共查询到20条相似文献,搜索用时 15 毫秒
1.
R Russo L Berliocchi A Adornetto G P Varano F Cavaliere C Nucci D Rotiroti L A Morrone G Bagetta M T Corasaniti 《Cell death & disease》2011,2(4):e144
Autophagy is the major intracellular degradation pathway that regulates long-lived proteins and organelles turnover. This process occurs at basal levels in all cells but it is rapidly upregulated in response to starvation and cellular stress. Although being recently implicated in neurodegeneration, it remains still unclear whether autophagy has a detrimental or protective role. In this study, we investigated the dynamics of the autophagic process in retinal tissue that has undergone transient ischemia, an experimental model that recapitulates features of ocular pathologies, including glaucoma, anterior ischemic optic neuropathy and retinal vessels occlusion. Retinal ischemia, induced in adult rats by increasing the intraocular pressure, was characterized by a reduction in the phosphatidylethanolamine-modified form of LC3 (LC3II) and by a significant decrease in Beclin-1. The latter event was associated with a proteolytic cleavage of Beclin-1, leading to the accumulation of a 50-kDa fragment. This event was prevented by intravitreal treatment with the non-competitive N-methyl-D-aspartate antagonist MK801 and calpain inhibitors or by calpain knockdown. Blockade of autophagy by pharmacological inhibition or Beclin-1 silencing in RGC-5 increased cell death, suggesting a pro-survival role of the autophagic process in this neuronal cell type. Altogether, our results provide original evidence for calpain-mediated cleavage of Beclin-1 and deregulation of basal autophagy in the rat retina that has undergone ocular ischemia/reperfusion injury. 相似文献
2.
Beclin 1, the mammalian orthologue of yeast Atg6, has a central role in autophagy, a process of programmed cell survival, which is increased during periods of cell stress and extinguished during the cell cycle. It interacts with several cofactors (Atg14L, UVRAG, Bif-1, Rubicon, Ambra1, HMGB1, nPIST, VMP1, SLAM, IP(3)R, PINK and survivin) to regulate the lipid kinase Vps-34 protein and promote formation of Beclin 1-Vps34-Vps15 core complexes, thereby inducing autophagy. In contrast, the BH3 domain of Beclin 1 is bound to, and inhibited by Bcl-2 or Bcl-XL. This interaction can be disrupted by phosphorylation of Bcl-2 and Beclin 1, or ubiquitination of Beclin 1. Interestingly, caspase-mediated cleavage of Beclin 1 promotes crosstalk between apoptosis and autophagy. Beclin 1 dysfunction has been implicated in many disorders, including cancer and neurodegeneration. Here, we summarize new findings regarding the organization and function of the Beclin 1 network in cellular homeostasis, focusing on the cross-regulation between apoptosis and autophagy. 相似文献
3.
Mendoza FJ Henson ES Gibson SB 《Biochemical and biophysical research communications》2005,331(4):1089-1098
During apoptotic stimulation, the serine threonine kinase, MEKK1, is cleaved into an activated 91 kDa kinase fragment. This cleavage is mediated by caspase 3 and leads to further caspase 3 activation and apoptosis. Forced expression of the 91 kDa kinase fragment induces apoptosis through changes in membrane potential of the mitochondria mediated by permeability transition pore opening. MEKK1 activation, however, fails to release cytochrome c from the mitochondria. Herein, we determined that overexpression of MEKK1 causes mitochondrial Smac/Diablo release correlating with MEKK1-induced apoptosis. Furthermore, using siRNA that lowers Smac/Diablo expression, MEKK1-induced apoptosis was significantly reduced. Mouse embryonic fibroblast cells lacking MEKK1 expression are also resistant to etoposide-induced mitochondrial Smac/Diablo release. In contrast, etoposide-induced mitochondrial cytochrome c release was not inhibited. MEKK1 also activates the MAP kinase JNK, but MEKK1-induced mitochondrial Smac/Diablo release and apoptosis are independent of MEKK1 mediated JNK activation. Taken together, release of Smac/Diablo from the mitochondria plays a role in MEKK1-induced apoptosis. 相似文献
4.
Pagliarini V Wirawan E Romagnoli A Ciccosanti F Lisi G Lippens S Cecconi F Fimia GM Vandenabeele P Corazzari M Piacentini M 《Cell death and differentiation》2012,19(9):1495-1504
Under stress conditions, pro-survival and pro-death processes are concomitantly activated and the final outcome depends on the complex crosstalk between these pathways. In most cases, autophagy functions as an early-induced cytoprotective response, favoring stress adaptation by removing damaged subcellular constituents. Moreover, several lines of evidence suggest that autophagy inactivation by the apoptotic machinery is a crucial event for cell death execution. Here we show that apoptotic stimuli induce a rapid decrease in the level of the autophagic factor Activating Molecule in Beclin1-Regulated Autophagy (Ambra1). Ambra1 degradation is prevented by concomitant inhibition of caspases and calpains. By both in vitro and in vivo approaches, we demonstrate that caspases are responsible for Ambra1 cleavage at the D482 site, whereas calpains are involved in complete Ambra1 degradation. Finally, we show that Ambra1 levels are critical for the rate of apoptosis induction. RNA interference-mediated Ambra1 downregulation further sensitizes cells to apoptotic stimuli, while Ambra1 overexpression and, more efficiently, a caspase non-cleavable mutant counteract cell death by prolonging autophagy induction. We conclude that Ambra1 is an important target of apoptotic proteases resulting in the dismantling of the autophagic machinery and the accomplishment of the cell death program. 相似文献
5.
MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy
NRBF2/Atg38 has been identified as the fifth subunit of the macroautophagic/autophagic class III phosphatidylinositol 3-kinase (PtdIns3K) complex, along with ATG14/Barkor, BECN1/Vps30, PIK3R4/p150/Vps15 and PIK3C3/Vps34. However, its functional mechanism and regulation are not fully understood. Here, we report that NRBF2 is a fine tuning regulator of PtdIns3K controlled by phosphorylation. Human NRBF2 is phosphorylated by MTORC1 at S113 and S120. Upon nutrient starvation or MTORC1 inhibition, NRBF2 phosphorylation is diminished. Phosphorylated NRBF2 preferentially interacts with PIK3C3/PIK3R4. Suppression of NRBF2 phosphorylation by MTORC1 inhibition alters its binding preference from PIK3C3/PIK3R4 to ATG14/BECN1, leading to increased autophagic PtdIns3K complex assembly, as well as enhancement of ULK1 protein complex association. Consequently, NRBF2 in its unphosphorylated form promotes PtdIns3K lipid kinase activity and autophagy flux, whereas its phosphorylated form blocks them. This study reveals NRBF2 as a critical molecular switch of PtdIns3K and autophagy activation, and its on/off state is precisely controlled by MTORC1 through phosphorylation. 相似文献
6.
Ge Niu Huan Zhang Dan Liu Li Chen Chandra Belani Hong-Gang Wang Hua Cheng 《The Journal of biological chemistry》2015,290(29):18102-18110
One of the fundamental functions of molecular chaperone proteins is to selectively conjugate cellular proteins, targeting them directly to lysosome. Some of chaperones, such as the stress-induced Hsp70, also play important roles in autophagosome-forming macroautophagy under various stress conditions. However, the role of their co-chaperones in autophagy regulation has not been well defined. We here show that Tid1, a DnaJ co-chaperone for Hsp70 and the mammalian homologue of the Drosophila tumor suppressor Tid56, is a key mediator of macroautophagy pathway. Ectopic expression of Tid1 induces autophagy by forming LC3+ autophagosome foci, whereas silencing Tid1 leads to drastic impairment of autophagy as induced by nutrient deprivation or rapamycin. In contrast, Hsp70 is dispensable for a role in nutrient deprivation-induced autophagy. The murine Tid1 can be replaced with human Tid1 in murine fibroblast cells for induction of autophagy. We further show that Tid1 increases autophagy flux by interacting with the Beclin1-PI3 kinase class III protein complex in response to autophagy inducing signal and that Tid1 is an essential mediator that connects IκB kinases to the Beclin1-containing autophagy protein complex. Together, these results reveal a crucial role of Tid1 as an evolutionarily conserved and essential mediator of canonical macroautophagy. 相似文献
7.
Ying Zhao Xue Li Mu-Yan Cai Ke Ma Jing Yang Jingyi Zhou Wan Fu Fu-Zheng Wei Lina Wang Dan Xie Wei-Guo Zhu 《Cell research》2013,23(4):491-507
Autophagy is activated to maintain cellular energy homeostasis in response to nutrient starvation. However, autophagy is not persistently activated, which is poorly understood at a mechanistic level. Here, we report that turnover of FoxO1 is involved in the dynamic autophagic process caused by glutamine starvation. X-box-binding protein-1u (XBP-1u) has a critical role in FoxO1 degradation by recruiting FoxO1 to the 20S proteasome. In addition, the phosphorylation of XBP-1u by extracellular regulated protein kinases1/2 (ERK1/2) on Ser61 and Ser176 was found to be critical for the increased interaction between XBP-1u and FoxO1 upon glutamine starvation. Furthermore, knockdown of XBP-1u caused the sustained level of FoxO1 and the persistent activation of autophagy, leading to a significant decrease in cell viability. Finally, the inverse correlation between XBP-1u and FoxO1 expression agrees well with the expression profiles observed in many human cancer tissues. Thus, our findings link the dynamic process of autophagy to XBP-1u-induced FoxO1 degradation. 相似文献
8.
9.
10.
Bilal Rah Reyaz ur Rasool Debasis Nayak Syed Khalid Yousuf Debaraj Mukherjee Lekha Dinesh Kumar Anindya Goswami 《Autophagy》2015,11(2):314-331
An active medicinal component of plant origin with an ability to overcome autophagy by inducing apoptosis should be considered a therapeutically active lead pharmacophore to control malignancies. In this report, we studied the effect of concentration-dependent 3-AWA (3-azido withaferin A) sensitization to androgen-independent prostate cancer (CaP) cells which resulted in a distinct switching of 2 interrelated conserved biological processes, i.e. autophagy and apoptosis. We have observed 3 distinct parameters which are hallmarks of autophagy in our studies. First, a subtoxic concentration of 3-AWA resulted in an autophagic phenotype with an elevation of autophagy markers in prostate cancer cells. This led to a massive accumulation of MAP1LC3B and EGFP-LC3B puncta coupled with gradual degradation of SQSTM1. Second, higher toxic concentrations of 3-AWA stimulated ER stress in CaP cells to turn on apoptosis within 12 h by elevating the expression of the proapoptotic protein PAWR, which in turn suppressed the autophagy-related proteins BCL2 and BECN1. This inhibition of BECN1 in CaP cells, leading to the disruption of the BCL2-BECN1 interaction by overexpressed PAWR has not been reported so far. Third, we provide evidence that pawr-KO MEFs exhibited abundant autophagy signs even at toxic concentrations of 3-AWA underscoring the relevance of PAWR in switching of autophagy to apoptosis. Last but not least, overexpression of EGFP-LC3B and DS-Red-BECN1 revealed a delayed apoptosis turnover at a higher concentration of 3-AWA in CaP cells. In summary, this study provides evidence that 3-AWA is a strong anticancer candidate to abrogate protective autophagy. It also enhanced chemosensitivity by sensitizing prostate cancer cells to apoptosis through induction of PAWR endorsing its therapeutic potential. 相似文献
11.
Gang Pei Hellen Buijze Haipeng Liu Pedro Moura-Alves Christian Goosmann Volker Brinkmann 《Autophagy》2017,13(12):2041-2055
The E3 ubiquitin ligase NEDD4 has been intensively studied in processes involved in viral infections, such as virus budding. However, little is known about its functions in bacterial infections. Our investigations into the role of NEDD4 in intracellular bacterial infections demonstrate that Mycobacterium tuberculosis and Listeria monocytogenes, but not Mycobacterium bovis BCG, replicate more efficiently in NEDD4 knockdown macrophages. In parallel, NEDD4 knockdown or knockout impaired basal macroautophagy/autophagy, as well as infection-induced autophagy. Conversely, NEDD4 expression promoted autophagy in an E3 catalytic activity-dependent manner, thereby restricting intracellular Listeria replication. Mechanistic studies uncovered that endogenous NEDD4 interacted with BECN1/Beclin 1 and this interaction increased during Listeria infection. Deficiency of NEDD4 resulted in elevated K48-linkage ubiquitination of endogenous BECN1. Further, NEDD4 mediated K6- and K27- linkage ubiquitination of BECN1, leading to elevated stability of BECN1 and increased autophagy. Thus, NEDD4 participates in killing of intracellular bacterial pathogens via autophagy by sustaining the stability of BECN1. 相似文献
12.
呼吸道合胞病毒感染与细胞凋亡、自噬的关系错综复杂。研究发现呼吸道合胞病毒感染细胞后,既能产生促细胞凋亡作用,也能产生抗细胞凋亡作用,还能诱导细胞发生自噬。研究这些过程机理,能帮助我们更好地认识呼吸道合胞病毒感染发病机制,为预防和治疗呼吸道合胞病毒感染提供一些新的方向。 相似文献
13.
Jose Manuel Bravo-San Pedro Yongjie Wei Valentina Sica Maria Chiara Maiuri Zhongju Zou Guido Kroemer Beth Levine 《Autophagy》2015,11(3):452-459
Disruption of the complex of BECN1 with BCL2 or BCL2L1/BCL-XL is an essential switch that turns on cellular autophagy in response to environmental stress or treatment with BH3 peptidomimetics. Recently, it has been proposed that BCL2 and BCL2L1/BCL-XL may inhibit autophagy indirectly through a mechanism dependent on the proapoptotic BCL2 family members, BAX and BAK1. Here we report that the BH3 mimetic, ABT-737, induces autophagy in parallel with disruption of BCL2-BECN1 binding in 2 different apoptosis-deficient cell types lacking BAX and BAK1, namely in mouse embryonic fibroblasts cells and in human colon cancer HCT116 cells. We conclude that the BH3 mimetic ABT-737 induces autophagy through a BAX and BAK1-independent mechanism that likely involves disruption of BECN1 binding to antiapoptotic BCL2 family members. 相似文献
14.
15.
16.
Vitaliy O. Kaminskyy Tatiana Piskunova Irina B. Zborovskaya Elena M. Tchevkina Boris Zhivotovsky 《Autophagy》2012,8(7):1032-1044
Autophagy is a catabolic process involved in the turnover of organelles and macromolecules which, depending on conditions, may lead to cell death or preserve cell survival. We found that some lung cancer cell lines and tumor samples are characterized by increased levels of lipidated LC3. Inhibition of autophagy sensitized non-small cell lung carcinoma (NSCLC) cells to cisplatin-induced apoptosis; however, such response was attenuated in cells treated with etoposide. Inhibition of autophagy stimulated ROS formation and treatment with cisplatin had a synergistic effect on ROS accumulation. Using genetically encoded hydrogen peroxide probes directed to intracellular compartments we found that autophagy inhibition facilitated formation of hydrogen peroxide in the cytosol and mitochondria of cisplatin-treated cells. The enhancement of cell death under conditions of inhibited autophagy was partially dependent on caspases, however, antioxidant NAC or hydroxyl radical scavengers, but not the scavengers of superoxide or a MnSOD mimetic, reduced the release of cytochrome c and abolished the sensitization of the cells to cisplatin-induced apoptosis. Such inhibition of ROS prevented the processing and release of AIF (apoptosis-inducing factor) and HTRA2 from mitochondria. Furthermore, suppression of autophagy in NSCLC cells with active basal autophagy reduced their proliferation without significant effect on the cell-cycle distribution. Inhibition of cell proliferation delayed accumulation of cells in the S phase upon treatment with etoposide that could attenuate the execution stage of etoposide-induced apoptosis. These findings suggest that autophagy suppression leads to inhibition of NSCLC cell proliferation and sensitizes them to cisplatin-induced caspase-dependent and -independent apoptosis by stimulation of ROS formation. 相似文献
17.
《Autophagy》2013,9(7):1032-1044
Autophagy is a catabolic process involved in the turnover of organelles and macromolecules which, depending on conditions, may lead to cell death or preserve cell survival. We found that some lung cancer cell lines and tumor samples are characterized by increased levels of lipidated LC3. Inhibition of autophagy sensitized non-small cell lung carcinoma (NSCLC) cells to cisplatin-induced apoptosis; however, such response was attenuated in cells treated with etoposide. Inhibition of autophagy stimulated ROS formation and treatment with cisplatin had a synergistic effect on ROS accumulation. Using genetically encoded hydrogen peroxide probes directed to intracellular compartments we found that autophagy inhibition facilitated formation of hydrogen peroxide in the cytosol and mitochondria of cisplatin-treated cells. The enhancement of cell death under conditions of inhibited autophagy was partially dependent on caspases, however, antioxidant NAC or hydroxyl radical scavengers, but not the scavengers of superoxide or a MnSOD mimetic, reduced the release of cytochrome c and abolished the sensitization of the cells to cisplatin-induced apoptosis. Such inhibition of ROS prevented the processing and release of AIF (apoptosis-inducing factor) and HTRA2 from mitochondria. Furthermore, suppression of autophagy in NSCLC cells with active basal autophagy reduced their proliferation without significant effect on the cell-cycle distribution. Inhibition of cell proliferation delayed accumulation of cells in the S phase upon treatment with etoposide that could attenuate the execution stage of etoposide-induced apoptosis. These findings suggest that autophagy suppression leads to inhibition of NSCLC cell proliferation and sensitizes them to cisplatin-induced caspase-dependent and -independent apoptosis by stimulation of ROS formation. 相似文献
18.
Shintaro Kira Keisuke Tabata Kanae Shirahama-Noda Akiko Nozoe Tamotsu Yoshimori Takeshi Noda 《Autophagy》2014,10(9):1565-1578
Autophagy is an intracellular degradation process that delivers cytosolic material to
lysosomes and vacuoles. To investigate the mechanisms that regulate autophagy, we
performed a genome-wide screen using a yeast deletion-mutant collection, and found that
Npr2 and Npr3 mutants were defective in autophagy. Their mammalian homologs, NPRL2 and
NPRL3, were also involved in regulation of autophagy. Npr2-Npr3 function upstream of
Gtr1-Gtr2, homologs of the mammalian RRAG GTPase complex, which is crucial for TORC1
regulation. Both npr2∆ mutants and a GTP-bound Gtr1 mutant suppressed
autophagy and increased Tor1 vacuole localization. Furthermore, Gtr2 binds to the TORC1
subunit Kog1. A GDP-bound Gtr1 mutant induced autophagy even under nutrient-rich
conditions, and this effect was dependent on the direct binding of Gtr2 to Kog1. These
results revealed that 2 molecular mechanisms, Npr2-Npr3-dependent GTP hydrolysis of Gtr1
and direct binding of Gtr2 to Kog1, are involved in TORC1 inactivation and autophagic
induction. 相似文献
19.
Byong Hoon Yoo Anna Zagryazhskaya Yongling Li Ananda Koomson Iman Aftab Khan Takehiko Sasazuki Senji Shirasawa Kirill V Rosen 《Autophagy》2015,11(8):1230-1246
Detachment of nonmalignant intestinal epithelial cells from the extracellular matrix (ECM) triggers their growth arrest and, ultimately, apoptosis. In contrast, colorectal cancer cells can grow without attachment to the ECM. This ability is critical for their malignant potential. We found previously that detachment-induced growth arrest of nonmalignant intestinal epithelial cells is driven by their detachment-triggered autophagy, and that RAS, a major oncogene, promotes growth of detached cells by blocking such autophagy. In an effort to identify the mechanisms of detachment-induced autophagy and growth arrest of nonmalignant cells we found here that detachment of these cells causes upregulation of ATG3 and that ATG3 upregulation contributes to autophagy and growth arrest of detached cells. We also observed that when ATG3 expression is artificially increased in the attached cells, ATG3 promotes neither autophagy nor growth arrest but triggers their apoptosis. ATG3 upregulation likely promotes autophagy of the detached but not that of the attached cells because detachment-dependent autophagy requires other detachment-induced events, such as the upregulation of ATG7. We further observed that those few adherent cells that do not die by apoptosis induced by ATG3 become resistant to apoptosis caused by cell detachment, a property that is critical for the ability of normal epithelial cells to become malignant. We conclude that cell-ECM adhesion can switch ATG3 functions: when upregulated in detached cells in the context of other autophagy-promoting events, ATG3 contributes to autophagy. However, when overexpressed in the adherent cells, in the circumstances not favoring autophagy, ATG3 triggers apoptosis. 相似文献
20.
FOXOs support the metabolic requirements of normal and tumor cells by promoting IDH1 expression
下载免费PDF全文

Paraskevi Charitou Maria Rodriguez-Colman Johan Gerrits Miranda van Triest Marian Groot Koerkamp Marten Hornsveld Frank Holstege Nanda M Verhoeven-Duif Boudewijn MT Burgering 《EMBO reports》2015,16(4):456-466