共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of the domain structure of mammalian DNA polymerase beta. Identification of a discrete template binding domain 总被引:8,自引:0,他引:8
A Kumar S G Widen K R Williams P Kedar R L Karpel S H Wilson 《The Journal of biological chemistry》1990,265(4):2124-2131
Characterization of the domain structure of DNA polymerase beta is reported. Large scale overproduction of the rat protein in Escherichia coli was achieved, and the purified recombinant protein was verified by sequencing tryptic peptides. This protein is both a single-stranded DNA binding protein and a DNA polymerase consisting of one polypeptide chain of 334 amino acids. As revealed by controlled proteolysis experiments, the protein is organized in two relatively protease-resistant segments linked by a short protease-sensitive region. One of these protease-resistant segments represents the NH2-terminal 20% of the protein. This NH2-terminal domain (of about 75 residues) has strong affinity for single-stranded nucleic acids. The other protease-resistant segment, representing the COOH-terminal domain of approximately 250 residues, does not bind to nucleic acids. Neither domain, tested as purified proteins, has substantial DNA polymerase activity. The results suggest that the NH2-terminal domain is principally responsible for the template binding activity of the intact protein. 相似文献
2.
Lebedeva NA Rechkunova NI Dezhurov SV Khodyreva SN Favre A Blanco L Lavrik OI 《Biochimica et biophysica acta》2005,1751(2):150-158
DNA polymerase lambda (Pol lambda) is a novel enzyme of the family X of DNA polymerases. Pol lambda has some properties in common with DNA polymerase beta (Pol beta). The substrate properties of Pol lambda were compared to Pol beta using DNAs mimicking short-patch (SP) and long-patch (LP) base excision repair (BER) intermediates as well as recessed template primers. In the present work, the influence of several BER proteins such as flap-endonuclease-1 (FEN1), PCNA, and apurinic/apyrimidinic endonuclease-1 (APE1) on the activity of Pol lambda was investigated. Pol lambda is unable to catalyze strand displacement synthesis using nicked DNA, although this enzyme efficiently incorporates a dNMP into a one-nucleotide gap. FEN1 and PCNA stimulate the strand displacement activity of Pol lambda. FEN1 processes nicked DNA, thus removing a barrier to Pol lambda DNA synthesis. It results in a one-nucleotide gapped DNA molecule that is a favorite substrate of Pol lambda. Photocrosslinking and functional assay show that Pol lambda is less efficient than Pol beta in binding to nicked DNA. APE1 has no influence on the strand displacement activity of Pol lambda though it stimulates strand displacement synthesis catalyzed with Pol beta. It is suggested that Pol lambda plays a role in the SP BER rather than contributes to the LP BER pathway. 相似文献
3.
Homology between mammalian DNA polymerase beta and terminal deoxynucleotidyltransferase 总被引:7,自引:0,他引:7
A Matsukage K Nishikawa T Ooi Y Seto M Yamaguchi 《The Journal of biological chemistry》1987,262(19):8960-8962
Nucleotide sequence analysis of the cDNA and the genomic clones for rat DNA polymerase beta revealed the existence of a 1,005-base pair open reading frame capable of encoding a Mr = 38,269 polypeptide of 335 amino acid residues. The region of 174 amino acid residues between the 42nd and 215th residues of the DNA polymerase beta polypeptide has extensive amino acid sequence homology with the region between the 195th and 366th residues of human terminal deoxynucleotidyltransferase. The two enzymes share extensive homology not only in primary structures but also in the computer-derived higher structures in these particular regions. The genes for DNA polymerase beta and terminal deoxynucleotidyltransferase are proposed to be derived from a common ancestral DNA polymerase gene. 相似文献
4.
5.
Interactions between the isolated 8-kDa domain of the rat DNA polymerase beta and DNA have been studied, using the quantitative fluorescence titration technique. The obtained results show that the number of nucleotide residues occluded in the native 8-kDa domain complex with the ssDNA (the site size) is strongly affected by Mg2+ cations. In the absence of Mg2+, the domain occludes 13 +/- 0.7 nucleotide residues, while in the presence of Mg2+ the site size decreases to 9 +/- 0.6 nucleotides. The high affinity of the magnesium cation binding, as well as the dramatic changes in the monovalent salt effect on the protein-ssDNA interactions in the presence of Mg2+, indicates that the site size decrease results from the Mg2+ binding to the domain. The site size of the isolated domain-ssDNA complex is significantly larger than the 5 +/- 2 site size determined for the (pol beta)5 binding mode formed by an intact polymerase, indicating that the intact enzyme, but not the isolated domain, has the ability to use only part of the domain DNA-binding site in its interactions with the nucleic acid. Salt effect on the intrinsic interactions of the domain with the ssDNA indicates that a net release of m approximately 5 ions accompanies the complex formation. Independence of the number of ions released upon the type of anion in solution strongly suggests that the domain forms as many as seven ionic contacts with the ssDNA. Experiments with different ssDNA oligomers show that the affinity decreases gradually with the decreasing number of nucleotide residues in the oligomer. The data indicate a continuous, energetically homogeneous structure of the DNA-binding site of the domain, with crucial, nonspecific contacts between the protein and the DNA evenly distributed over the entire binding site. The DNA-binding site shows little base specificity. Moreover, the domain has an intrinsic affinity and site size of its complex with the dsDNA conformation, similar to the affinity and site size with the ssDNA. The significance of these results for the mechanistic role of the 8-kDa domain in the functioning of rat pol beta is discussed. 相似文献
6.
DNA polymerase beta 总被引:6,自引:0,他引:6
Idriss HT Al-Assar O Wilson SH 《The international journal of biochemistry & cell biology》2002,34(4):321-324
Mammalian DNA polymerase beta(beta-pol) is a single polypeptide chain enzyme of 39kDa. beta-pol has enzymatic activities appropriate for roles in base excision repair and other DNA metabolism events involving gap-filling DNA synthesis. Many crystal structures of beta-pol complexed with dNTP and DNA substrates have been solved, and mouse fibroblast cell lines deleted in the beta-pol gene have been examined. These approaches have enhanced our understanding of structural and functional aspects of beta-pol's role in protecting genomic DNA. 相似文献
7.
Liu L Mo J Rodriguez-Belmonte EM Lee MY 《The Journal of biological chemistry》2000,275(25):18739-18744
A 12-kDa and two 25-kDa polypeptides were isolated with highly purified calf thymus DNA polymerase delta by conventional chromatography. A 16-mer peptide sequence was obtained from the 12-kDa polypeptide which matched a new open reading frame from a human EST () encoding a hypothetical protein of unknown function. The protein was designated as p12. Human EST was identified as the putative human homologue of Schizosaccharomyces pombe Cdm1 by a tBlastn search of the EST data base using S. pombe Cdm1. The open reading frame of human EST encoded a polypeptide of 107 amino acids with a predicted molecular mass of 12.4 kDa, consistent with the experimental findings. p12 is 25% identical to S pombe Cdm1. Both of the 25-kDa polypeptide sequences matched the hypothetical KIAA0039 protein sequence, recently identified as the third subunit of pol delta. Western blotting of immunoaffinity purified calf thymus pol delta revealed the presence of p125, p50, p68 (the KIAA0039 product), and p12. With the identification of p12 mammalian pol delta can now be shown to consist of four subunits. These studies pave the way for more detailed analysis of the possible functions of the mammalian subunits of pol delta. 相似文献
8.
Ternary complexes of wild type or mutant form of human DNA polymerase beta (pol beta) bound to DNA and dCTP substrates were studied by molecular dynamics (MD) simulations. The occurrences of contact configurations (CC) of structurally important atom pairs were sampled along the MD trajectories, and converted into free-energy differences, DeltaG(CC). DeltaG(CC) values were correlated with the experimental binding and catalytic free energies for the wild type pol beta and its Arg183Ala, Tyr271Ala, Asp276Val, Lys280Gly, Arg283Ala, and Glu295Ala mutants. The correlation coefficients show that the strength of the H-bond between dCTP and Asn279 is a strong predictor of the mutation-induced changes in the catalytic efficiency of pol beta. This finding is consistent with the view that enzyme preorganization plays a major role in controlling DNA polymerase specific activity. 相似文献
9.
The UmuC/DinB family of bypass polymerases is responsible for translesion DNA synthesis and includes the human polymerases eta, iota, and kappa. We determined the 2.3 A resolution crystal structure of a catalytic fragment of the DinB homolog (Dbh) polymerase from Sulfolobus solfataricus and show that it is nonprocessive and can bypass an abasic site. The structure of the catalytic domain is nearly identical to those of most other polymerase families. Homology modeling suggests that there is minimal contact between protein and DNA, that the nascent base pair binding pocket is quite accessible, and that the enzyme is already in a closed conformation characteristic of ternary polymerase complexes. These observations afford insights into the sources of low fidelity and low processivity of the UmuC/DinB polymerases. 相似文献
10.
DNA polymerase beta 总被引:3,自引:0,他引:3
Matsukage A 《Seikagaku. The Journal of Japanese Biochemical Society》2002,74(3):203-207
11.
Direct interaction between mammalian DNA polymerase beta and proliferating cell nuclear antigen 总被引:6,自引:0,他引:6
Kedar PS Kim SJ Robertson A Hou E Prasad R Horton JK Wilson SH 《The Journal of biological chemistry》2002,277(34):31115-31123
Proliferating cell nuclear antigen (PCNA) plays an essential role in nucleic acid metabolism as a component of the DNA replication and DNA repair machinery. As such, PCNA interacts with many proteins that have a sequence motif termed the PCNA interacting motif (PIM) and also with proteins lacking a PIM. Three regions in human and rat DNA polymerases beta (beta-pol) that resemble the consensus PIM were identified, and we show here that beta-polymerase and PCNA can form a complex both in vitro and in vivo. Immunoprecipitation experiments, yeast two-hybrid analysis, and overlay binding assays were used to examine the interaction between the two proteins. Competition experiments with synthetic PIM-containing peptides suggested the importance of a PIM in the interaction, and studies of a beta-polymerase PIM mutant, H222A/F223A, demonstrated that this alteration blocked the interaction with PCNA. The results indicate that at least one of the PIM-like sequences in beta-polymerase appears to be a functional PIM and was required in the interaction between beta-polymerase and PCNA. 相似文献
12.
Monoclonal antibodies directed against mammalian RNA polymerase I. Identification of the catalytic center 总被引:2,自引:0,他引:2
K M Rose K A Maguire J N Wurpel D A Stetler E D Márquez 《The Journal of biological chemistry》1983,258(21):12976-12981
Mouse myeloma cells were fused with splenocytes from a mouse that had been immunized with RNA polymerase I purified from a rat hepatoma. Hybridoma cells were selected and colonies secreting antibodies directed against the enzyme were detected by analysis of cell culture supernatants in a solid phase radioimmunoassay. Two of these cell lines were grown on a larger scale and the interaction between the immunoglobulins obtained from them and RNA polymerase I was studied in detail. Antibodies from both of the hybridoma cell lines were able to inhibit DNA-dependent RNA synthesis catalyzed by RNA polymerases I and III, but not that catalyzed by polymerase II. The antibodies were also capable of reducing the RNA chain elongation reaction catalyzed either by RNA polymerase I associated with isolated nucleoli or by enzyme preinitiated in vitro on calf thymus DNA. Inhibition of RNA polymerase I activity by the monoclonal antibodies was inversely related to the nucleotide concentration. In contrast, the DNA concentration had relatively little effect on inhibition by the antibodies. Analysis of immune complex formation between the antibodies and isolated individual enzyme subunits demonstrated that the monoclonal antibodies were directed against the largest (Mr = 190,000) polypeptide of the polymerase I. These data indicate that the largest subunit of RNA polymerase I contains an immunological determinant in common with RNA polymerase III and suggest that the polymerase I polypeptide of Mr = 190,000 contains a catalytic center involved in RNA chain elongation. 相似文献
13.
14.
Arndt JW Gong W Zhong X Showalter AK Liu J Dunlap CA Lin Z Paxson C Tsai MD Chan MK 《Biochemistry》2001,40(18):5368-5375
The catalytic reaction mediated by DNA polymerases is known to require two Mg(II) ions, one associated with dNTP binding and the other involved in metal ion catalysis of the chemical step. Here we report a functional intermediate structure of a DNA polymerase with only one metal ion bound, the DNA polymerase beta-DNA template-primer-chromium(III).2'-deoxythymidine 5'-beta,gamma-methylenetriphosphate [Cr(III).dTMPPCP] complex, at 2.6 A resolution. The complex is distinct from the structures of other polymerase-DNA-ddNTP complexes in that the 3'-terminus of the primer has a free hydroxyl group. Hence, this structure represents a fully functional intermediate state. Support for this contention is provided by the observation of turnover in biochemical assays of crystallized protein as well as from the determination that soaking Pol beta crystals with Mn(II) ions leads to formation of the product complex, Pol beta-DNA-Cr(III).PCP, whose structure is also reported. An important feature of both structures is that the fingers subdomain is closed, similar to structures of other ternary complexes in which both metal ion sites are occupied. These results suggest that closing of the fingers subdomain is induced specifically by binding of the metal-dNTP complex prior to binding of the catalytic Mg(2+) ion. This has led us to reevaluate our previous evidence regarding the existence of a rate-limiting conformational change in Pol beta's reaction pathway. The results of stopped-flow studies suggest that there is no detectable rate-limiting conformational change step. 相似文献
15.
Angela Gala Morena Gatius Fabrizio Dal Piaz Alejandro Hochkoeppler 《The protein journal》2017,36(6):453-460
A structural and kinetic characterization of a fragment of the HoLaMa DNA polymerase is presented here. In particular, a truncated form of HoLaMa, devoid of a consistent portion of the thumb domain, was isolated and purified. This HoLaMa fragment, denoted as ΔNter-HoLaMa, is surprisingly competent in catalyzing DNA extension, albeit featuring a kcat one order of magnitude lower than the corresponding kinetic constant of its full-length counterpart. The conformational rearrangements, if any, of enzyme tryptophanes triggered by DNA binding or extension were assayed under pre-steady-state conditions. The fluorescence of HoLaMa tryptophanes was found to significantly change upon DNA binding and extension. On the contrary, no fluorescence changes of ΔNter-HoLaMa tryptophanes were detected under the same conditions, suggesting that major conformational transitions are not required for DNA binding or extension by this truncated DNA polymerase. 相似文献
16.
RNA aptamers selected against DNA polymerase beta inhibit the polymerase activities of DNA polymerases beta and kappa 下载免费PDF全文
Gening LV Klincheva SA Reshetnjak A Grollman AP Miller H 《Nucleic acids research》2006,34(9):2579-2586
DNA polymerase β (polβ), a member of the X family of DNA polymerases, is the major polymerase in the base excision repair pathway. Using in vitro selection, we obtained RNA aptamers for polβ from a variable pool of 8 × 1012 individual RNA sequences containing 30 random nucleotides. A total of 60 individual clones selected after seven rounds were screened for the ability to inhibit polβ activity. All of the inhibitory aptamers analyzed have a predicted tri-lobed structure. Gel mobility shift assays demonstrate that the aptamers can displace the DNA substrate from the polβ active site. Inhibition by the aptamers is not polymerase specific; inhibitors of polβ also inhibited DNA polymerase κ, a Y-family DNA polymerase. However, the RNA aptamers did not inhibit the Klenow fragment of DNA polymerase I and only had a minor effect on RB69 DNA polymerase activity. Polβ and κ, despite sharing little sequence similarity and belonging to different DNA polymerase families, have similarly open active sites and relatively few interactions with their DNA substrates. This may allow the aptamers to bind and inhibit polymerase activity. RNA aptamers with inhibitory properties may be useful in modulating DNA polymerase actvity in cells. 相似文献
17.
Canitrot Y Capp JP Puget N Bieth A Lopez B Hoffmann JS Cazaux C 《Nucleic acids research》2004,32(17):5104-5112
Overexpression of DNA polymerase β (polβ), an error-prone DNA repair enzyme, has been shown to result in mutagenesis, aneuploidy and tumorigenesis. To further investigate the molecular basis leading to cancer-associated genetic changes, we examined whether the DNA polβ could affect homologous recombination (HR). Using mammalian cells carrying an intrachromosomal recombination marker we showed that the DNA polβ overexpression increased the HR mostly by enhancing gene conversion. Concomitantly, we observed the generation of DNA strand breaks as well as a DNA polβ-dependent formation of Rad51 foci. The stimulation of HR was abolished by the coexpression of a dominant negative form of Rad51, suggesting that the Rad51 was involved in the increased HR events. The expression of different DNA polβ mutants lacking polymerase activity did not result in HR stimulation, indicating that the DNA synthesis activity of DNA polβ was related to this phenotype. These results provide new insights into the molecular mechanisms of the genetic instability observed in DNA polβ overexpressing tumour cells. 相似文献
18.
The purpose of this study was to investigate the molecular action of lithocholic acid (LCA), known as a selective inhibitor of DNA polymerase beta (pol beta). The 39-kDa pol beta was separated proteolytically into two fragments of the template-primer binding domain (8 kDa) and the catalytic domain (31 kDa). LCA bound tightly to the 8-kDa fragment but not to the 31-kDa fragment. We examined the structural interaction with the 8-kDa domain using LCA. On (1)H-(15)N HMQC NMR analysis of pol beta with LCA, the 8-kDa domain bound to LCA as a 1:1 complex with a dissociation constant (K(D)) of 1.56 mM. The chemical shifts were observed only in residues mainly in helix-3, helix-4, and the 79-87 turn of the same face. No significant shifts were observed for helix-1, helix-2, and other loops of the 8-kDa domain. This region was composed mainly of three amino acid residues (Lys60, Leu77, and Thr79) of pol beta on the LCA interaction interface. The inhibition mechanism and the structure-function relationship between pol beta and LCA is discussed. 相似文献
19.
Identification and tryptic cleavage of the catalytic core of HeLa and calf thymus DNA polymerase epsilon 总被引:4,自引:0,他引:4
DNA polymerase epsilon, formerly known as a proliferating cell nuclear antigen-independent form of DNA polymerase delta, has been shown elsewhere to be catalytically and structurally distinct from DNA polymerase delta. The catalytic activity of HeLa DNA polymerase epsilon, an enzyme consisting of greater than 200- and 55-kDa polypeptides, was assigned to the larger polypeptide by polymerase trap reaction. This catalytic polypeptide was cleaved by incubation with trypsin into two polypeptide fragments with molecular masses of 122 and 136 kDa, the former of which was relatively resistant to further proteolysis and possessed the polymerase activity. The cleavage increased the polymerase and exonuclease activities of the enzyme some 2-3-fold. DNA polymerase epsilon was also purified in a smaller 140-kDa form from calf thymus. The digestion of this form of the enzyme by trypsin also generated a 122-kDa polypeptide. These results suggest that the catalytic core of DNA polymerase epsilon is a 258-kDa polypeptide that is composed of two segments linked with a protease-sensitive area. One of the segments harbors both DNA polymerase and 3'----5' exonuclease activities. In spite of the different polypeptide structures, the catalytic properties of the HeLa enzyme, its trypsin-digested form, and the calf thymus enzyme remained essentially the same. 相似文献