首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
1. Collagens were extracted from bovine cartilage by 4 M-guanidinium chloride in the presence of proteinase inhibitors and identified by immunoblotting with specific anti-collagen sera. 2. The collagens retained their native conformations (shown by the resistance of their triple-helical domains to pepsin digestion), and the molecular masses of their component alpha-chains indicated that the chains were intact. 3. Type VI collagen was extracted as a large-molecular-mass disulphide-bonded aggregate composed of components of molecular mass 140 kDa and 200-240 kDa, and was therefore similar to type VI collagen identified in noncartilaginous tissues. Immunoblotting established the 200-240 kDa components as intact forms of the alpha 3(VI) chain. 4. Type IX collagen consisted of three clearly separable components of molecular mass 84 kDa, 72 kDa and 66 kDa, which were assigned to the alpha 1(IX)-, alpha 3(IX)- and alpha 2(IX)-chains respectively, and a large proportion of this collagen had no covalently bound glycosaminoglycan attached to the alpha 2(IX)-chain. 5. Differences between the type IX collagen extracted from bovine cartilage and that identified in biosynthetic studies on chick cartilage are discussed.  相似文献   

3.
4.
Chondrocytes isolated from 15-day-old embryonic chick sterna were cultured as monolayers for 7 days in control medium or in medium supplemented with retinoic acid or 5-bromo-2'-deoxyuridine. Control cells exhibited characteristic polygonal morphology and maintained the synthesis of cartilage-specific collagens, i.e. type II, type IX, 1 alpha, 2 alpha, and 3 alpha chains, and 45 K (presumptive type X). Type IX was the second most prevalent collagen and represented 12-15% of the phenotype. When exposed to retinoic acid, chrondrocytes displayed a fibroblast-like morphology and decreased collagen synthesis by day 2. The synthesis of collagen types II and IX declined in parallel along with that of the other cartilage collagens and ceased by day 7. During the same period, the synthesis of collagen types I, III, and V and two unidentified collagen chains was initiated and stimulated. Similar changes in collagen expression were caused by 5-bromo-2'-deoxyuridine but were delayed, beginning after day 4. Type III collagen, however, was never detected in 5-bromo-2'-deoxyuridine or control cultures. Because two different agents and two rates of modulation produced parallel changes in the synthesis of collagen types II and IX, these collagens appear to be coordinately regulated.  相似文献   

5.
6.
Type IX collagen is a recently characterized product of chondrocytes. The molecules of this collagen are heterotrimers of three genetically distinct polypeptide chains. One of the three chains contains chondroitin and/or dermatan sulfate glycosaminoglycan chains, giving the molecule a proteoglycan character. In fact, Type IX collagen has been identified with the proteoglycan Lt (PG-Lt), first isolated by Noro, A., Kimata, K., Oike, Y., Shinomura, T., Maeda, N., Yano, S., Takahashi, N., and Suzuki, S. (1983) J. Biol. Chem. 258, 9323-9331 from chick embryonic tibia and femur. Based on amino acid sequences predicted from the nucleotide sequences of cDNA and genomic clones specific for two of the chains of Type IX collagen, we have synthesized oligopeptides representing portions of the two chains. In addition, an oligopeptide has been made based on a partial amino acid sequence of the third chain. Antibodies against the synthetic peptides have been generated in rabbits, and the polyclonal sera have allowed identification of the three genetically distinct polypeptide subunits of Type IX collagen. In addition, labeling with [35S]sulfate and treatment with chondroitinase ABC demonstrates that glycosaminoglycan chains are present on the subunit that has been given the designation alpha 2(IX).  相似文献   

7.
Type IX collagen functions in covalent cross-linkage to type II collagen in cartilage (Eyre, D. R., Apone, S., Wu, J. J., Ericsson, L. H., and Walsh, K. A. (1987) FEBS Lett. 220, 337-341). To understand this molecular relationship better, an analysis of all cross-linking sites labeled by [3H]borohydride was undertaken using the protein prepared from fetal bovine cartilage. Sequence analysis of tryptic peptides containing the 3H-labeled cross-links showed that each of the chains of type IX collagen, alpha 1(IX), alpha 2(IX), and alpha 3(IX), contained a site of cross-linking at the amino terminus of the COL2 triple-helix to which the alpha 1(II)N-telopeptide could bond. The alpha 3(IX)COL2 domain alone also had an attachment site for the alpha 1(II)C-telopeptide. The distance between the alpha 1(II)N-telopeptide and alpha 1(II)C-telopeptide interaction sites, 137 residues, is equal to the length of the hole zone (0.6D) in a type II collagen fibril. This implies an antiparallel type II to type IX cross-linking relationship. Peptide analysis also revealed an unknown amino acid sequence linked to the COL2 cross-linking domains in both the alpha 1(IX) and alpha 3(IX) chains. Using antibodies to this novel peptide, its origin in the collagen alpha 3(IX)NC1 domain was established. In summary, the results confirm extensive covalent cross-linking between type IX and type II collagen molecules and reveal the existence of type IX-type IX bonding. These data provide a molecular basis for the proposed function of type IX collagen as a critical contributor to the mechanical stability and resistance to swelling of the collagen type II fibril framework of cartilage.  相似文献   

8.
Type IX collagen is found in hyaline cartilage, where it is associated with type II collagen in quarter-staggered collagen fibrils. Chicken type IX collagen has been extensively characterized and shown to contain molecules with three triple-helical domains, interspersed with non-triple-helical sequences. The molecule contains three, genetically distinct, subunits and one of these subunits carries a covalently bound glycosaminoglycan side chain. In the present report, we describe for the first time the primary structure of mammalian type IX collagen chains, based on cloning and sequencing of cDNA from rat and human cDNA libraries. The results suggest that mammalian alpha 1(IX) chains have the same multi-domain structure as the avian protein. We also demonstrate, by in situ hybridization of chromosome spreads, that the human alpha 1(IX) collagen gene is located on the long arm of chromosome 6. The cloning of human type IX collagen cDNA provides a probe for molecular studies of human chondrodysplasias that may involve abnormalities in this extracellular collagen-proteoglycan.  相似文献   

9.
Type IX collagen is a quantitatively minor component of hyaline cartilage that is essential for the normal structural integrity of the tissue. Purification and analysis are difficult because the mature protein is insoluble as a cross-linked integral component of the fibrillar matrix. In order to view a peptide map of the total pool of type IX collagen in a cartilage sample, a selective method based on Western blot analysis was developed for displaying collagen IX peptides in a cyanogen bromide digest of tissue. Digests were partially resolved by reverse-phase HPLC, individual fractions were run on SDS-PAGE and then transblotted to membrane, and the collagen IX fragments were revealed using an anti-collagen IX rabbit antiserum. All major CB-peptides from alpha1(IX), alpha2(IX), and alpha3(IX) chains in the resulting two-dimensional display were identified by amino-terminal sequence analysis. Cross-linked peptides originating from sites of covalent interaction between collagen types IX and II and between IX and IX were also defined. By comparison with an analysis of soluble type IX collagen from chondrocyte culture medium, the results showed that the pool of type IX collagen molecules in fetal and adult human cartilage is extensively cross-linked intermolecularly at sites previously revealed by other methods using purified protein. This sensitive, direct method has the potential to screen for abnormalities in the content and properties of type IX collagen in tissue samples, for example, in the study of heritable chondrodysplasia syndromes and the pathogenesis of cartilage destruction in osteoarthritis.  相似文献   

10.
Type IX collagen has recently been shown to contain glycosaminoglycan chain(s) and furthermore to be immunologically identical with proteoglycan Lt (Vaughan, L., Winterhalter, K. H., and Bruckner, P. (1985) J. Biol. Chem. 260, 4758-4763). Here we demonstrate that the chondroitin sulfate carrying 115-kDa polypeptide of type IX collagen corresponds to the alpha 2(IX) chain. In addition the 84- and 68-kDa polypeptides were identified as the alpha 1(IX) and the alpha 3(IX) chains, respectively. This conclusion is based on a comparison of the tryptic fingerprints of the 84-, 115-, and 68-kDa chains of type IX collagen on high performance liquid chromatography with the similarly treated C2, C3, and C5 chains of the peptic fragment HMW. In addition, we provide evidence that both the C3 and C4 components of HMW are derived from the alpha 2(IX) chain.  相似文献   

11.
Type IX collagen contains a chondroitin sulfate side chain and therefore may be considered as a proteoglycan. We investigated the effect of beta-xylosides on type IX collagen synthesis. Treatment of chondrocytes with beta-xylosides results in the loss of synthesis of large and small molecular weight proteoglycans, but the synthesis of type IX collagen was unaffected. It is likely that the mechanism of addition of sugar residues to type IX collagen is distinct from that of other cartilage proteoglycans.  相似文献   

12.
Collagen immunotyping by indirect immunofluorescence was performed in order to investigate the sequential development of bone formation. Osseous tumors were obtained after subcutaneous injection of 3/A/1D-1 teratocarcinoma cell line into 129/Sv mice (Nicolas et al., 1980). Frozen sections of developing tumors were incubated with specific antibodies directed against Types I, II, III, IV, and IX collagens. On Day 9, the expression of Type I and Type III collagens was correlated with the proliferation of mesenchymal cells. From Day 10, chondrogenesis was characterized by the occurrence of cartilaginous collagens, Types II and IX, in the cartilage matrix. Type IV collagen was also detected in focal areas and revealed vascular invasion of the tumor. On Day 13, osteogenesis was demonstrated by the presence of Type I collagen in the bone matrix coating the surfaces. Immunolocalization of Type III collagen on the hemopoietic elements corresponded with the bone remodeling. The sequential transitions of collagen types confirm the development of an endochondral bone tumor. These results suggest that 3/A/1D-1 teratocarcinoma cell line constitutes a valuable system for in vitro study of endochondral bone formation and cell differentiation.  相似文献   

13.
Type IX collagen from chick embryonic cartilage is unique among the collagens in that it contains chondroitin sulfate covalently linked to the alpha 2(IX) polypeptide chain. We have isolated and sequenced the glycosaminoglycan-containing peptide released by collagenase digestion from type IX collagen, labeled biosynthetically with [35SO4] and 3H-aminoacids. This peptide was purified by gel filtration and, following chondroitinase ABC digestion, by reverse-phase high performance liquid chromatography. The amino acid sequence obtained for this peptide has 23 residues, beginning and ending with a collagenous sequence, indicating that it spans an internal noncollagenous domain. Comparison of this sequence with the one predicted from cDNA clone pYN 1738 for the alpha 1(IX)chain and pYN 1731 and pDM 222 for the alpha 2(IX)chain revealed the peptide to be the noncollagenous NC3 domain of alpha 2(IX). The glycosylated sequence Val-Glu-Gly-Ser*-Ala-Asp- of type IX collagen does not have the Ser-Gly normally functioning as the attachment sequence but does have an acidic residue preceding the serine which should improve the acceptability of this sequence for the xylosyltransferase. That it is an adequate acceptor can be inferred from the observation that type IX collagen carries a glycosaminoglycan chain on over 70% of the molecules isolated.  相似文献   

14.
Type IX collagen from chick embryonic cartilage is a proteoglycan bearing a single chondroitin sulfate chain covalently linked to the alpha 2(IX) polypeptide chain. We have isolated type IX collagen metabolically labeled with [3H]proline using an antibody to type IX collagen and have found that the molecule is synthesized in two forms, a collagen form (COLIX) and a proteoglycan form (PGIX). In cultured chondrocytes, the two forms of type IX collagen showed a different ability to be deposited in the matrix. We have suggested the possibility that both forms may arise from an alternative substitution of a chondroitin sulfate chain to the NC3 domain of the alpha 2(IX) chain. Based on the reported amino acid sequence at the NC3 domain of alpha 2(IX), we have synthesized undecapeptides containing the sequence around the glycosaminoglycan attachment site of the alpha 2(IX) chain. Antibody against the peptide, which was raised in rabbit, only recognized COLIX and made it possible to distinguish COLIX from PGIX. Evidence shows that this could be due to a difference in antigenicity of the NC3 domain of the alpha 2(IX) chain between COLIX and PGIX caused by the substitution of a chondroitin sulfate chain to the serine residue in this domain. Therefore, this antibody may be useful as a probe for studies on the functions of glycosaminoglycan substitution in type IX collagen.  相似文献   

15.
Type IX collagen is covalently bound to the surface of type II collagen fibrils within the cartilage extracellular matrix. The N-terminal, globular noncollagenous domain (NC4) of the α1(IX) chain protrudes away from the surface of the fibrils into the surrounding matrix and is available for molecular interactions. To define these interactions, we used the NC4 domain in a yeast two-hybrid screen of a human chondrocyte cDNA library. 73% of the interacting clones encoded fibronectin. The interaction was confirmed using in vitro immunoprecipitation and was further characterized by surface plasmon resonance. Using whole and pepsin-derived preparations of type IX collagen, the interaction was shown to be specific for the NC4 domain with no interaction with the triple helical collagenous domains. The interaction was shown to be of high affinity with nanomolar Kd values. Analysis of the fibronectin-interacting clones indicates that the constant domain is the likely site of interaction. Type IX collagen and fibronectin were shown to co-localize in cartilage. This novel interaction between the NC4 domain of type IX collagen and fibronectin may represent an in vivo interaction in cartilage that could contribute to the matrix integrity of the tissue.  相似文献   

16.
Summary The presence of types II, IX and V collagen was probed in the organ of Corti of the adult gerbil cochlea by use of immunocytochemistry at the light- and electron-microscopic levels. Type II collagen is found in the connective tissues of the osseous spiral lamina and spiral limbus. In the region of the sensory hair cells it is present in the tectorial membrane and antibodies bind to the thick unbranched radial fibers. Type IX collagen co-localizes with type II collagen in the tectorial membrane, where antibodies bind to the thick unbranched radial fibers. Type V collagen is present in the connective tissue of the spiral limbus, the osseous spiral lamina, the eighth nerve, and the tectorial membrane. In the tectorial membrane, the staining with antibodies to type V collagen is more diffuse than that seen for types II and IX collagen and antibodies to type V bind to the thin, highly branched fibers in which the thick fibers are embedded. The results indicate that collagens characteristic of cartilage are localized in the organ of Corti. Within the tectorial membrane, types II and IX collagen form heterotypic thick fibers embedded in a reticular network of type V collagen fibers. These collagens form a highly structured matrix which contributes to the rigidity of the tectorial membrane and allow it to withstand the physical stresses associated with transmission of the stimuli necessary for sensory transduction.  相似文献   

17.
Douglas  SP; Kadler  KE 《Glycobiology》1998,8(10):1013-1019
Type IX collagen is a key component of the extracellular matrix of cartilage where it occurs at the surfaces of type II collagen fibrils as a glycanated molecule. The function of the glycosaminoglycan (GAG) side chain of the molecule is, however, unknown. We have shown that type IX collagen in chicken sternal cartilage is synthesized with a unimodal distribution of GAG chain size, but at post 17 days of development three predominant glycanforms of type IX collagen accumulate. Such accumulation did not occur in sterna from day 15 embryos. In day 17 embryos predominant glycanforms were found in the caudal region of the sternum. By day 19 of development the three predominant glycanforms are widespread throughout the caudal and cephalic regions. The results indicate that developmental and anatomical changes occur to type IX collagen that depend on the size of the GAG chain attached to the alpha2(IX) chain of the molecule.   相似文献   

18.
D-periodic distribution of collagen type IX along cartilage fibrils   总被引:19,自引:8,他引:11       下载免费PDF全文
It has recently become apparent that collagen fibrils may be composed of more than one kind of macromolecule. To explore this possibility, we developed a procedure to purify fibril fragments from 17-d embryonic chicken sternal cartilage. The fibril population obtained shows, after negative staining, a uniformity in the banding pattern and diameter similar to the fibrils in situ. Pepsin digestion of this fibril preparation releases collagen types II, IX, and XI in the proportion of 8:1:1. Rotary shadowing of the fibrils reveals a d-periodic distribution of 35-40-nm long projections, each capped with a globular domain, which resemble in form and dimensions the aminoterminal globular and collagenous domains, NC4 and COL3, of type IX collagen. The monoclonal antibody (4D6) specific for an epitope close to the amino terminal of the COL3 domain of type IX collagen bound to these projections, thus confirming their identity. Type IX collagen is therefore distributed in a regular d-periodic arrangement along cartilage fibrils, with the chondroitin sulfate chain of type IX collagen in intimate contact with the fibril.  相似文献   

19.
We analyzed the collagens synthesized by developing chick limbs (stages 22 to 34). Type IX collagen synthesis started at stage 26, concurrently with the chondrogenic differentiation of limb mesenchyme, and gradually increased during subsequent stages. By stage 34, the central cartilaginous region of the limbs substantially synthesized type IX collagen, in addition to cartilage-specific type II collagen, while the outer non-cartilaginous region of the limbs synthesized predominantly type I collagen. The present study indicates that type IX collagen is cartilage-specific and can be used as a marker for the chondrogenic phenotype.  相似文献   

20.
Cartilage type IX collagen is cross-linked by hydroxypyridinium residues   总被引:4,自引:0,他引:4  
Type IX collagen, a recently discovered, unusual protein of cartilage, has a segmented triple-helical structure containing interchain disulfides. Its polymeric form and function are unknown. When prepared by pepsin from bovine articular cartilage, type IX collagen was found to contain a high concentration of hydroxypyridinium cross-links, similar to that in type II collagen. Fluorescence spectroscopy located the hydroxylysyl pyridinoline and lysyl pyridinoline cross-linking residues exclusively in the high-molecular-weight collagen fraction, from which they were recovered predominantly in a single CNBr-derived peptide. The results point to a structural role for type IX collagen in cartilage matrix, possibly as an adhesion material to type II collagen fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号