首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of obtaining, from any antibody, a fluorescent conjugate which responds to the binding of the antigen by a variation of fluorescence, would be of great interest in the micro- and nano-analytical sciences. This possibility was explored with antibody mAb4E11, which is directed against the dengue virus and for which no structural data is available. Three rules of design were developed to identify residues of the antibody to which a fluorophore could be chemically coupled, after changing them to cysteine by mutagenesis. (i) The target residue belonged to the hypervariable loops of the antibody. (ii) It was adjacent, along the amino acid sequence of the antibody, to a residue which was functionally important for the interaction with the antigen. (iii) It was not important in itself for the interaction with the antigen. Eight conjugates between a single chain variable fragment of mAb4E11 and an environment-sensitive fluorophore were constructed. Three of them showed an increase in their fluorescence intensity by 1.5-2.8-fold on antigen binding, without loss of affinity. This increase allowed the titration of the antigen in serum above a threshold concentration of 10nM. Experiments of quenching with potassium iodide suggested that the fluorescence variation was due to a shielding of the fluorescent group from the solvent by the binding of the antigen, and that therefore its mechanism is general.  相似文献   

2.
Structural repertoire of the human VH segments.   总被引:16,自引:0,他引:16  
The VH gene segments produce the part of the VH domains of antibodies that contains the first two hypervariable regions. The sequences of 83 human VH segments with open reading frames, from several individuals, are currently known. It has been shown that these sequences are likely to form a high proportion of the total human repertoire and that an individual's gene repertoire produces about 50 VH segments with different protein sequences. In this paper we present a structural analysis of the amino acid sequences produced by the 83 segments. Particular residue patterns in the sequences of V domains imply particular main-chain conformations, canonical structures, for the hypervariable regions. We show that, in almost all cases, the residue patterns in the VH segments imply that the first hypervariable regions have one of three different canonical structures and that the second hypervariable regions have one of five different canonical structures. The different observed combinations of the canonical structures in the first and second regions means that almost all sequences have one of seven main-chain folds. We describe, in outline, structures of the antigen binding site loops produced by nearly all the VH segments. The exact specificity of the loops is produced by (1) sequence differences in their surface residues, particularly at sites near the centre of the combining site, and (2) sequence differences in the hypervariable and framework regions that modulate the relative positions of the loops.  相似文献   

3.
The antigen binding site of an antibody is made up of residues residing in six hypervariable loops of the heavy and light chains. In most cases several or all of these loops are required for the establishment of the antigen-binding surface. Five of these loops display a limited diversity in length and sequence while the third complementarity determining region (CDR) of the heavy chain is highly different between antibodies not only with respect to sequence but also with respect to length. Its extensive diversity is a key component in the establishment of binding sites allowing for the recognition of essentially any antigen by humoral immunity. The relative importance of its sequence vs its length diversity in this context is however, not very well established. To investigate this matter further we have used an approach employing combinatorial antibody libraries and antigen-specific selection in the search for CDRH3 length and sequence diversity compatible with a given antigen specificity, the major antigenic determinant on the tumour-associated antigen mucin-1. In this way we have now defined heavy chain CDR3 length as a critical parameter in the creation of an antigen-specific binding site. We also propose that this may reflect a dependence of a particular structure of this hypervariable loop, the major carrier of diversity in the binding site, for establishment of a given specificity.  相似文献   

4.
Renard M  Bedouelle H 《Biochemistry》2004,43(49):15453-15462
The variable fragment (Fv) of an antibody can be transformed into a reagentless fluorescent biosensor by mutating a residue into a cysteine in the neighborhood of the paratope (antigen-binding site) and then coupling an environment-sensitive fluorophore, e.g., N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (IANBD ester), to the mutant cysteine. For some residues, named operational, the formation of the conjugate does not affect the affinity of the Fv fragment for the antigen, and the binding of the antigen generates a measurable variation in the fluorescence intensity of the conjugate. We tested if this signal variation could be increased by coupling several molecules of fluorophores to the same molecule of Fv. Seven operational residues have been previously identified in the single-chain Fv (scFv) of monoclonal antibody D1.3 (mAbD1.3), directed against lysozyme. Ten double mutants of scFvD1.3, involving these residues, were constructed and coupled to the IANBD ester. The fluorescence of the double conjugates revealed a transfer of resonance energy between the two identical fluorescent groups. This homotranfer could be more important in the free state of the conjugate than in its antigen-bound state and increase its sensitivity for the detection of the antigen by up to 2.9-fold. A poorly sensitive conjugate could be improved by coupling a second molecule of fluorophore to residues located far from the paratope. Mutations altering the affinity of scFvD1.3 for lysozyme were introduced into one of its fluorescent conjugates. Using a mixture of three mutant derivatives of this unique conjugate, we could titrate lysozyme with precision in a concentration range encompassing 3 orders of magnitude.  相似文献   

5.
The surface proteins (SU) of murine type-C retroviruses have a central hypervariable domain devoid of cysteine and rich in proline. This 41-amino-acid region of Friend ecotropic murine leukemia virus SU was shown to be highly tolerant of insertions and deletions. Viruses in which either the N-terminal 30 amino acids or the C-terminal 22 amino acids of this region were replaced by the 7-amino-acid sequence ASAVAGA were fully infectious. Insertions of this 7-amino-acid sequence at the N terminus, center, and the C terminus of the hypervariable domain had little effect on envelope protein (Env) function, while this insertion at a position 10 amino acids following the N terminus partially destabilized the association between the SU and transmembrane subunits of Env. Large, complex domains (either a 252-amino-acid single-chain antibody binding domain [scFv] or a 96-amino-acid V1/V2 domain of HIV-1 SU containing eight N-linked glycosylation sites and two disulfides) did not interfere with Env function when inserted in the center or C-terminal portions of the hypervariable domain. The scFv domain inserted into the C-terminal region of the hypervariable domain was shown to mediate binding of antigen to viral particles, demonstrating that it folded into the active conformation and was displayed on the surface of the virion. Both positive and negative enrichment of virions expressing the V1/V2 sequence were achieved by using a monoclonal antibody specific for a conformational epitope presented by the inserted sequence. These results indicated that the hypervariable domain of Friend ecotropic SU does not contain any specific sequence or structure that is essential for Env function and demonstrated that insertions into this domain can be used to extend particle display methodologies to complex protein domains that require expression in eukaryotic cells for glycosylation and proper folding.  相似文献   

6.
7.
We investigate the conservation of amino acid residue sequences in 21 DNA-binding protein families and study the effects that mutations have on DNA-sequence recognition. The observations are best understood by assigning each protein family to one of three classes: (i) non-specific, where binding is independent of DNA sequence; (ii) highly specific, where binding is specific and all members of the family target the same DNA sequence; and (iii) multi-specific, where binding is also specific, but individual family members target different DNA sequences. Overall, protein residues in contact with the DNA are better conserved than the rest of the protein surface, but there is a complex underlying trend of conservation for individual residue positions. Amino acid residues that interact with the DNA backbone are well conserved across all protein families and provide a core of stabilising contacts for homologous protein-DNA complexes. In contrast, amino acid residues that interact with DNA bases have variable levels of conservation depending on the family classification. In non-specific families, base-contacting residues are well conserved and interactions are always found in the minor groove where there is little discrimination between base types. In highly specific families, base-contacting residues are highly conserved and allow member proteins to recognise the same target sequence. In multi-specific families, base-contacting residues undergo frequent mutations and enable different proteins to recognise distinct target sequences. Finally, we report that interactions with bases in the target sequence often follow (though not always) a universal code of amino acid-base recognition and the effects of amino acid mutations can be most easily understood for these interactions.  相似文献   

8.
70-kDa heat shock protein family is a molecular chaperone that binds to a variety of client proteins and peptides in the cytoplasm. Several studies have revealed binding motifs between 70-kDa heat shock protein family and cytoplasmic proteins by conventional techniques such as phage display library screening. However, little is known about the binding motif based on kinetic parameters determined by surface plasmon resonance analysis. We investigated the major inducible cytosolic 70-kDa heat shock protein (Hsp70)-binding motif with the human leukocyte antigen B*2702-derived peptide Bw4 (RENLRIALRY) by using a Biacore system based on surface plasmon resonance analysis. The K(D) value of Hsp70-Bw4 interaction was 1.8 x 10(-6) m. Analyses with truncated Bw4 variant peptides showed the binding motif of Hsp70 to be seven residues, LRIALRY. To further study the characteristics of this motif, 126 peptides derived from Bw4, each with single amino acid substitution, were synthesized and analyzed for Hsp70 binding affinity. Interestingly, the Hsp70 binding affinity was abrogated when the residues were substituted for by acidic (Asp and Glu) ones at any position. In contrast, if the substitute residue was aromatic (Trp, Tyr, and Phe) or an Arg residue at any position, Hsp70 binding affinity was maintained. Thus, this study presents a new binding motif between Hsp70 and peptides derived from the natural protein human leukocyte antigen B*2702 and may also elucidate some characteristics of the Hsp70 binding characteristic, enhancing our understanding of Hsp70-binding determinants that may influence diverse cellular and physiological processes.  相似文献   

9.
In this study, we investigated the role of charged residues in ligand binding interactions of f-Met-Leu-Phe receptors (FPR). Charged residues of FPR, both conserved and nonconserved, which are located close to the membrane interface were mutated to alanine to determine their role in ligand binding. The mutated residues belonged to specific domains of FPR which have previously been implicated in FPR ligand binding interactions. We demonstrate that nonconserved charged residues such as Arg84, Lys85, Arg205 and Asp284 and conserved charge residue Arg163 seem to play a role in ligand binding. However, alteration of nonconserved charged residue Asp106 did not have any effect. In conclusion, specific charged residues of FPR, both conserved nonconserved, may contribute to FPR function either directly or indirectly.  相似文献   

10.
Canonical structures for the hypervariable regions of immunoglobulins   总被引:61,自引:0,他引:61  
We have analysed the atomic structures of Fab and VL fragments of immunoglobulins to determine the relationship between their amino acid sequences and the three-dimensional structures of their antigen binding sites. We identify the relatively few residues that, through their packing, hydrogen bonding or the ability to assume unusual phi, psi or omega conformations, are primarily responsible for the main-chain conformations of the hypervariable regions. These residues are found to occur at sites within the hypervariable regions and in the conserved beta-sheet framework. Examination of the sequences of immunoglobulins of unknown structure shows that many have hypervariable regions that are similar in size to one of the known structures and contain identical residues at the sites responsible for the observed conformation. This implies that these hypervariable regions have conformations close to those in the known structures. For five of the hypervariable regions, the repertoire of conformations appears to be limited to a relatively small number of discrete structural classes. We call the commonly occurring main-chain conformations of the hypervariable regions "canonical structures". The accuracy of the analysis is being tested and refined by the prediction of immunoglobulin structures prior to their experimental determination.  相似文献   

11.
The number of antibody structures co-crystallized with their respective antigens has increased rapidly in the last few years, thus offering a formidable source of information to gain insight into the structure-function relationships of this family of proteins. We have analyzed here 140 unique middle-resolution to high-resolution (<3??) antibody structures, including 55 in complex with proteins, 39 with peptides, and 46 with haptens. We determined (i) length variations of the hypervariable loops, (ii) number of contacts with antigen, (iii) solvent accessible area buried upon binding, (iv) location and frequency of antigen contacting residues, (v) type of residues interacting with antigens, and (vi) putative somatic mutations. Except for somatic mutations, distinctive profiles were identified for all the variables analyzed. Compared with contacts, somatic mutations occurred with less abundance at any given position and extended beyond the regions in contact, with no clear difference among antibodies that recognize different types of antigens. This observation is consistent with the fact that although antigen recognition accomplished by shape and physicochemical complementarity is selective in nature, the somatic mutation process is stochastic and selection for mutations leading to improved affinity is not directly related to contact residues. Thus, the knowledge emerging from this study enhances our understanding of the structure-function relationship in antibodies while providing valuable guidance to design libraries for antibody discovery and optimization.  相似文献   

12.
We generated a number of simian virus 40 (SV40) mutants with single amino acid substitutions in T antigen between residues 388 and 411. All but one mutant (398LV) replicated like wild-type SV40 and gave rise to normal-size plaques. Three different mutations at residue 402 (Asp to Glu, Asn, or His) totally prevented the formation of stable complexes with the cellular protein p53 in monkey cells but had no effect on virus replication. Only one other mutation in this region, involving residue 401 (Met to Thr), slightly inhibited the formation of T-monkey p53 complexes. The three mutant T antigens with substitutions at residue 402 also formed no stable complexes with human p53 but generated low levels of complexes with mouse p53. These results indicate that residue 402 is critical for binding to monkey and human p53 proteins and is important for binding to mouse p53. We suggest that it is one of several points of contact. In cells infected with any one of the three residue 402 mutant viruses. T antigen and p53 became increasingly phosphorylated, as they were in cells infected with wild-type virus. Our data therefore show that stable T-p53 complexes are not required for replication of SV40 in culture or for enhanced phosphorylation of either protein.  相似文献   

13.
The possibility of obtaining from any antibody a fluorescent conjugate which responds to the binding of the antigen by a variation of its fluorescence, would be of great interest in the analytical sciences and for the construction of protein chips. This possibility was explored with antibody mAbD1.3 directed against hen egg white lysozyme. Rules of design were developed to identify the residues of the antibody to which a fluorophore could be chemically coupled, after changing them to cysteine by mutagenesis. These rules were based on: the target residue belonging to a topological neighbourhood of the antigen in the structure of the complex between antibody and antigen; its absence of functional importance for the interaction with the antigen; and its solvent accessibility in the structure of the free antibody. Seventeen conjugates between the single-chain variable fragment scFv of mAbD1.3 and an environment-sensitive fluorophore were constructed. For six of the ten residues which fully satisfied the design rules, the relative variation of the fluorescence intensity between the free and bound states of the conjugate was comprised between 12 and 75% (in non-optimal buffer), and the affinity of the conjugate for lysozyme remained unchanged relative to the parental scFv. In contrast, such results were true for only one of the seven residues which failed to satisfy one of the rules and were used as controls. One of the conjugates was studied in more detail. Its fluorescence increased proportionally to the concentration of lysozyme in a nanomolar range, up to 90% in a defined buffer, and 40% in serum. This increase was specific for hen egg lysozyme and it was not observed with a closely related protein, turkey egg lysozyme. The residues which gave operational conjugates (six in V(L) and one in V(H)), were located in the immediate vicinity of residues which are functionally important, along the sequence of FvD1.3. The results suggest rules of design for constructing antigen-sensitive fluorescent conjugates from any antibody, in the absence of structural data.  相似文献   

14.
The novel fluorescent amino acid, L-1-pyrenylalanine (L-Pya), was prepared by the asymmetric hydrogenation of cyclic dehydrodipeptide. Fluorescent enkephalins containing one or two Pya residues at position 1,4 or 5 of [D-Ala2, Leu5]enkephalin were synthesized by the solution method. Mono-Pya-enkephalins showed strong fluorescence intensities and potent binding affinities with specificity and selectivity for opiate receptors. However, di-Pya-enkephalins showed markedly decreased receptor binding affinities. These results indicate that the incorporation of two Pya residues into enkephalin makes the peptide unable to interact with the opiate receptors, although introduction of one Pya residue is effective to elicit a specific receptor interaction. Di-Pya-enkephalins showed intramolecular excimer spectra, indicating that the peptides are able to take possible folded conformations.  相似文献   

15.
人巨细胞病毒M抗原表位保守氨基酸突变的分析   总被引:1,自引:0,他引:1  
为确定人巨细胞病毒M抗原表位MAD的关键氨基酸残基, 以MAD多肽序列为基础, 分别将保守氨基酸残基单一突变为甘氨酸残基, 构建各自突变体, 然后与人源Fc的N端融合, 通过原核表达载体pET32-Fc表达融合蛋白MAD-Fc, 经protein A柱亲和纯化得到各突变体纯品。通过ELISA及Western blotting方法验证各突变体特异结合羊抗HCMV多抗间的差异, 从而确定表位关键氨基酸残基。结果显示, 将MAD中的谷氨酰胺残基单突变为甘氨酸残基后, MADQ-G结合羊抗HCMV多抗活性大大降低, 差异显著; 而其他氨基酸残基单突变时, 对MAD活性影响程度很小。由此得出结论: MAD结合羊抗HCMV多抗的活性与谷氨酰胺残基有关。  相似文献   

16.
Three divalent cation binding sites in the integrin β I domain have been shown to regulate ligand binding and adhesion. However, the degree of ligand binding and adhesion varies among integrins. The αLβ2 and α4β7 integrins show an increase in ligand binding affinity and adhesion when one of their ADMIDAS (adjacent to MIDAS, or the metal ion-dependent adhesion site) residues is mutated. By contrast, the α2β1, α5β1, and αIIbβ3 integrins show a decrease in binding affinity and adhesion when their ADMIDAS is mutated. Our study here indicated that integrin αVβ3 had lower affinity when the ADMIDAS was mutated. By comparing the primary sequences of these integrin subunits, we propose that one residue associated with the MIDAS (β3 Ala(252)) may account for these differences. In the β1 integrin subunit, the corresponding residue is also Ala, whereas in both β2 and β7 integrin subunits, it is Asp. We mutated the β3 residue Ala(252) to Asp and combined this mutant with mutations of one or two ADMIDAS residues. The mutant A252D showed reduced ligand binding affinity and adhesion. The ligand binding affinity and adhesion were increased when this A252D mutant was paired with mutations of one ADMIDAS residue. But when paired with mutations of two ADMIDAS residues the mutant nearly abolished ligand-binding ability, which was restored by the activating glycosylation mutation. Our study suggests that the variation of this residue contributes to the different ligand binding affinities and adhesion abilities among different integrin families.  相似文献   

17.
Green fluorescent antibodies: novel in vitro tools   总被引:10,自引:0,他引:10  
We produced a fluorescent antibody as a single recombinant protein in Escherichia coli by fusing a red-shifted mutant of green fluorescent protein (EGFP) to a single-chain antibody variable fragment (scFv) specific for hepatitis B surface antigen (HepBsAg). GFP is a cytoplasmic protein and it was not previously known whether it would fold correctly to form a fluorescent protein in the periplasmic space of E.COLI: In this study we showed that EGFP alone or fused to the N'- and C'-termini of the scFv resulted in fusion proteins that were in fact highly fluorescent in the periplasmic space of E.COLI: cells. Further characterization revealed that the periplasmic N'-terminal EGFP-scFv fusion was the most stable form which retained the fluorescent properties of EGFP and the antigen binding properties of the native scFv; thus representing a fully functional chimeric molecule. We also demonstrated the utility of EGFP-scFv in immunofluorescence studies. The results showed positive staining of COS-7 cells transfected with HepBsAg, with comparable sensitivity to a monoclonal antibody or the scFv alone, probed with conventional fluorescein-labelled second antibodies. In this study, we developed a simple technique to produce fluorescent antibodies which can potentially be applied to any scFv. We demonstrated the utility of an EGFP-scFv fusion protein for immunofluorescence studies, but there are many biological systems to which this technology may be applied.  相似文献   

18.
Clustering of the mast cell function-associated antigen by its specific monoclonal antibody (G63) inhibits the FcepsilonRI-mediated secretory response. The cytosolic tail of the mast cell function-associated antigen contains a SIYSTL stretch, a potential immunoreceptor tyrosine-based inhibition motif. To investigate the possible functional role of this sequence, as well as identify potential intracellular proteins that interact with it, peptides corresponding to residues 4-12 of the mast cell function-associated antigen's N-terminal cytoplasmic domain, containing the above motif, were synthesized and used in affinity chromatography of mast cell lysates. Both tyrosyl phosphorylated and thiophosphorylated mast cell function-associated antigen peptides bound the src homology domain 2 (SH2)-containing tyrosine phosphatases-1 (SHP-1), -2 (SHP-2) and inositol 5'-phosphatase (SHIP), though with different efficiencies. Neither the nonphosphorylated peptide nor its tyrosyl phosphorylated reversed sequence peptide bound any of these phosphatases. Point mutation analysis of mast cell function-associated antigen pITIM binding requirements demonstrated that for SHP-2 association the amino acid residue at position Y-2 is not restricted to the hydrophobic isoleucine or valine. Glycine and other amino acids with hydrophilic residues, such as serine and threonine, at this position also maintain this binding capacity, whereas alanine and acidic residues abolish it. In contrast, SHP-1 binding was maintained only when serine was substituted by valine, suggesting that the Y-2 position provides selectivity for peptide binding to SH2 domains of SHP-1 and SHP-2. These results were corroborated by surface plasmon resonance measurements of the interaction between tyrosyl phosphorylated mast cell function-associated antigen peptide and recombinant soluble SH2 domains of SHP-1, SHP-2 and SHIP, suggesting that the associations observed in the cell lysates may be direct. Taken together these results clearly indicate that the SIYSTL motif present in mast cell function-associated antigen's cytosolic tail exhibits characteristic features of an immunoreceptor tyrosine-based inhibition motif, suggesting it is a new member of the growing diverse family of immunoreceptor tyrosine-based inhibition motif-containing receptors.  相似文献   

19.
We demonstrate in this study the great degree of specificity in peptides selected by a class II MHC molecule during processing. In this specific case of the diabetogenic I-A(g7) molecule, the P9 pocket of I-A(g7) plays a critical role in determining the final outcome of epitope selection, a conclusion that is important in interpreting the role of this molecule in autoimmunity. Specifically, we examined the display of naturally processed peptides from APCs expressing either I-A(g7) molecules or a mutant I-A(g7) molecule in which the beta57Ser residue was changed to an Asp residue. Using mass spectrometry analysis, we identified over 50 naturally processed peptides selected by I-A(g7)-expressing APCs. Many peptides were selected as families with a core sequence and variable flanks. Peptides selected by I-A(g7) were unusually rich in the presence of acidic residues toward their C termini. Many peptides contained short sequences of two to three acidic residues. In binding analysis, we determined the core sequences of many peptides and the interaction of the acidic residues with the P9 pocket. However, different sets of peptides were isolated from APCs bearing a modified I-A(g7) molecule. These peptides did not favor acidic residues toward the carboxyl terminus.  相似文献   

20.
Selective autophagy requires the specific segregation of targeted proteins into autophagosomes. The selectivity is mediated by autophagy receptors, such as p62 and NBR1, which can bind to autophagic effector proteins (Atg8 in yeast, MAP1LC3 protein family in mammals) anchored in the membrane of autophagosomes. Recognition of autophagy receptors by autophagy effectors takes place through an LC3 interaction region (LIR). The canonical LIR motif consists of a WXXL sequence, N-terminally preceded by negatively charged residues. The LIR motif of NBR1 presents differences to this classical LIR motif with a tyrosine residue and an isoleucine residue substituting the tryptophan residue and the leucine residue, respectively. We have determined the structure of the GABARAPL-1/NBR1-LIR complex and studied the influence of the different residues belonging to the LIR motif for the interaction with several mammalian autophagy modifiers (LC3B and GABARAPL-1). Our results indicate that the presence of a tryptophan residue in the LIR motif increases the binding affinity. Substitution by other aromatic amino acids or increasing the number of negatively charged residues at the N-terminus of the LIR motif, however, has little effect on the binding affinity due to enthalpy-entropy compensation. This indicates that different LIRs can interact with autophagy modifiers with unique binding properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号