首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Surface plasmon resonance (SPR) biosensors recently gained an important place in drug discovery. Here we present a primary and secondary SPR biosensor screening methodology. The primary screening method is based on a direct binding assay with covalent immobilized drug target proteins. For the secondary screening method, a sequential competition assay has been developed where the captured protein is first exposed to an unknown test compound, followed directly by an exposure to a high-molecular-weight reporter ligand. Using the high-molecular-weight reporter ligand to probe the remaining free binding site on the sensor, a significant signal enhancement is obtained. Furthermore, this assay format allows the validation of the primary direct binding assay format, efficiently revealing false positive data. As a model system, acetylcholine binding protein (AChBP), which is a soluble model protein for neuronal nicotinic acetylcholine receptors, has been used. The secondary assay is lower in throughput than the primary assay; however, the signal-to-noise ratio is two times higher compared with the direct assay, and it has a z′ factor of 0.96. Using both assays, we identified the compound tacrine as a ligand for AChBP.  相似文献   

2.
Design and selection of ligands for affinity chromatography   总被引:4,自引:0,他引:4  
Affinity chromatography is potentially the most selective method for protein purification. The technique has the purification power to eliminate steps, increase yields and thereby improve process economics. However, it suffers from problems regarding ligand stability and cost. Some of the most recent advances in this area have explored the power of rational and combinatorial approaches for designing highly selective and stable synthetic affinity ligands. Rational molecular design techniques, which are based on the ability to combine knowledge of protein structures with defined chemical synthesis and advanced computational tools, have made rational ligand design feasible and faster. Combinatorial approaches based on peptide and nucleic acid libraries have permitted the rapid synthesis of new synthetic affinity ligands of potential use in affinity chromatography. The versatility of these approaches suggests that, in the near future, they will become the dominant methods for designing and selection of novel affinity ligands with scale-up potential.  相似文献   

3.
We have studied the binding equilibria of the membrane-bound acetylcholine receptor from Torpedo marmorata with representative cholinergic ligands by means of two fluorescence and a rapid centrifugation assay. Based on the established mechanism of acetylcholine binding to the receptor (Fels, G., Wolff, E. K., and Maelicke, A. (1982) Eur. J. Biochem. 127, 31-38), the obtained binding and competition data were analyzed assuming two classes of interacting sites for all ligands studied. The experimental data were consistent with this assumption and, based on the obtained KD values, suggest weak positively cooperative interactions of binding sites when occupied by agonists but independent (or negatively cooperative interacting) sites when occupied by antagonists. Based on the fluorescence binding assay employed, agonists and antagonists induce different conformational states of the liganded receptor. These states seem to be similar for all antagonists tested but differ for the different agonists tested. The existence of ligand-specific conformational states suggests a close link of these states with receptor function.  相似文献   

4.
Trypsin-treatment of the microsome fraction of the ileum and the synaptic membrane fraction of the cerebral cortex of guinea-pig caused selective reduction in the apparent affinity of an agonist (carbachol), but not an antagonist (atropine), to muscarinic acetylcholine receptors (mAChR), measured as inhibition of binding of 3H-quinuclidinyl benzilate (3H-QNB). This effect was similar to that of Gpp(NH)p. The effects of trypsin and Gpp(NH)p were not additive. On the other hand, treatment of these fractions with 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) increased the apparent affinity of agonist, but not antagonist. The effect of DTNB predominated over those of trypsin and Gpp(NH)p, when the fractions were treated with two reagents simultaneously.  相似文献   

5.
Methylanthraniloyl derivatives of ATP and CDP were used in vitro as fluorescent probes for the donor-binding and acceptor-binding sites of human UMP-CMP kinase, a nucleoside salvage pathway kinase. Like all NMP kinases, UMP-CMP kinase binds the phosphodonor, usually ATP, and the NMP at different binding sites. The reaction results from an in-line phosphotransfer from the donor to the acceptor. The probe for the donor site was displaced by the bisubstrate analogs of the Ap5X series (where X = U, dT, A, G), indicating the broad specificity of the acceptor site. Both CMP and dCMP were competitors for the acceptor site probe. To find antimetabolites for antivirus and anticancer therapies, we have developed a method of screening acyclic phosphonate analogs that is based on the affinity of the acceptor-binding site of the human UMP-CMP kinase. Several uracil vinylphosphonate derivatives had affinities for human UMP-CMP kinase similar to those of dUMP and dCMP and better than that of cidofovir, an acyclic nucleoside phosphonate with a broad spectrum of antiviral activities. The uracil derivatives were inhibitors rather than substrates of human UMP-CMP kinase. Also, the 5-halogen-substituted analogs inhibited the human TMP kinase less efficiently. The broad specificity of the enzyme acceptor-binding site is in agreement with a large substrate-binding pocket, as shown by the 2.1 A crystal structure.  相似文献   

6.
African trypanosomiasis is a parasitic disease caused by a specific class of protozoan organisms. The best-studied representative of that group is Trypanosoma brucei which is transmitted by tsetse flies and multiplies in the blood of many mammals. Trypanosomes evade the immune system by altering their surface structure which is dominated by a layer of a variant surface glycoprotein (VSG). Although invariant surface proteins exist, they are inaccessible to the humoral immune response. Using a combinatorial selection method in conjunction with live trypanosomes as the binding target, we show that short RNA ligands (aptamers) for constant surface components can be isolated. We describe the selection of three classes of RNA aptamers that crosslink to a single 42 kDa protein located within the flagellar pocket of the parasite. The RNAs associate rapidly and with high affinity. They do not discriminate between two different trypanosome VSG variant strains and, furthermore, are able to bind to other trypanosome strains not used in the selection protocol. Thus, the aptamers have the potential to function as markers on the surface of the extracellular parasite and as such they might be modified to function as novel drugs against African trypanosomiasis.  相似文献   

7.
A novel outer mitochondrial membrane protein containing [2Fe-2S] clusters, mitoNEET was first identified through its binding to the anti-diabetic drug pioglitazone. Pioglitazone belongs to a family of drugs that are peroxisome proliferator-activated receptor (PPAR) gamma agonists, collectively known as glitazones. With the lack of pharmacological tools available to fully elucidate mitoNEET's function, we developed a binding assay to probe the glitazone binding site with the aim of developing selective and high affinity compounds. We used multiple thiazolidine-2,4-dione (TZD), 2-thioxothiazolidin-4-one (TTD), and 2-iminothiazolidin-4-one (ITD) compounds to establish several trends to enhance ligand development for the purpose of elucidating mitoNEET function.  相似文献   

8.
We report here an advanced, chemically active and yet hydrolytically stable microporous membrane which allows permanent covalent binding of amino ligands such as proteins. Rapid, single-step immobilizations produce a high density of immobilized ligands. Surface chemistry of the membrane is specifically designed to have extremely low nonspecific binding. Binding characteristics of the UltraBind membrane, various immobilization techniques and optimum immobilization conditions for diagnostic immunoassays are described.  相似文献   

9.
10.
Four new carbocyanines containing symmetric and asymmetric heterocyclic moieties and N‐carboxyalkyl groups have been synthesized and characterized. The binding mechanism established between these cyanines and several proteins was evaluated using saturation transfer difference (STD) NMR. The results obtained for the different dyes revealed a specific interaction to the standard proteins lysozyme, α‐chymotrypsin, ribonuclease (RNase), bovine serum albumin (BSA), and gamma globulin. For instance, the two un‐substituted symmetrical dyes (cyanines 1 and 3) interacted preferentially through its benzopyrrole and dibenzopyrrole units with lysozyme, α‐chymotrypsin, and RNase, whereas the symmetric disulfocyanine dye (cyanine 2) bound BSA and gamma globulin through its carboxyalkyl chains. On the other hand, the asymmetric dye (cyanine 4) interacts with lysozyme and α‐chymotrypsin through benzothiazole moiety and with RNase through dibenzopyrrole unit. Thus, STD‐NMR technique was successfully used to screen cyanine–protein interactions and determine potential binding sites of the cyanines for posterior use as ligands in affinity chromatography. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Staphylococcal protein A (SpA) has been widely used as an affinity ligand for the purification of immunoglobulin G (IgG). Based on the affinity motif of SpA, we have herein developed a biomimetic design strategy for affinity peptide ligands of IgG. First, according to the distribution of the six hot spots of the SpA affinity motif determined previously, the number of residues that should be inserted into between the hot spots was determined. Cysteine was introduced as one of the middle inserted residues of the peptide for later immobilization. Then, amino acid location was performed to identify other amino acid residues for insertion, leading to the construction of a peptide library. The library was screened by using different molecular simulation protocols, resulting in the selection of 15 peptide candidates. Thereafter, molecular dynamics simulations were performed to validate the dynamics of the affinity interactions between the candidates and IgG, and 14 of them were found to keep high affinities. Finally, the affinity and specificity of the top one ligand FYWHCLDE were exemplified by protein chromatography and IgG purification. The results indicate that the design strategy was successful and the affinity peptide ligand for IgG is promising for application in antibody purifications.  相似文献   

12.

Background

Entomological surveys of Simulium vectors are an important component in the criteria used to determine if Onchocerca volvulus transmission has been interrupted and if focal elimination of the parasite has been achieved. However, because infection in the vector population is quite rare in areas where control has succeeded, large numbers of flies need to be examined to certify transmission interruption. Currently, this is accomplished through PCR pool screening of large numbers of flies. The efficiency of this process is limited by the size of the pools that may be screened, which is in turn determined by the constraints imposed by the biochemistry of the assay. The current method of DNA purification from pools of vector black flies relies upon silica adsorption. This method can be applied to screen pools containing a maximum of 50 individuals (from the Latin American vectors) or 100 individuals (from the African vectors).

Methodology/Principal Findings

We have evaluated an alternative method of DNA purification for pool screening of black flies which relies upon oligonucleotide capture of Onchocerca volvulus genomic DNA from homogenates prepared from pools of Latin American and African vectors. The oligonucleotide capture assay was shown to reliably detect one O. volvulus infective larva in pools containing 200 African or Latin American flies, representing a two-four fold improvement over the conventional assay. The capture assay requires an equivalent amount of technical time to conduct as the conventional assay, resulting in a two-four fold reduction in labor costs per insect assayed and reduces reagent costs to $3.81 per pool of 200 flies, or less than $0.02 per insect assayed.

Conclusions/Significance

The oligonucleotide capture assay represents a substantial improvement in the procedure used to detect parasite prevalence in the vector population, a major metric employed in the process of certifying the elimination of onchocerciasis.  相似文献   

13.
Several analytical methods have been used to determine whether ligands bind to bovine beta-lactoglobulin (betaLG). The most common methods are based on fluorescence quenching. We have miniaturised this method from a quartz cell to a 96-well plate. The miniaturisation was evaluated using retinol. The binding constants between the two methods demonstrated a good correlation. The 96-well plate method is much faster and allows many references to be used in the same analysis. The miniaturised method was used to study the binding of three different ligands (4-HPR, arotinoid, warfarinyl palmitate) modelled to bind to betaLG. The binding data showed that all of these ligands bound to betaLG. The method was further used to demonstrate that reindeer betaLG could also bind the four ligands in the same way as bovine betaLG. Because one aim is to use bovine and reindeer betaLG as a binder molecule for aliments in e.g. functional food or for drugs, the influence of pH was also studied and demonstrated that short-term acidic conditions had only a slight effect on the binding properties.  相似文献   

14.
Staurosporine is a broad-spectrum inhibitor of both tyrosine and serine/threonine protein kinases. Excitation of staurosporine and its analogues at 296 nm results in major emission bands centered at 378 and 396 nm. The intensity of the emission bands is enhanced on binding to the adenosine triphosphate (ATP) site of many protein kinases. This property was used to develop a competitive displacement assay for evaluating the binding affinity of small molecules to protein kinases. The assay was validated in both cuvette and plate formats for several phosphorylated and non-phosphorylated protein kinases. The throughput of the assay is high enough to be used in drug discovery for screening as well as lead optimization.  相似文献   

15.
Frontal affinity chromatography coupled online to mass spectrometry (FAC/MS) has previously been used to estimate binding constants for individual protein ligands present in mixtures of compounds. In this study FAC/MS is used to determine enzyme substrate kinetic parameters and binding constants for enzyme inhibitors. Recombinant human N-acetylglucosaminyltransferase V was biotinylated and adsorbed onto immobilized streptavidin in a microcolumn (20 microL). The enzyme was shown to be catalytically competent transferring GlcNAc from the donor UDP-GlcNAc to beta-d-GlcpNAc-(1-->2)-alpha-d-Manp-(1-->6)-beta-d-Glcp-OR acceptor giving beta-d-GlcpNAc-(1-->2)-[beta-d-GlcpNAc-(1-->6)]-alpha-d-Manp-(1-->6)-beta-d-Glcp-OR as the reaction product. The kinetic parameters K(m) and V(max) for the immobilized enzyme could be determined by FAC/MS and were comparable to those measured in solution. Analysis of a mixture of eight trisaccharide analogs in a single run yielded K(d) values for each of the eight compounds ranging from 0.3 to 36 microM. These K(d) values were 2 to 10 times lower than the inhibition constants, K(I)'s, determined in solution using a standard radiochemical assay. However, the ranking order of K(d)'s was the same as the ranking of K(I) values. FAC/MS assays can therefore be employed for the rapid estimation of inhibitor K(d) values making it a valuable tool for enzyme inhibitor evaluations.  相似文献   

16.
Hybrid magnetic Fe3O4@SiO2-poly(ethylene oxide)-maltose (Fe3O4@SiO2-PEO-mal) nanoparticles synthesized by our group can be used as affinity adsorption carriers for direct separation of maltose binding protein-fused Hep I (MBP-Hep I) from a crude enzyme solution in a magnetic field. In this work, different PEO molecular weights for Fe3O4@SiO2-PEO-mal nanoparticles were used for characterizing of MBP-Hep I immobilization. The results showed that all four kinds of Fe3O4@SiO2-PEO-mal magnetic nanoparticles (6k, 20k, 35k and 100k for PEO) exhibited excellent adsorption capacities and the adsorption ratio increased as the PEO molecular weight increased from 6k to 100k. All four kinds of immobilized MBP-Hep I exhibited significantly improved stability at 30 °C compared with free MBP-Hep I and their half-lives were 20–50 times that of the free MBP-Hep I. Fe3O4@SiO2-PEO-mal nanoparticles with a PEO molecular weight of 100k were best able to immobilize MBP-Hep I (Fe3O4@SiO2-PEO100k-mal-MBP-Hep I). The molecular weight distribution profiles and anticoagulant activities, obtained from heparin depolymerization by free Hep I, free MBP-Hep I and Fe3O4@SiO2-PEO100k-mal-MBP-Hep I were the same. Furthermore, Fe3O4@SiO2-PEO100k-mal-MBP-Hep I exhibited reasonable reusability during enzymatic production of low molecular weight heparins (LMWHs).  相似文献   

17.
A simple method for the selection of affinity ligands from proteolytic digests by affinity chromatography is proposed. A small proportion of the peptides in the trypsin digest of bovine serum albumin (BSA) or the pepsin digest of cytochrome are retarded on insulin-immobilised or HSA (human serum albumin)-immobilised affinity columns, respectively. The peptides in these selected fractions can be immobilised onto solid phases and used in affinity chromatography procedures for the purification of insulin or HSA. © Rapid Science Ltd. 1998  相似文献   

18.
Urea-treatment of the microsome fraction of the heart of guinea-pigs caused selective reduction in the apparent affinity of an agonist (carbachol), but not an antagonist (atropine), to muscarinic acetylcholine receptors (mAChR), measured as inhibition of binding of 3H-quinuclidinyl benzilate (3H-QNB). This effect was similar to that of Gpp(NH)p. The effects of urea-treatment and Gpp(NH)p were not additive. On the other hand, treatment of the microsome fraction with 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) increased the apparent affinity of agonist, but not antagonist. The effect of DTNB predominated over those of urea-treatment and Gpp(NH)p, when these treatments were combined with DTNB.  相似文献   

19.
In this study, we describe a DNA microarray assay by using bead-mediated visible light-assisted signal detection for simultaneous screening of seven clinically important enteric pathogens, including Escherichia coli O157:H7, Vibrio cholerae, Vibrio parahaemolyticus, Salmonella spp., Staphylococcus aureus, Rotavirus, and Norwalk virus (including genogroup I and II). Seven pairs of primers, in which the forward primers were labeled with biotin at the 5′ end, were designed and two sets of multiplex asymmetric PCR system were established to amplify the target genes of the seven pathogens. Twelve type specific oligonucleotides were designed and immobilized onto the aldehyde radical modified glass slide to function as target capture probes. After hybridization and stringency washes, the hybridized biotinylated PCR products were detected by the streptavidin-coated magnetic beads. The final hybridization results were visible to the naked eyes and can be imaged by CCD or digital camera. A total of 86 samples previously identified by conventional microbiological methods and/or PCR method were randomly selected to assess the specificity of this assay by a blind study. A coincidence rate of 100% was obtained. Due to the simplicity and specificity of the magnetic bead based DNA microarray, it is especially appropriate for the diagnosis and monitoring of enteric infectious diseases in the community and seaport.  相似文献   

20.
Protein engineering relies on the selective capture of members of a protein library with desired properties. Yeast surface display technology routinely enables as much as million‐fold improvements in binding affinity by alternating rounds of diversification and flow cytometry‐based selection. However, flow cytometry is not well suited for isolating de novo binding clones from naïve libraries due to limitations in the size of the population that can be analyzed, the minimum binding affinity of clones that can be reliably captured, the amount of target antigen required, and the likelihood of capturing artifactual binders to the reagents. Here, we demonstrate a method for capturing rare clones that maintains the advantages of yeast as the expression host, while avoiding the disadvantages of FACS in isolating de novo binders from naïve libraries. The multivalency of yeast surface display is intentionally coupled with multivalent target presentation on magnetic beads—allowing isolation of extremely weak binders from billions of non‐binding clones, and requiring far less target antigen for each selection, while minimizing the likelihood of isolating undesirable alternative solutions to the selective pressure. Multivalent surface selection allows 30,000‐fold enrichment and almost quantitative capture of micromolar binders in a single pass using less than one microgram of target antigen. We further validate the robust nature of this selection method by isolation of de novo binders against lysozyme as well as its utility in negative selections by isolating binders to streptavidin‐biotin that do not cross‐react to streptavidin alone. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号