首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To address whether a shift in hypothalamic thermal setpoint might be a significant factor in induction of hypoxic hypothermia, behavioral thermoregulation was examined in 7 female Sprague-Dawley rats implanted with radiotelethermometers for deep body temperature (Tb) measurement in a thermocline during normoxia (PO2 = 125 torr) and hypoxia (PO2 = 60 torr). Normoxic rats (TNox) selected a mean ambient temperature of 19.7 +/- 1.4 (SE) degrees C and maintained Tb at 37.0 +/- 0.2 degrees C. Hypoxic rats selected a significantly higher ambient temperature (THox = 28.6 +/- 2.2 degrees C) but maintained Tb significantly lower at 35.5 +/- 0.3 degrees C. Without a thermal gradient (ambient temperature = 25 degrees C), Tb during hypoxia was 35.4 +/- 0.4 degrees C. The maintenance of a lower body temperature during hypoxia through behavioral thermoregulation despite having warmer temperatures available supports the hypothesis that the thermoregulatory setpoint of hypoxic rats is shifted to promote thermoregulation at a lower Tb, effectively reducing oxygen demand when oxygen supply is limited.  相似文献   

2.
The effects of arterial alphastat regulation on brain intracellular pH (pHi) and several phosphate metabolites were assessed in anesthetized rats during hypothermia (28.6 +/- 0.2 degrees C) and normothermia (36.2 +/- 0.2 degrees C) by using 31P high-field (8.5 T) nuclear magnetic resonance (NMR). There were significant differences in pHi and metabolite ratios at the two temperatures under conditions of equal minute ventilation. During hypothermia, the brain pHi was 0.09 U higher, the phosphocreatine-to-inorganic phosphate (PCR/Pi) ratio 49% larger, and Pi-to-ATP 20% lower than at normothermia. These changes were fully reversible on warming the animal. The change in brain pHi/temperature was -0.011U/degrees C (95% confidence interval -0.007 to -0.016). The brain's ability to regulate its pHi and phosphate metabolism during hypercapnic acid-base stress was studied by using 10% CO2 ventilation. Hypothermic rats showed a larger fall in brain pHi (0.145 +/- 0.01 U, 7.15-7.01) with 10% CO2 than normothermic rats (0.10 +/- 0.02 U, 7.06-6.96). Similarly ventilated rats had a larger fall in arterial pH with 10% CO2 at hypothermia (0.36 +/- 0.04 U) than normothermia (0.24 +/- 0.01 U), so the delta brain pH/delta arterial pH was the same at both temperatures. The brain PCr-to-Pi ratio decreased approximately 20% during 10% CO2 breathing in both hypothermic and normothermic animals. Brain pHi and metabolite ratios returned to base line 30-50 min after CO2 washout in both groups. In summary, lowering body temperature while maintaining constant ventilation leads to changes in brain pHi and metabolites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
This study compared torpor as a response to food deprivation and low ambient temperature for the introduced house mouse (Mus musculus) and the Australian endemic sandy inland mouse (Pseudomys hermannsburgensis). The house mouse (mass 13.0+/-0.48 g) had a normothermic body temperature of 34.0+/-0.20 degrees C at ambient temperatures from 5 degrees C to 30 degrees C and a basal metabolic rate at 30 degrees C of 2.29+/-0.07 mL O2 g(-1) h(-1). It used torpor with spontaneous arousal at low ambient temperatures; body temperature during torpor was 20.5+/-3.30 degrees C at 15 degrees C. The sandy inland mouse (mass 11.7+/-0.16 g) had a normothermic T(b) of 33.0+/-0.38 degrees C between T(a) of 5 degrees C to 30 degrees C, and a BMR of 1.45+/-0.26 mL O2 g(-1) h(-1) at 30 degrees C. They became hypothermic at low T(a) (T(b) about 17.3 degrees C at T(a)=15 degrees C), but did not spontaneously arouse. They did, however, survive and become normothermic if returned to room temperature (23 degrees C). We conclude that this is hypothermia, not torpor. Consequently, house mice (Subfamily Murinae) appear to use torpor as an energy conservation strategy whereas sandy inland mice (Subfamily Conilurinae) do not, but can survive hypothermia. This may reflect a general phylogenetic pattern of metabolic reduction in rodents. On the other hand, this may be related to differences in the social structure of house mice (solitary) and sandy inland mice (communal).  相似文献   

4.
Mild hypothermia is a major concomitant of surgery under general anesthesia. We examined the hypothesis that baroreceptor loading/unloading modifies thermoregulatory peripheral vasoconstriction and, consequently, body core temperature in subjects undergoing lower abdominal surgery with general anesthesia. Thirty-six patients were divided into four groups: control group (C), applied positive end-expiratory pressure (PEEP; 10 cmH(2)O) group (P), applied leg-up position group (L), and a group of leg-up position patients with PEEP starting 90 min after induction of anesthesia (L + P). The esophageal temperature (T(es)) and the forearm-fingertip temperature gradient, as an index of peripheral vasoconstriction, were monitored for 3 h after induction of anesthesia. Mean arterial pressure and pulse pressure did not change during the study in any group. The change in right atrial transmural pressure from the baseline value was 0.3 +/- 0.1 mmHg in C, -3.0 +/- 0.5 mmHg in P, and 2.3 +/- 0.4 mmHg in L (P < 0.01). The change in T(es) at the end of the study was -1.7 +/- 0.1 (35.1 +/- 0.1) degrees C in C, -1.1 +/- 0.1 (35.7 +/- 0.1) degrees C in P, and -2.7 +/- 0.1 (34.1 +/- 0.1) degrees C in L, showing significant differences (P < 0.01). The T(es) threshold for thermal peripheral vasoconstriction was 35.6 +/- 0.1 degrees C in C, 36.2 +/- 0.2 degrees C in P, and 34.8 +/- 0.2 degrees C in L (P < 0.01). Excessive T(es) decrease in the leg-up-position operation was attenuated by applying PEEP (L + P group; P < 0.05). Our data indicate that baroreceptor loading augments and unloading prevents perioperative hypothermia in anesthetized and paralyzed subjects by reducing and increasing the body temperature threshold for peripheral vasoconstriction, respectively.  相似文献   

5.
By cooling the hypothalamus during hyperthermia, selective brain cooling reduces the drive on evaporative heat loss effectors, in so doing saving body water. To investigate whether selective brain cooling was increased in dehydrated sheep, we measured brain and carotid arterial blood temperatures at 5-min intervals in nine female Dorper sheep (41 +/- 3 kg, means +/- SD). The animals, housed in a climatic chamber at 23 degrees C, were exposed for nine days to a cyclic protocol with daytime heat (40 degrees C for 6 h). Drinking water was removed on the 3rd day and returned 5 days later. After 4 days of water deprivation, sheep had lost 16 +/- 4% of body mass, and plasma osmolality had increased from 290 +/- 8 to 323 +/- 9 mmol/kg (P < 0.0001). Although carotid blood temperature increased during heat exposure to similar levels during euhydration and dehydration, selective brain cooling was significantly greater in dehydration (0.38 +/- 0.18 degrees C) than in euhydration (-0.05 +/- 0.14 degrees C, P = 0.0008). The threshold temperature for selective brain cooling was not significantly different during euhydration (39.27 degrees C) and dehydration (39.14 degrees C, P = 0.62). However, the mean slope of lines of regression of brain temperature on carotid blood temperature above the threshold was significantly lower in dehydrated animals (0.40 +/- 0.31) than in euhydrated animals (0.87 +/- 0.11, P = 0.003). Return of drinking water at 39 degrees C led to rapid cessation of selective brain cooling, and brain temperature exceeded carotid blood temperature throughout heat exposure on the following day. We conclude that for any given carotid blood temperature, dehydrated sheep exposed to heat exhibit selective brain cooling up to threefold greater than that when euhydrated.  相似文献   

6.
To examine the influence of muscle glycogen on the thermal responses to passive rewarming subsequent to mild hypothermia, eight subjects completed two cold-water immersions (18 degrees C), followed by 75 min of passive rewarming (24 degrees C air, resting in blanket). The experiments followed several days of different exercise-diet regimens eliciting either low (LMG; 141.0 +/- 10.5 mmol.kg.dry wt-1) or normal (NMG; 526.2 +/- 44.2 mmol.kg.dry wt-1) prewarming muscle glycogen levels. Cold-water immersion was performed for 180 min or to a rectal temperature (Tre) of 35.5 degrees C. In four subjects (group A, body fat = 20 +/- 1%), postimmersion Tre was similar to preimmersion Tre for both trials (36.73 +/- 0.18 vs. 37.26 +/- 0.18 degrees C, respectively). Passive rewarming in group A resulted in an increase in Tre of only 0.13 +/- 0.08 degrees C. Conversely, initial rewarming Tre for the other four subjects (group B, body fat = 12 +/- 1%) averaged 35.50 +/- 0.05 degrees C for both trials. Rewarming increased Tre similarly in group B during both LMG (0.76 +/- 0.25 degrees C) and NMG (0.89 +/- 0.13 degrees C). Afterdrop responses, evident only in those individuals whose body core cooled during immersion (group B), were not different between LMG and NMG. These data support the contention that Tre responses during passive rewarming are related to body insulation. Furthermore these results indicate that low muscle glycogen levels do not impair rewarming time nor alter after-drop responses during passive rewarming after mild-to-moderate hypothermia.  相似文献   

7.
Either systemic or central administration of apomorphine produced dose-related decreases in rectal temperature at ambient temperatures (Ta) of 8 and 22 degrees C in rats. At Ta = 8 degrees C, the hypothermia was brought about by a decrease in metabolic rate (M). At Ta = 22 degrees C, the hypothermia was due to an increase in mean skin temperature, an increase in respiratory evaporative heat loss (Eres) and a decrease in M. This increased mean skin temperature was due to increased tail and foot skin temperatures. However, at Ta = 29 degrees C, apomorphine produced increased rectal temperatures due to increased M and decreased Eres. Moreover, the apomorphine-induced hypothermia or hyperthermia was antagonized by either haloperidol or 6-hydroxydopamine, but not by 5,6-dihydroxytryptamine. The data indicate that apomorphine acts on dopamine neurons within brain, with both pre- and post-synaptic sites of action, to influence body temperature.  相似文献   

8.
To determine if rectal temperature is an adequate index of brain temperature during changing thermal conditions, we measured rectal, cerebral cortical, and carotid arterial blood temperatures simultaneously during whole body cooling in adult cats. The mean steady state rectal, brain and carotid arterial temperatures at the onset of cooling were: 39.2 +/- 0.2, 38.5 +/- 0.2, and 38.3 +/- 0.3 degrees C, respectively. Rectal temperature decreased faster than both brain and arterial blood, while only a small temperature difference was observed between brain and arterial blood, brain always exceeding blood. Rectal temperature cannot be considered an adequate index of brain temperature. Carotid arterial temperature is a better estimate of brain temperature.  相似文献   

9.
Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1+/-0.2 degrees C (n=101 dives in five birds), pectoral muscle: 37.8+/-0.1 degrees C (n=71 dives in three birds) and axillary/brachial veins: 37.9+/-0.1 degrees C (n=97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r=-0.59, P<0.05; range <1 degrees C). In contrast, grand mean temperatures in the wing vein, foot vein and lumbar subcutaneous tissue during dives were 7.6+/-0.7 degrees C (n=157 dives in three birds), 20.2+/-1.2 degrees C (n=69 in three birds) and 35.2+/-0.2 degrees C (n=261 in six birds), respectively. Mean limb temperature during dives negatively correlated with diving duration in all six birds (r=-0.29 to -0.60, P<0.05). In two of six birds, mean diving subcutaneous temperature negatively correlated with diving duration (r=-0.49 and -0.78, P<0.05). Sub-feather temperatures decreased from 31 to 35 degrees C during rest periods to a grand mean of 15.0+/-0.7 degrees C during 68 dives of three birds; mean diving temperature and duration correlated negatively in one bird (r=-0.42, P<0.05). In general, pectoral, deep venous and even stomach temperatures during diving reflected previously measured vena caval temperatures of 37-39 degrees C more closely than the anterior abdominal temperatures (19-30 degrees C) recently recorded in diving emperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole. Such high temperatures within the body and the observed decreases in limb, anterior abdomen, subcutaneous and sub-feather temperatures are consistent with preservation of core temperature and cooling of an outer body shell secondary to peripheral vasoconstriction, decreased insulation of the feather layer, and conductive/convective heat loss to the water environment during the diving of these emperor penguins.  相似文献   

10.
The changes in circulation and migration of mature and immature neutrophils during 12 h of hypothermia have been studied using an experimental pig model. At 29 degrees C the number of circulating neutrophils fell from 5 +/- 1.1 at 37 degrees C to 3.5 +/- 0.6 X 10(9)/l and then remained unchanged while hypothermia was maintained. The number of circulating immature neutrophils did not fall during hypothermia. During hypothermia, hydrocortisone failed to stimulate the release of mature and immature neutrophils from the bone marrow. In contrast, endotoxin caused a profound neutropenia followed by a gradual increase in the number of circulating mature neutrophils, which by 6 h, was similar to the number circulating before endotoxin administration. At 29 degrees C the number of circulating immature neutrophils also fell following endotoxin but then increased over the number circulating before endotoxin administration by approximately 10-fold. Compared with neutrophil migration at 37 degrees C, very few mature or immature neutrophils migrated to an inflammatory site during the 12 h of hypothermia (29 degrees C). Unlike hypothermia in vitro, where neutrophil function may improve with time in vivo, neutrophil function remains compromised.  相似文献   

11.
We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.  相似文献   

12.
Changes of the main organism functions (breathing frequency, heart rate and shivering) were investigated under hypothermia in two groups of rats. Animals of the first group were fixed rigidly on the special platform with fixing of head and limbs, and those of the second one--the rats, were placed in a punched cylindrical chamber, inside which they could move freely forward and back. In 2.5-3.0 hours after anaesthesia the rats were placed in a refrigerator (-5 degrees C) until they stop breathing. Cessation of breathing of the first group rats occurred in 1.7 +/- 0.3 hours from the beginning of cooling at body temperature 17.3 +/- 0.6 degrees C and the brain temperature 15.7 +/- 0.5 degrees C. In the second group, a prolonged activation of the frequency of breathing, heart rate and intensity of electrical activity of muscles during 2.5-3.0 hours, was observed. Only in 4.5-5.0 hours, the breathing stopped at rectal temperature 12.3 +/- 1.1 degrees C and the brain temperature 12.9 +/- 0.9 degrees C. In these animals, the time of survival in the cold environment increased considerably and the temperature thresholds of the termination of breathing were lowered. Thus, the activation in the thermo-regulative muscle tone and in shivering muscles provides the most effective resistance against cooling of rats, reducing a surface of heat, dissipation and keeping the temperature of internal areas of body.  相似文献   

13.
Ultra profound hypothermia (4 to 10 degrees C) is an experimental method aiming at safely prolonging organ and total body preservation. For this purpose, Hypothermosol (HTS), an investigational acellular solution for blood substitution, was demonstrated to be beneficial in animal models undergoing cardiopulmonary bypass. We investigated the beneficial versus deleterious effects of cold preservation and the role of HTS on isolated coronary arteries (CA) during cold exposure, rewarming, and post-rewarming exposure to anoxia. Newborn lamb CA rings were studied using a tissue bath technique. CA were subjected to cold (7 degrees C for 3 h) and treated with either Krebs' buffer (Krebs/hypothermia) or HTS (HTS/hypothermia) (n = 15 each). A third group maintained at 37 degrees C (Krebs/normothermia) (n = 18) served as a time control. After rewarming (37 degrees C), precontracted CA were exposed to anoxia. In Krebs/hypothermia a substantial hypercontraction (g) occurred during rewarming (1.21+/-0.07) (mean +/- SEM) but not in HTS/hypothermia (0.79+/-0.03); P<0.05. Precontraction force generated by indomethacin/U46619 was identical in all three groups. However, Krebs/hypothermia vessels demonstrated a significantly higher relative vasoconstriction (percentage) in the early (approximately 10 min) and late (30 min) anoxia exposure than the HTS/hypothermia and time control (119.5%+/- 3.7 vs. 109.5%+/-4.4 and 101.5%+/-3, and 71%+/-7.6 vs. 38.9%+/-7 and 51.5%+/-5.9, respectively; P<0.05). In conclusion, Ultra profound hypothermia promotes coronary vasoconstriction upon rewarming, which is detrimental to relaxant response to hypoxia. Both phenomena are alleviated by performing ultra profound hypothermia under HTS protection.  相似文献   

14.
In mink (Mustela vison) kits newborn mortality is very high. One of the major causes of death is hypothermia. The objectives of this study were to observe the development of thermoregulation in mink kits, and their ability to maintain their body temperature during the postnatal period (1-50 days of age). Based on the kit's body weight (BW), and rectal and ambient temperature measurements during cold (+4 degrees C) and warm (+40 degrees C) exposures, a homeothermy index (HI) and cooling and warming rates were calculated. No significant differences in the body temperatures were found between the kits and the dam after 36 days of age. The kits were able to maintain homeothermy by 22 days of age (HI 90%). The body cooling rate was 0.88+/-0.04 degrees C min(-1) on day 1 but only 0.35+/-0.03 degrees C min(-1) at 22 days of age. The body WR was lower: day 1, 0.85+/-0.04 degrees C min(-1) and 0.22+/-0.03 degrees C min(-1) at 22 days of age. All measured and calculated thermophysiological variables were significantly influenced by BW and age of the kit.  相似文献   

15.
We examined body core and skin temperatures and thermal comfort in young Japanese women suffering from unusual coldness (C, n = 6). They were selected by interview asking whether they often felt severe coldness even in an air-conditioned environment (20-26 degrees C) and compared with women not suffering from coldness (N, n = 6). Experiments were conducted twice for each subject: 120-min exposure at 23.5 degrees C or 29.5 degrees C after a 40-min baseline at 29.5 degrees C. Mean skin temperature decreased (P < 0.05) from 33.6 +/- 0.1 degrees C (mean +/- SE) to 31.1 +/- 0.1 degrees C and from 33.5 +/- 0.1 degrees C to 31.1 +/- 0.1 degrees C in C and N during the 23.5 degrees C exposure. Fingertip temperature in C decreased more than in N (P < 0.05; from 35.2 +/- 0.1 degrees C to 23.6 +/- 0.2 degrees C and from 35.5 +/- 0.1 degrees C to 25.6 +/- 0.6 degrees C). Those temperatures during the 29.5 degrees C exposure remained at the baseline levels. Rectal temperature during the 23.5 degrees C exposure was maintained at the baseline level in both groups (from 36.9 +/- 0.2 degrees C to 36.8 +/- 0.1 degrees C and 37.1 +/- 0.1 degrees C to 37.0 +/- 0.1 degrees C in C and N). The rating scores of cold discomfort for both the body and extremities were greater (P < 0.05) in C than in N. Thus the augmented thermal sensitivity of the body to cold and activated vasoconstriction of the extremities during cold exposure could be the mechanism for the severe coldness felt in C.  相似文献   

16.
The effect of the administration of secretin and bethanechol on exocrine pancreatic secretion was studied in rabbits subjected to temperature changes; these involved a drop from 38 degrees C +/- 1 to 28 degrees C +/- 1 (hypothermia) and a subsequent return to 38 degrees C +/- 1 (normothermia). It was observed that hypothermia does not depress the action of secretin on the secretion of fluid, HCO3- and Cl-. Neither was the action of bethanechol on the enzyme secretion affected by changes in body temperature.  相似文献   

17.
We determined whether cerebral arteriolar dilation to N-methyl-d-aspartate (NMDA), a response dependent on stimulation of cortical neurons and inhibited by anoxic stress, would be preserved by hypothermia during and following ischemia. Pial arteriolar diameters in anesthetized piglets were determined via intravital microscopy. Arteriolar responses to NMDA (10, 50, and 100 micromol/l) were measured before and 1 h after 10 min of global ischemia. Piglets were exposed to either total body or selective brain cooling (33-34 degrees C). Arteriolar dilation to lower doses or to 100 micromol/l NMDA was not affected by hypothermia alone (51 +/- 3 vs. 46 +/- 7%, normothermia vs. hypothermia; n = 7) in nonischemic animals. However, arteriolar responses to 100 micromol/l NMDA were clearly attenuated after ischemia despite body cooling during ischemia (53 +/- 3 vs. 32 +/- 6%; n = 8), hypothermia during ischemia and early reperfusion (49 +/- 10 vs. 20 +/- 3%; n = 8), or selective brain cooling (48 +/- 5 vs. 20 +/- 5%; n = 10). In contrast, pretreatment with indomethacin resulted in complete preservation of NMDA-induced vasodilation after ischemia. Thus, hypothermia fails to protect against neuronal dysfunction during ischemia.  相似文献   

18.
The concept that hypoxia elicits a drop in body temperature (T(b)) in a wide variety of animals is not new, but the mechanisms remain unclear. We tested the hypothesis that adenosine mediates hypoxia-induced hypothermia in toads. Measurements of selected T(b) were performed using a thermal gradient. Animals were injected (into the lymph sac or intracerebroventricularly) with aminophylline (an adenosine receptor antagonist) followed by an 11-h period of hypoxia (7% O(2)) or normoxia exposure. Control animals received saline injections. Hypoxia elicited a drop in T(b) from 24.8 +/- 0.3 to 19. 5 +/- 1.1 degrees C (P < 0.05). Systemically applied aminophylline (25 mg/kg) did not change T(b) during normoxia, indicating that adenosine does not alter normal thermoregulatory function. However, aminophylline (25 mg/kg) significantly blunted hypoxia-induced hypothermia (P < 0.05). To assess the role of central thermoregulatory mechanisms, a smaller dose of aminophylline (0.25 mg/kg), which did not alter hypoxia-induced hypothermia systemically, was injected into the fourth cerebral ventricle. Intracerebroventricular injection of aminophylline (0.25 mg/kg) caused no significant change in T(b) under normoxia, but it abolished hypoxia-induced hypothermia. The present data indicate that adenosine is a central and possibly peripheral mediator of hypoxia-induced hypothermia.  相似文献   

19.
Torpor, a state characterized by a well-orchestrated reduction of metabolic rate and body temperature (T(b)), is employed for energetic savings by organisms throughout the animal kingdom. The nucleotide AMP has recently been purported to be a primary regulator of torpor in mice, as circulating AMP is elevated in the fasted state, and administration of AMP causes severe hypothermia. However, we have found that the characteristics and parameters of the hypothermia induced by AMP were dissimilar to those of fasting-induced torpor bouts in mice. Although administration of AMP induced hypothermia (minimum T(b) = 25.2 +/- 0.6 degrees C) similar to the depth of fasting-induced torpor (24.9 +/- 1.5 degrees C), ADP and ATP were equally effective in lowering T(b) (minimum T(b): 24.8 +/- 0.9 degrees C and 24.0 +/- 0.5 degrees C, respectively). The maximum rate of T(b) fall into hypothermia was significantly faster with injection of adenine nucleotides (AMP: -0.24 +/- 0.03; ADP: -0.24 +/- 0.02; ATP: -0.25 +/- 0.03 degrees C/min) than during fasting-induced torpor (-0.13 +/- 0.02 degrees C/min). Heart rate decreased from 755 +/- 15 to 268 +/- 17 beats per minute (bpm) within 1 min of AMP administration, unlike that observed during torpor (from 646 +/- 21 to 294 +/- 19 bpm over 35 min). Finally, the hypothermic effect of AMP was blunted with preadministration of an adenosine receptor blocker, suggesting that AMP action on T(b) is mediated via the adenosine receptor. These data suggest that injection of adenine nucleotides into mice induces a reversible hypothermic state that is unrelated to fasting-induced torpor.  相似文献   

20.
To determine whether changes in partial pressure of CO2 participate in mechanism enlarging the lung functional residual capacity (FRC) during chronic hypoxia, we measured FRC and ventilation in rats exposed either to poikilocapnic (group H, F(I)O2 0.1, F(I)CO2 <0.01) or hypercapnic (group H+CO2, F(I)O2 0.1, F(I)CO2 0.04-0.05) hypoxia for the three weeks and in the controls (group C) breathing air. At the end of exposure a body plethysmograph was used to measure ventilatory parameters (V'(E), f(R), V(T)) and FRC during air breathing and acute hypoxia (10 % O2 in N2). The exposure to hypoxia for three weeks increased FRC measured during air breathing in both experimental groups (H: 3.0+/-0.1 ml, H+CO2: 3.1+/-0.2 ml, C: 1.8+/-0.2 ml). During the following acute hypoxia, we observed a significant increase of FRC in the controls (3.2+/-0.2 ml) and in both experimental groups (H: 3.5+/-0.2 ml, H+CO2: 3.6+/-0.2 ml). Because chronic hypoxia combined with chronic hypercapnia and chronic poikilocapnic hypoxia induced the same increase of FRC, we conclude that hypercapnia did not participate in the FRC enlargement during chronic hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号