首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of biosensor devices typically requires incorporation of the molecular recognition element into a solid surface for interfacing with a signal detector. One approach is to immobilize the signal transducing protein directly on a solid surface. Here we compare the effects of two direct immobilization methods on ligand binding, kinetics, and signal transduction of reagentless fluorescent biosensors based on engineered periplasmic binding proteins. We used thermostable ribose and glucose binding proteins cloned from Thermoanaerobacter tengcongensis and Thermotoga maritima, respectively. To test the behavior of these proteins in semispecifically oriented layers, we covalently modified lysine residues with biotin or sulfhydryl functions, and attached the conjugates to plastic surfaces derivatized with streptavidin or maleimide, respectively. The immobilized proteins retained ligand binding and signal transduction but with adversely affected affinities and signal amplitudes for the thiolated, but not the biotinylated, proteins. We also immobilized these proteins in a more specifically oriented layer to maleimide-derivatized plates using a His(2)Cys(2) zinc finger domain fused at either their N or C termini. Proteins immobilized this way either retained, or displayed enhanced, ligand affinity and signal amplitude. In all cases tested ligand binding by immobilized proteins is reversible, as demonstrated by several iterations of ligand loading and elution. The kinetics of ligand exchange with the immobilized proteins are on the order of seconds.  相似文献   

2.
Optical reagentless biosensors are one of the most promising alternatives for producing selective, sensitive and autonomous sensors for real life applications. These devices are based on the efficient use of the spectroscopic properties of bioreagents, mainly proteins, as transducers; avoiding in this way the use of chemical colorant/fluorophores which usually limit sensors performance. In this paper a brief state of the art of the bioreagents being used in biosensors as well as recent alternatives are discussed. The advantages of flavoenzymes and hemeproteins as the basis for reagentless biosensors are particularly stressed.  相似文献   

3.
A new generation of live-cell fluorescent biosensors enables us to go beyond visualization of protein movements, to quantify the dynamics of many different protein activities. Alternate approaches can report post-translational modifications, ligand interactions and conformational changes, revealing how the location and subtle timing of protein activity controls cell behavior.  相似文献   

4.
CD1 proteins are antigen-presenting molecules that bind foreign and self-lipids and stimulate specific T cell responses. In the current study, we investigated ligand binding by CD1 proteins by developing a fluorescent probe binding approach using soluble recombinant human CD1 proteins. To increase stability and yield, soluble group 1 CD1 (CD1b and CD1c) and group 2 CD1 (CD1d) proteins were produced as single chain secreted CD1 proteins in which beta2-microglobulin was fused to the N termini of the CD1 heavy chains by a flexible peptide linker sequence. Analysis of ligand binding properties of single chain secreted CD1 proteins by using fluorescent lipid probes indicated significant differences in ligand preference and in pH dependence of binding by group 1 versus group 2 CD1 proteins. Whereas group 1 CD1 isoforms (CD1b and CD1c) show stronger binding of nitrobenzoxadiazole (NBD)-labeled dialkyl-based ligands (phosphatidylcholine, sphingomyelin, and ceramide), group 2 CD1 (CD1d) proteins were stronger binders of small hydrophobic probes such as 1-anilinonaphthalene-8-sulfonic acid and 4,4'-dianilino-1,1'-naphthyl-5,5'-disulfonic acid. Competition studies indicated that binding of fluorescent lipid probes involved association of the probe with the hydrophobic ligand binding groove of CD1 proteins. Analysis of selected alanine substitution mutants of human CD1b known to inhibit antigen presentation showed that NBD-labeled lipid probe binding could be used to distinguish mutations that interfere with ligand binding from those that affect T cell receptor docking. Our findings provide further evidence for the functional specialization of different CD1 isoforms and demonstrate the value of the fluorescent lipid probe binding method for assisting structure-based studies of CD1 function.  相似文献   

5.
Biosensors are becoming widely used both in basic research and in screening assays and reagentless sensors with fluorescent reporter groups attached to proteins form one class. This article describes the development of sensors for two small molecules, driven in particular by the need for high sensitivity and time resolution to probe mechanistic aspects of ATP-coupled motor proteins. The biosensors are for the products of the ATPase reaction, ADP and inorganic phosphate. The interplay between the possibilities for design and understanding the mechanism of the signal are discussed. Examples are described of how these sensors have been applied to understanding myosin and helicase motors.  相似文献   

6.
Recently, antibody-based fluorescent biosensors are receiving considerable attention as a suitable biomolecule for diagnostics, namely, homogeneous immunoassay and also as an imaging probe. To date, several strategies for “reagentless biosensors” based on antibodies and natural and engineered binding proteins have been described. In this review, several approaches are introduced including a recently described fluorescent antibody-based biosensor Quenchbody, which works on the principle of fluorescence quenching of attached dye and its antigen-dependent release. The merits and possible demerits of each approach are discussed. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

7.
An incorrect version of Figure 3 was published in the abovearticle, the corrected version is reproduced below.  相似文献   

8.
The possibility of obtaining from any antibody a fluorescent conjugate which responds to the binding of the antigen by a variation of its fluorescence, would be of great interest in the analytical sciences and for the construction of protein chips. This possibility was explored with antibody mAbD1.3 directed against hen egg white lysozyme. Rules of design were developed to identify the residues of the antibody to which a fluorophore could be chemically coupled, after changing them to cysteine by mutagenesis. These rules were based on: the target residue belonging to a topological neighbourhood of the antigen in the structure of the complex between antibody and antigen; its absence of functional importance for the interaction with the antigen; and its solvent accessibility in the structure of the free antibody. Seventeen conjugates between the single-chain variable fragment scFv of mAbD1.3 and an environment-sensitive fluorophore were constructed. For six of the ten residues which fully satisfied the design rules, the relative variation of the fluorescence intensity between the free and bound states of the conjugate was comprised between 12 and 75% (in non-optimal buffer), and the affinity of the conjugate for lysozyme remained unchanged relative to the parental scFv. In contrast, such results were true for only one of the seven residues which failed to satisfy one of the rules and were used as controls. One of the conjugates was studied in more detail. Its fluorescence increased proportionally to the concentration of lysozyme in a nanomolar range, up to 90% in a defined buffer, and 40% in serum. This increase was specific for hen egg lysozyme and it was not observed with a closely related protein, turkey egg lysozyme. The residues which gave operational conjugates (six in V(L) and one in V(H)), were located in the immediate vicinity of residues which are functionally important, along the sequence of FvD1.3. The results suggest rules of design for constructing antigen-sensitive fluorescent conjugates from any antibody, in the absence of structural data.  相似文献   

9.
The signal-transduction properties and the potential applications of two engineered binding proteins from E. coli were extensively studied. Both proteins have a single cysteine mutation in their polypeptide chains, which allow the introduction of an environmentally sensitive fluorophore: ANS for glucose-binding protein (GBP) and acrylodan for glutamine-binding protein (QBP). Both proteins respond to their ligands in the micromolar range. The proteins can be stored at 4 degrees C for at least 5 months. Apparent binding constant, protein concentration, and fluorophore are three major factors that affect the biosensor's responsive ranges. The binding of the ligand is quick and reversible in solution, but the unfavorable dissociation equilibrium and mass-transfer resistance for encapsulated proteins can delay the response to several minutes and the recovery to hours. Simulated results show that using dialysis tubing with a diameter of 1 mm or less is possible to reduce the recovery time to less than 30 minutes. The potential applications of GBP were studied in yeast fermentation and E. coli fermentations in three different scales: 150 mL, 5 mL, and 100 microL. The results were compared with an YSI 2700 Chemistry Analyzer. Although the latter could not give reliable results for the E. coli fermentations as the glucose concentration in LB medium is close to its lower detection limit, the glucose biosensor presented here was successfully applied to each situation. Glutamine-binding protein was tested in cell cultures of two different scales (100 mL and 100 microL) and the results were also compared with those obtained with YSI. Both QBP and YSI gave good results for the 100-mL cell culture, but the relatively large sample volume requirement of YSI (at least 5 microL) prevented it from being used in the 100-microL cell culture. Because of their small sample volume requirements (less than 1 microL) and high sensitivity, the assays described here might find wide applications in high-throughput bioprocessing.  相似文献   

10.
Conjugates of adenosine mimics and d-arginine-rich peptides (ARCs) are potent inhibitors of protein kinases (PKs) from the AGC group. Labeling ARCs with fluorescent dyes or immobilizing on chip surfaces gives fluorescent probes (ARC-Photo) and biosensors that can be used for high-throughput screening (HTS) of inhibitors of protein kinases. The bisubstrate character (simultaneous association with both binding sites of the kinase) and high affinity of ARCs allow ARC-based probes and sensors to be used for characterization of inhibitors targeted to either binding site of the kinase with affinities in whole nanomolar to micromolar range. The ability to penetrate cell plasma membrane and bind to the target kinase fused with a fluorescent protein leads to the possibility to use ARC-Photo probes for high content screening (HCS) of inhibitors in cellular milieu with detection of intensity of Förster resonance energy transfer (FRET) between two fluorophores.  相似文献   

11.
  1. Download : Download high-res image (216KB)
  2. Download : Download full-size image
  相似文献   

12.
13.
Green fluorescent protein (GFP) containing a self-coded chromophore has been applied in protein trafficking and folding, gene expression, and as sensors in living cells. While the “cycle3” mutation denoted as C3 mutation (F99S/M153T/V163A) offers the ability to increase GFP fluorescence at 37 °C, it is not clear whether such mutations will also be able to assist the folding and formation of the chromophore upon the addition of metal ion binding sites. Here, we investigate in both bacterial and mammalian systems, the effect of C2 (M153T/V163A) and C3 (F99S/M153T/V163A) mutations on the folding of enhanced GFP (EGFP, includes F64L/S65T) and its variants engineered with two types of Ca2+ binding sites: (1) a designed discontinuous Ca2+ binding site and (2) a grafted continuous Ca2+ binding motif. We show that, for the constructed EGFP variants, the C2 mutation is sufficient to facilitate the production of fluorescence in both bacterial and mammalian cells. Further addition of the mutation F99S decreases the folding efficiency of these variants although a similar effect is not detectable for EGFP, likely due to the already greatly enhanced mutation F64L/S65T from the original GFP, which hastens the chromophore formation. The extinction coefficient and quantum yield of purified proteins of each construct were also examined to compare the effects of both C2 and C3 mutations on protein spectroscopic properties. Our quantitative analyses of the effect of C2 and C3 mutations on the folding and formation of GFP chromophore that undergoes different folding trajectories in bacterial versus mammalian cells provide insights into the development of fluorescent protein-based analytical sensors.  相似文献   

14.
N Doi  H Yanagawa 《FEBS letters》1999,453(3):305-307
Protein-engineering techniques have been adapted for the molecular design of biosensors that combine a molecular-recognition site with a signal-transduction function. The optical signal-transduction mechanism of green fluorescent protein (GFP) is most attractive, but hard to combine with a ligand-binding site. Here we describe a general method of creating entirely new molecular-recognition sites on GFPs. At the first step, a protein domain containing a desired molecular-binding site is inserted into a surface loop of GFP. Next, the insertional fusion protein is randomly mutated, and new allosteric proteins that undergo changes in fluorescence upon binding of target molecules are selected from the random library. We have tested this methodology by using TEM1 beta-lactamase and its inhibitory protein as our model protein-ligand system. 'Allosteric GFP biosensors' constructed by this method may be used in a wide range of applications including biochemistry and cell biology.  相似文献   

15.
16.
17.
18.
Fluorescent proteins that also bind DNA molecules are useful reagents for a broad range of biological applications because they can be optically localized and tracked within cells, or provide versatile labels for in vitro experiments. We report a novel design for a fluorescent, DNA-binding protein (FP-DBP) that completely ‘paints’ entire DNA molecules, whereby sequence-independent DNA binding is accomplished by linking a fluorescent protein to two small peptides (KWKWKKA) using lysine for binding to the DNA phosphates, and tryptophan for intercalating between DNA bases. Importantly, this ubiquitous binding motif enables fluorescent proteins (Kd = 14.7 μM) to confluently stain DNA molecules and such binding is reversible via pH shifts. These proteins offer useful robust advantages for single DNA molecule studies: lack of fluorophore mediated photocleavage and staining that does not perturb polymer contour lengths. Accordingly, we demonstrate confluent staining of naked DNA molecules presented within microfluidic devices, or localized within live bacterial cells.  相似文献   

19.
It has been found in in vitro experiments that fluorescence intensity of deionized solution containing a chlorotetracycline fluorescent probe increases insignificantly at the addition of calmodulin of S-100 proteins. Subsequent introduction of Ca2+ into the medium results in the pronounced fluorescence increase depending on Ca2+ concentration. Addition of specific protein blockers--W7 (calmodulin inhibitor) and antibodies to S-100 brought about a decrease of fluorescence. In in vivo experiments on chlorotetracycline-stained neurons of Helix Pomatia ganglia subesophageal complex it has been shown that bringing of antibodies to S-100 and calmodulin significantly decreases the fluorescence intensity of these cells. These data suggest that the chlorotetracycline probe is an indicator of calcium ions binding with calcium-binding proteins both in in vitro and in vivo systems.  相似文献   

20.
Spectroscopic methods were used to monitor the unfolding of the leucine specific (LS) and the leucine-isoleucine-valine (LIV) binding proteins. Our studies indicate that ligand-free protein undergoes a simple two-state unfolding, whereas the protein-ligand complex undergoes a three-state unfolding model. Ligand binding causes significant stabilization of both proteins. There is correlation between ligand hydrophobicity and protein stabilization: the most hydrophobic ligand, isoleucine, causes the most significant stabilization of LIV protein. A disulfide bond present in N-domain of both proteins makes a large contribution to the protein stability of these periplasmic binding receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号