首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
ZntB is the distant homolog of CorA Mg2+ transporter within the metal ion transporter superfamily. It was early reported that the ZntB from Salmonella typhimurium facilitated efflux of Zn2+ and Cd2+, but not Mg2+. Here, we report the 1.90 Å crystal structure of the intracellular domain of ZntB from Vibrio parahemolyticus. The domain forms a funnel-shaped homopentamer that is similar to the full-length CorA from Thermatoga maritima, but differs from two previously reported dimeric structures of truncated CorA intracellular domains. However, no Zn2+ or Cd2+ binding sites were identified in the high-resolution structure. Instead, 25 well-defined Cl ions were observed and some of these binding sites are highly conserved within the ZntB family. Continuum electrostatics calculations suggest that the central pore of the funnel is highly attractive for cations, especially divalents. The presence of the bound Cl ions increases the stability of cations along the pore suggesting they could be important in enhancing cation transport.  相似文献   

2.
Magnesium is essential for all forms of life. It is the cofactor for many enzymes and plays a key role in many biological processes. Thus, the acquisition of Mg(2+) is crucial for cell survival. The best characterized Mg(2+) transporters to date belong to the 2-TM-GxN type family of transporters. The name indicates the two C-terminal transmembrane (TM) domains and a conserved GxN motif present in all members of this family towards the C-terminal end of TM1. In most members of the family, this conserved motif is generally YGMNF. The prototypical member of this family is CorA. Other characterized members of this family include Mrs2p, Alr, Mnr, AtMGT and ZntB. CorA is widely distributed throughout the prokaryotic world. It is the primary Mg(2+) uptake system in most bacteria and many Archaea. A homolog, Mrs2p, is a eukaryotic mitochondrial Mg(2+) channel. The Mrs2p related AtMGT transporters are found in plants and other eukaryotes. Alr1p and Mnr are Mg(2+) transporters found in the plasma membrane of many fungi. ZntB is a bacterial member of the 2-TM-GxN family but mediates efflux of Zn(2+) instead of influx of Mg(2+). The recent crystal structure of a bacterial CorA shows that the structure of this family is unlike that of any other class of transporter or channel currently known.  相似文献   

3.
The crystal structure of a closed form of the CorA Mg2+ transporter from Thermatoga maritima completes a set of representative structures of transport systems for all of the major biological elements, Mg2+, Ca2+, Na+, K+ and Cl-. The CorA monomer has a C-terminal membrane domain containing two transmembrane segments and a large N-terminal cytoplasmic soluble domain. In the membrane, CorA forms a homopentamer shaped like a funnel. Comparison of the structure of CorA with that of other ion channels and transporters suggests numerous common features, but, as might be predicted from the unique chemistry of the Mg2+ cation, the structure of CorA has several unusual features. Among these are initial binding in the periplasm of a fully hydrated Mg2+ ion; a ring of positive charge external to the ion-conduction pathway at the cytosolic membrane interface; and highly negatively charged helices in the cytosolic domain that appear capable of interacting with the ring of positive charge to facilitate Mg2+ entry. Finally, there are bound Mg2+ ions in the cytosolic domain that are well placed to control the interaction of the ring of positive charge and the negatively charged helices, and thus control Mg2+ entry.  相似文献   

4.
Recent crystal structures of the CorA Mg(2+) transport protein from Thermotoga maritima (TmCorA) revealed an unusually long ion pore putatively gated by hydrophobic residues near the intracellular end and by universally conserved asparagine residues at the periplasmic entrance. A conformational change observed in an isolated funnel domain structure also led to a proposal for the structural basis of gating. Because understanding the molecular mechanisms underlying ion channel and transporter gating remains an important challenge, we have undertaken a structure-guided engineering approach to probe structure-function relationships in TmCorA. The intracellular funnel domain is shown to constitute an allosteric regulatory module that can be engineered to promote an activated or closed state. A periplasmic gate centered about a proline-induced kink of the pore-lining helix is described where "helix-straightening" mutations produce a dramatic gain-of-function. Mutation to the narrowest constriction along the pore demonstrates that a hydrophobic gate is operational within this Mg(2+)-selective transport protein and likely forms an energetic barrier to ion flux. We also provide evidence that highly conserved acidic residues found in the short periplasmic loop are not essential for TmCorA function or Mg(2+) selectivity but may be required for proper protein folding and stability. This work extends our gating model for the CorA-Alr1-Mrs2 superfamily and reveals features that are characteristic of an ion channel. Aspects of these results that have broader implications for a range of channel and transporter families are highlighted.  相似文献   

5.
Crystal structures of the CorA Mg(2+) channel have suggested that metal binding in the cytoplasmic domain stabilizes the pentamer in a closed conformation. The open "metal free" state of the channel is, however, still structurally uncharacterized. Here, we have attempted to map conformational states of CorA from Thermotoga maritima by determining which residues support the pentameric structure in the presence or absence of Mg(2+). We find that when Mg(2+) is present, the pentamer is stabilized by the putative gating sites (M1/M2) in the cytoplasmic domain. Strikingly however, we find that the conserved and functionally important periplasmic loop is vital for the integrity of the pentamer when Mg(2+) is absent from the M1/M2 sites. Thus, although the periplasmic loops were largely disordered in the x-ray structures of the closed channel, our data suggests a prominent role for the loops in stabilizing the open conformation of the CorA channels.  相似文献   

6.
Payandeh J  Pai EF 《The EMBO journal》2006,25(16):3762-3773
We describe the CorA Mg(2+) transporter homologue from Thermotoga maritima in complex with 12 divalent cations at 3.7 A resolution. One metal is found near the universally conserved GMN motif, apparently stabilized within the transmembrane region. This portion of the selectivity filter might discriminate between the size and preferred coordination geometry of hydrated substrates. CorA may further achieve specificity by requiring the sequential dehydration of substrates along the length of its approximately 55 A long pore. Ten metal sites identified within the cytoplasmic funnel domain are linked to long extensions of the pore helices and regulate the transport status of CorA. We have characterized this region as an intrinsic divalent cation sensor and provide evidence that it functions as a Mg(2+)-specific homeostatic molecular switch. A proteolytic protection assay, biophysical data, and comparison to a soluble domain structure from Archaeoglobus fulgidus have revealed the potential reaction coordinate for this diverse family of transport proteins.  相似文献   

7.
A Zn2+ transport system encoded by the zntB locus of Salmonella enterica serovar Typhimurium has been identified. The protein encoded by this locus is homologous to the CorA family of Mg2+ transport proteins and is widely distributed among the eubacteria. Mutations at zntB confer an increased sensitivity to the cytotoxic effects of Zn2+ and Cd2+, a phenotype that suggests that the encoded protein mediates the efflux of both cations. A direct analysis of transport activity identified a capacity for Zn2+ efflux. These data identify ZntB as a zinc efflux pathway in the enteric bacteria and assign a new function to the CorA family of cation transporters.  相似文献   

8.
The membrane topology of the ZntB Zn(2+) transport protein of Salmonella enterica serovar Typhimurium was determined by constructing deletion derivatives of the protein and genetically fusing them to blaM or lacZ cassettes. The enzymatic activities of the hybrid proteins indicate that ZntB is a bitopic integral membrane protein consisting largely of two independent domains. The first 266 amino acids form a large, highly charged domain within the cytoplasm, while the remaining 61 residues form a small membrane domain containing two membrane-spanning segments. The overall orientation towards the cytoplasm is consistent with the ability of ZntB to facilitate zinc efflux.  相似文献   

9.
Magnesium is essential for all forms of life. It is the cofactor for many enzymes and plays a key role in many biological processes. Thus, the acquisition of Mg2+ is crucial for cell survival. The best characterized Mg2+ transporters to date belong to the 2-TM-GxN type family of transporters. The name indicates the two C-terminal transmembrane (TM) domains and a conserved GxN motif present in all members of this family towards the C-terminal end of TM1. In most members of the family, this conserved motif is generally YGMNF. The prototypical member of this family is CorA. Other characterized members of this family include Mrs2p, Alr, Mnr, AtMGT and ZntB. CorA is widely distributed throughout the prokaryotic world. It is the primary Mg2+ uptake system in most bacteria and many Archaea. A homolog, Mrs2p, is a eukaryotic mitochondrial Mg2+ channel. The Mrs2p related AtMGT transporters are found in plants and other eukaryotes. Alr1p and Mnr are Mg2+ transporters found in the plasma membrane of many fungi. ZntB is a bacterial member of the 2-TM-GxN family but mediates efflux of Zn2+ instead of influx of Mg2+. The recent crystal structure of a bacterial CorA shows that the structure of this family is unlike that of any other class of transporter or channel currently known.  相似文献   

10.
Cation hexaammines and related compounds are chemically stable analogs of the hydrated form of cations, particularly Mg(2+). We tested the ability of several of these compounds to inhibit transport by the CorA or MgtB Mg(2+) transport systems or the PhoQ receptor kinase for Mg(2+) in Salmonella typhimurium. Cobalt(III)-, ruthenium(II)-, and ruthenium(III)-hexaammines were potent inhibitors of CorA-mediated influx. Cobalt(III)- and ruthenium(III)chloropentaammines were slightly less potent inhibitors of CorA. The compounds inhibited uptake by the bacterial S. typhimurium CorA and by the archaeal Methanococcus jannaschii CorA, which bear only 12% identity in the extracellular periplasmic domain. Cation hexaammines also inhibited growth of S. typhimurium strains dependent on CorA for Mg(2+) uptake but not of isogenic strains carrying a second Mg(2+) uptake system. In contrast, hexacyano-cobaltate(III) and ruthenate(II)- and nickel(II)hexaammine had little effect on uptake. The inhibition by the cation hexaammines was selective for CorA because none of the compounds had any effect on transport by the MgtB P-type ATPase Mg(2+) transporter or the PhoQ Mg(2+) receptor kinase. These results demonstrate that cation hexaammines are potent and highly selective inhibitors of the CorA Mg(2+) transport system and further indicate that the initial interaction of the CorA transporter is with a fully hydrated Mg(2+) cation.  相似文献   

11.
CorA is a primary Mg2+ transporter in bacteria, which also mediates influx of Ni2+ and Co2+. Topological studies suggested that it could be divided into a large soluble periplasmic domain (PPD) and three membrane-spanning alpha-helixes. In the present study, glutathione S-transferase (GST) fusion Escherichia coli CorA PPD was purified by GST affinity chromatography, and PPD was obtained by on-column thrombin digestion. Size-exclusion chromatography indicated that purified PPD exists as a homotetramer. Single particle electron microscopy analysis of PPD and two-dimensional crystals of GST-PPD indicated that E. coli CorA PPD is a pyramid-like homotetramer with a central cavity. Comparison of the CD spectra of full-length CorA and PPD also suggested that PPD has similar secondary structure to the full-length CorA. Dissociation constants for CorA and PPD with their substrates, determined by dose-dependent fluorescence quench of ligands, suggested that purified PPD retains its substrate binding ability as native CorA. The CorA PPD structure described here may provide structural information for the E. coli CorA functional oligomeric state.  相似文献   

12.
ATP-binding cassette superfamily of periplasmic metal transporters are known to be vital for maintaining ion homeostasis in several pathogenic and non-pathogenic bacteria. We have determined crystal structure of the high-affinity zinc transporter ZnuA from Escherichia coli at 1.8 A resolution. This structure represents the first native (non-recombinant) protein structure of a periplasmic metal binding protein. ZnuA reveals numerous conformational features, which occur either in Zn(2+) or in Mn(2+) transporters, and presents a unique conformational state. A comprehensive comparison of ZnuA with other periplasmic ligand binding protein structures suggests vital mechanistic differences between bound and release states of metal transporters. The key new attributes in ZnuA include a C-domain disulfide bond, an extra alpha-helix proximal to the highly charged metal chelating mobile loop region, alternate conformations of secondary shell stabilizing residues at the metal binding site, and domain movements potentially controlled by salt bridges. Based on in-depth structural analyses of five metal binding transporters, we present here a mechanistic model termed as "partial domain slippage" for binding and release of Zn(2+).  相似文献   

13.
HisB from Escherichia coli is a bifunctional enzyme catalyzing the sixth and eighth steps of l-histidine biosynthesis. The N-terminal domain (HisB-N) possesses histidinol phosphate phosphatase activity, and its crystal structure shows a single domain with fold similarity to the haloacid dehalogenase (HAD) enzyme family. HisB-N forms dimers in the crystal and in solution. The structure shows the presence of a structural Zn(2+) ion stabilizing the conformation of an extended loop. Two metal binding sites were also identified in the active site. Their presence was further confirmed by isothermal titration calorimetry. HisB-N is active in the presence of Mg(2+), Mn(2+), Co(2+), or Zn(2+), but Ca(2+) has an inhibitory effect. We have determined structures of several intermediate states corresponding to snapshots along the reaction pathway, including that of the phosphoaspartate intermediate. A catalytic mechanism, different from that described for other HAD enzymes, is proposed requiring the presence of the second metal ion not found in the active sites of previously characterized HAD enzymes, to complete the second half-reaction. The proposed mechanism is reminiscent of two-Mg(2+) ion catalysis utilized by DNA and RNA polymerases and many nucleases. The structure also provides an explanation for the inhibitory effect of Ca(2+).  相似文献   

14.
Clostridium?difficile toxin?A (TcdA) is a member of the large clostridial toxin family, and is responsible, together with C.?difficile toxin?B (TcdB), for many clinical symptoms during human infections. Like other large clostridial toxins, TcdA catalyzes the glucosylation of GTPases, and is able to inactivate small GTPases within the host cell. Here, we report the crystal structures of the TcdA glucosyltransferase domain (TcdA-GT) in the apo form and in the presence of Mn(2+) and hydrolyzed UDP-glucose. These structures, together with the recently reported crystal structure of TcdA-GT bound to UDP-glucose, provide a detailed understanding of the conformational changes of TcdA that occur during the catalytic cycle. Indeed, we present a new intermediate conformation of a so-called 'lid' loop (residues?510-522 in TcdA), concomitant with the absence of glucose in the catalytic domain. The recombinant TcdA was expressed in Brevibacillus in the inactive apo form. High thermal stability of wild-type TcdA was observed only after the addition of both Mn(2+) and UDP-glucose. The glucosylhydrolase activity, which is readily restored after reconstitution with both these cofactors, was similar to that reported for TcdB. Interestingly, we found that ammonium, like K(+) , is able to activate the UDP-glucose hydrolase activities of TcdA. Consequently, the presence of ammonium in the crystallization buffer enabled us to obtain the first crystal structure of TcdA-GT bound to the hydrolysis product UDP. Database ??Coordinates of apo-TcdA-GT and Mn(2+) -UDP-TcdA-GT are available in the Protein Data Bank under the accession numbers 4DMV and 4DMW, respectively.  相似文献   

15.
CorA is a primary Mg2+ transporter for Bacteria and Archaea. The C-terminal domain of approximately 80 amino acids forms three transmembrane (TM) segments, which suggests that CorA is a homo-oligomer. A Cys residue was added to the cytoplasmic C terminus (C317) of Salmonella enterica serovar Typhimurium CorA with or without mutation of the single periplasmic Cys191 to Ser; each mutant retained function. Oxidation of the Cys191Ser Cys317 CorA gave a dimer. Oxidation of Cys317 CorA showed a dimer plus an additional band, apparently cross-linked via both Cys317 and C191. To determine oligomer order, intact cells or purified membranes were treated with formaldehyde or carbon disulfide. Higher-molecular-mass bands formed, consistent with the presence of a tetramer. Cross-linking of the Bacillus subtilis CorA expressed in Salmonella serovar Typhimurium similarly indicated a tetramer. CorA periplasmic soluble domains from both Salmonella serovar Typhimurium and the archaeon Methanococcus jannaschii were purified and shown to retain structure. Formaldehyde treatment showed formation of a tetramer. Finally, previous mutagenesis of the CorA membrane domain identified six intramembrane residues forming an apparent pore that interacts with Mg2+ during transport. Each was mutated to Cys. In mutants carrying a single intramembrane Cys residue, spontaneous disulfide bond formation that was enhanced by oxidation with Cu(II)-1,10-phenanthroline was observed between monomers, indicating that these Mg2+-interacting residues within the membrane are very close to their cognate residue on another monomer. Thus, CorA appears to be a homotetramer with a TM segment of one monomer physically close to the same TM segment of another monomer.  相似文献   

16.
17.
As a part of the Joint Center for Structural Genomics (JCSG) biological targets, the structures of soluble domains of membrane proteins from Thermotoga maritima were pursued. Here, we report the crystal structure of the soluble domain of TM1634, a putative membrane protein of 128 residues (15.1 kDa) and unknown function. The soluble domain of TM1634 is an alpha-helical dimer that contains a single tetratrico peptide repeat (TPR) motif in each monomer where each motif is similar to that found in Tom20. The overall fold, however, is unique and a DALI search does not identify similar folds beyond the 38-residue TPR motif. Two different putative ligand binding sites, in which PEG200 and Co(2+) were located, were identified using crystallography and NMR, respectively.  相似文献   

18.
The CorA Mg2+ channel is a homopentamer with five-fold symmetry. Each monomer consists of a large cytoplasmic domain and two transmembrane helices connected via a short periplasmic loop. In the Thermotoga maritima CorA crystal structure, a Mg2+ is bound between D89 of one monomer and D253 of the adjacent monomer (M1 binding site). Release of Mg2+ from these sites has been hypothesized to cause opening of the channel. We generated mutants to disrupt Mg2+ interaction with the M1 site. Crystal structures of the D89K/D253K and D89R/D253R mutants, determined to 3.05 and 3.3?Å, respectively, showed no significant structural differences with the wild type structure despite absence of Mg2+ at the M1 sites. Both mutants still appear to be in the closed state. All three mutant CorA proteins exhibited transport of 63Ni2+, indicating functionality. Thus, absence of Mg2+ from the M1 sites neither causes channel opening nor prevents function. We also provide evidence that the T. maritima CorA is a Mg2+ channel and not a Co2+ channel.  相似文献   

19.
LytM, an autolysin from Staphylococcus aureus, is a Zn(2+)-dependent glycyl-glycine endopeptidase with a characteristic HxH motif that belongs to the lysostaphin-type (MEROPS M23/37) of metallopeptidases. Here, we present the 1.3A crystal structure of LytM, the first structure of a lysostaphin-type peptidase. In the LytM structure, the Zn(2+) is tetrahedrally coordinated by the side-chains of N117, H210, D214 and H293, the second histidine of the HxH motif. Although close to the active-site, H291, the first histidine of the HxH motif, is not directly involved in Zn(2+)-coordination, and there is no water molecule in the coordination sphere of the Zn(2+), suggesting that the crystal structure shows a latent form of the enzyme. Although LytM has not previously been considered as a proenzyme, we show that a truncated version of LytM that lacks the N-terminal part with the poorly conserved Zn(2+) ligand N117 has much higher specific activity than full-length enzyme. This observation is consistent with the known removal of profragments in other lysostaphin-type proteins and with a prior observation of an active LytM degradation fragment in S.aureus supernatant. The "asparagine switch" in LytM is analogous to the "cysteine switch" in pro-matrix metalloproteases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号