterochromatin protein 1 (HP1) is involved in regulation of telomere length. Different Su(var)2-5 mutations in the heterozygous state increase the frequency of HeT-A and TART attachment to the broken chromosome end by more than a hundred times. The attachment occurs through either HeT-A/TART transposition or recombination with other telomeres. Terminal DNA elongation by gene conversion is greatly enhanced by Su(var)2-5 mutations only if the template for DNA synthesis is on the same chromosome but not on the homologous chromosome. The Drosophila lines bearing the Su(var)2-5 mutations maintain extremely long telomeres consisting of HeT-A and TART for many generations. Thus, HP1 plays an important role in the control of telomere elongation in D. melanogaster.  相似文献   

4.
5.
Drosophila telomeres contain arrays of the retrotransposonlike elements HeT-A and TART. Their transposition to broken chromosomal termini has been implicated in chromosome healing and telomere elongation. The HeT-A element is attached by its 3' end, which contains the promoter. To monitor the behavior of HeT-A elements, we used the yellow gene with terminal deficiencies consisting of breaks in the yellow promoter region that result in the y-null phenotype. Attachment of the HeT-A element provides the promoterless yellow gene with a promoter that activates yellow expression in bristles. The frequency of HeT-A transpositions to the yellow terminal deficiency depends on the genotype of the line and varies from 2 x 10(-3) to less than 2 x 10(-5). Loss of the attached HeT-A due to incomplete replication at the telomere leads to inactivation of yellow expression, which is restored by attachment of a new HeT-A element upstream of yellow. New HeT-A additions occur at a frequency of about 1.2 x 10(-3). Short DNA attachments are generated by gene conversion using the homologous telomeric sequences as templates. Longer DNA attachments are generated either by conventional transposition of an HeT-A element to the chromosomal terminus or by recombination between the 3' terminus of telomeric HeT-A elements and the receding end of HeT-A attached to the yellow gene.  相似文献   

6.
7.
Cenci G  Siriaco G  Gatti M 《Genetica》2003,117(2-3):311-318
Drosophila telomeres contain multiple copies of HeT-A and TART retrotransposons. These elements specifically transpose to chromosomal ends, compensating for loss of terminal nucleotides that occurs at each cycle of DNA replication. We have investigated the role of these sequences in the formation of telomere–telomere attachments induced by mutations in the UbcD1 gene. We have constructed UbcD1 mutant males carrying terminally deleted X chromosomes devoid of both HeT-A and TART sequences. Cytological analysis of larval neuroblasts from these males revealed that telomeres lacking HeT-A and TART and normal telomeres that contain these sequences participate in telomeric fusions with comparable frequencies. These results indicate that the UbcD1 substrate(s) binds chromosomal termini in a sequence-independent manner. Previous studies have shown that the telomere-capping protein HP1 also binds telomeres lacking HeT-A and TART. Taken together, these findings strongly suggest that the assembly of DNA–protein complexes that protect chromosome ends from fusions do not require specific terminal sequences.  相似文献   

8.
Telomeres of Drosophila appear to be very different from those of other organisms. A transposable element, HeT-A, plays a major role in forming telomeres and may be the sole structural element, since telomerase-generated repeats are not found. HeT-A transposes only to chromosome ends. It appears to be a retrotransposon but has novel structural features, which may be related to its telomere functions. A consensus sequence from cloned HeT-A elements defines an element of 6 kb. The coding region has retrotransposon-like overlapping open reading frames (ORFs) with a –1 frameshift in a sequence resembling the frameshift region of the mammalian HIV-1 retrovirus. Both the HeT-A ORFs contain motifs suggesting RNA binding. HeT-A-specific features include a long non-coding region, 3 of the ORFs, which makes up about half of the element. This region has a regular array of imperfect sequence repeats and ends with oligo(A), marking the end of the element and suggesting a polyadenylated RNA transposition intermediate. This 3 repeat region may have a structural role in heterochromatin. The most distal part of each complete HeT-A on the chromosome, the region 5 of the ORFs, has unusual conserved features, which might produce a terminal structure for the chromosome.  相似文献   

9.
Melnikova L  Georgiev P 《Genetics》2002,162(3):1301-1312
Telomeres of Drosophila melanogaster contain arrays of the retrotransposon-like elements HeT-A and TART. Terminally deleted chromosomes can be maintained for many generations. Thus, broken chromosome ends behave as real telomeres. It was previously shown that gene conversion may extend the broken ends. Here we found that the frequency of terminal DNA elongation by gene conversion strongly depends on the genotype. A dominant E(tc) (Enhancer of terminal gene conversion) mutation markedly increases the frequency of this event but does not significantly influence the frequency of HeT-A and TART attachment to the broken chromosome end and recombination between directly repeated sequences at the end of the truncated chromosome. The E(tc) mutation was mapped to the 91-93 region on chromosome 3. Drosophila lines that bear the E(tc) mutation for many generations have telomeres, consisting of HeT-A and TART elements, that are longer than those found in wild-type lines. Thus, the E(tc) mutation plays a significant role in the control of telomere elongation in D. melanogaster.  相似文献   

10.
11.
Telomeres at the ends of linear chromosomes of eukaryotes protect the chromosome termini from degradation and fusion. While telomeric replication/elongation mechanisms have been studied extensively, the functions of subterminal sequences are less well understood. In general, subterminal regions can be quite polymorphic, varying in size from organism to organism, and differing among chromosomes within an organism. The subterminal regions of Drosophila melanogaster are not well characterized today, and it is not known which and how many different components they contain. Here we present the molecular characterization of DNA components and their organization in the subterminal region of the left arm of chromosome 2 of the Oregon RC wildtype strain of D. melanogaster, including a minisatellite with a 457 bp repeat length. Two distinct polymorphic arrangements at 2L were found and analyzed, supporting the Drosophila telomere elongation model by retrotransposition. The high incidence of terminal chromosome deficiencies occurring in natural Drosophila populations is discussed in view of the telomere structure at 2L.  相似文献   

12.
13.
14.
15.
16.
HeT-A elements are a new family of transposable elements in Drosophila that are found exclusively in telomeric regions and in the pericentric heterochromatin. Transposition of these elements onto broken chromosome ends has been implicated in chromosome healing. To monitor the fate of HeT-A elements that had attached to broken ends of the X chromosome, we examined individual X chromosomes from a defined population over a period of 17 generations. The ends of the X chromosomes with new HeT-A additions receded at the same rate as the broken ends before the HeT-A elements attached. In addition, some chromosomes, approximately 1% per generation, had acquired new HeT-A sequences of an average of 6 kb at their ends with oligo(A) tails at the junctions. Thus, the rate of addition of new material per generation matches the observed rate of terminal loss (70-75 bp) caused by incomplete replication at the end of the DNA molecule. One such recently transposed HeT-A element which is at least 12 kb in length has been examined in detail. It contains a single open reading frame of 2.8 kb which codes for a gag-like protein.  相似文献   

17.
18.
The maintenance of the telomeres in Drosophila species depends on the transposition of the non-LTR retrotransposons HeT-A, TAHRE and TART. HeT-A and TART elements have been found in all studied species of Drosophila suggesting that their function has been maintained for more than 60 million years. Of the three elements, HeT-A is by far the main component of D. melanogaster telomeres and, unexpectedly for an element with an essential role in telomere elongation, the conservation of the nucleotide sequence of HeT-A is very low. In order to better understand the function of this telomeric retrotransposon, we studied the degree of conservation along HeT-A copies. We identified a small sequence within the 3' UTR of the element that is extremely conserved among copies of the element both, within D. melanogaster and related species from the melanogaster group. The sequence corresponds to a piRNA target in D. melanogaster that we named HeT-A_pi1. Comparison with piRNA target sequences from other Drosophila retrotransposons showed that HeT-A_pi1 is the piRNA target in the Drosophila genome with the highest degree of conservation among species from the melanogaster group. The high conservation of this piRNA target in contrast with the surrounding sequence, suggests an important function of the HeT-A_pi1 sequence in the co-evolution of the HeT-A retrotransposon and the Drosophila genome.  相似文献   

19.
Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping.  相似文献   

20.
Dde I-digested DNA fragments from 11 inbred mouse strains were separated by electrophoresis, blotted and probed with a labeled oligomer, TELO, containing five repeats of the consensus mammalian telomere sequence, TTAGGG. Each strain produced a unique set of hybridizing fragments. Segregation analysis of TELO-hybridizing fragments from the BXD RI strains indicated that each fragment segregated as expected for a single gene. One fragment from strain DBA/2J was genetically linked to locusXmv-9, previously mapped near the distal end of the map of chromosome (Chr) 4 and three fragments toCck, near the distal end of Chr 9, suggesting that these fragments are telomeric and represent the ends of the chromosome maps. Confirmation of these map positions was obtained from a backcross. Fragments associated with the short arm of the Y Chr were found in DNA from strains C57BL/6J and DBA/2J. TELO-hybridizing fragments from DBA/2J were digested by the exonuclease Bal 31, under conditions in which fragments hybridizing to a cDNA probe for themetallothioneine locus, located at the middle of mouse Chr 8, remained intact. Thus both biochemical and genetic tests indicate that several TELO-hybridizing fragments fromDde I-digested DNA are at the ends of chromosomes and probably derive from mouse telomeres. Using this approach should allow the mapping of genes relative to the ends of other mouse chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号