首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thromboxanes (Txs) were implicated as possible participants in the altered microvascular permeability of acute lung injury when the Tx synthase inhibitor, OKY-046, was reported to prevent pulmonary edema induced by phorbol myristate acetate (PMA). Recently, however, we found that OKY-046, at a dose just sufficient to block Tx synthesis in intact dogs, did not prevent PMA-induced pulmonary edema but rather merely reduced it modestly. The present study was designed to explore other mechanisms whereby OKY-046 might prevent PMA-induced pulmonary edema. The finding that 5-lipoxygenase (5-LO) metabolites of arachidonic acid were increased within the lung after PMA administration, coupled with the report that OKY-046 inhibited slow-reacting substance of anaphylaxis formation, permitted formulation of the hypothesis that OKY-046, at a dose in excess of that required to inhibit Tx synthesis, inhibits the formation of a product(s) of 5-LO and, thereby, prevents edema formation. In vehicle-pretreated pentobarbital-anesthetized male mongrel dogs (n = 4), PMA (20 micrograms/kg i.v.) increased pulmonary vascular resistance (PVR) from 4.4 +/- 0.3 to 26.3 +/- 8.8 mmHg.l-1 x min (P < 0.01) and extravascular lung water from 6.7 +/- 0.5 to 19.1 +/- 6.2 ml/kg body wt (P < 0.05). Concomitantly, both TxB2 and leukotriene B4 (LTB4) were significantly increased in the lung. Pretreatment with OKY-046 (100 mg/kg i.v., n = 8) prevented PMA-induced increases in TxB2, LTB4, and pulmonary edema formation but did not prevent the increase in PVR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Products of cyclooxygenase activity have been proposed to mediate the pulmonary hypertension and increased microvascular permeability associated with phorbol myristate acetate- (PMA) induced acute lung injury. Previously, we reported that thromboxane (Tx) does not mediate PMA-induced pulmonary hypertension in intact anesthetized dogs. In the present study, PMA was administered to isolated canine lungs perfused with autologous blood at constant flow to investigate a possible role for Tx in the PMA-induced increase in microvascular permeability. Changes in permeability were assessed by determining changes in the capillary filtration coefficient (Kfc). In lobes pretreated with papaverine to prevent PMA-induced increases in pulmonary vascular resistance, Kfc increased from a baseline value of 0.2 +/- 0.03 to 1.5 +/- 0.29 ml.min-1.cmH2O-1.100 g wet lobe wt-1 (P < 0.01) 30 min after PMA (5.8 x 10(-8) M, n = 10). Concomitantly, TxB2, the stable metabolite of TxA2, increased from 138 +/- 44 to 1,498 +/- 505 pg/ml (P < 0.05) in the blood. Both the selective Tx synthase inhibitor, OKY-046 (7 x 10(-4) M, n = 6), and the cyclooxygenase inhibitor, indomethacin (10(-4) M, n = 7), prevented the PMA-induced increase in TxB2, but neither compound attenuated the PMA-induced increase in Kfc. ONO-3708 (10(-6) M), a selective prostaglandin (PG) H2/TxA2 receptor antagonist, prevented the vasoconstriction resulting from administration of U-46619, a stable PGH2/TxA2 receptor agonist, but it did not prevent the PMA-induced increases in Kfc (n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To examine the role of thromboxane (Tx) A2 in the pathogenesis of acute lung injury caused by tumor necrosis factor alpha (TNF), we tested the effects of OKY-046, a selective thromboxane synthase inhibitor, on pulmonary hemodynamics, lung lymph balance, circulating leukocytes, arterial blood gas analysis, and TxA2 (as TxB2) and prostacyclin (as 6-keto-prostaglandin F1 alpha) levels in plasma and lung lymph after TNF infusion in awake sheep. Infusion of human recombinant TNF (3.5 micrograms/kg) into a chronically instrumented awake sheep caused a transient increase in pulmonary arterial pressure (Ppa). The Ppa peaked within 15 min of the start of TNF infusion from 23.3 +/- 1.1 (SE) cmH2O of baseline to 42.3 +/- 2.3 cmH2O and then decreased toward baseline. The pulmonary hypertension was accompanied by transient hypoxemia, peripheral leukopenia, and the increases in TxB2 in plasma and lung lymph. These changes were followed by an increase in flow of protein-rich lung lymph, consistent with an increase in pulmonary microvascular permeability. OKY-046 significantly prevented the rises of Ppa and TxB2 concentrations in plasma and lung lymph during early phase after TNF infusion. OKY-046, however, did not attenuate the increase of lung lymph flow, transient hypoxemia, and leukopenia. From these data, and by comparison with our previous studies of OKY-046-pretreated sheep during endotoxemia, we conclude that TxA2 has an important role of the increase in the early pulmonary hypertension, but it is not related to the early hypoxemia, leukopenia, and lung lymph balances in TNF-induced lung injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of cyclooxygenase inhibition in phorbol myristate acetate (PMA)-induced acute lung injury was studied in isolated constant-flow blood-perfused rabbit lungs. PMA caused a 51% increase in pulmonary arterial pressure (localized in the arterial and middle segments as measured by vascular occlusion pressures), a 71% increase in microvascular permeability (measured by the microvascular fluid filtration coefficient, Kf), and a nearly threefold increase in perfusate thromboxane (Tx) B2 levels. Cyclooxygenase inhibition with three chemically dissimilar inhibitors, indomethacin (10(-7) and 10(-6) M), meclofenamate (10(-6) M), and ibuprofen (10(-5) M), prevented the Kf increase without affecting the pulmonary arterial pressure increase or resistance distribution changes after PMA administration. The specific role of TxA2 was investigated by pretreatment with OKY-046, a specific Tx synthase inhibitor, or infusion of SQ 29548, a TxA2 receptor antagonist; both compounds failed to protect against either the PMA-induced permeability or the vascular resistance increase. These results indicate that cyclooxygenase-mediated products of arachidonic acid other than TxA2 mediate the PMA-induced permeability increase but not the hypertension.  相似文献   

5.
We studied the cardiopulmonary response to endotoxin (lipopolysaccharide, LPS) in sheep with and without the administration of a thromboxane synthase inhibitor, OKY-046. The animals were instrumented for crystalographic dimension analysis of the left ventricle (LV) and for measurement of LV, aortic, left atrial, and pulmonary arterial pressures and cardiac index, as well as lung lymph flow. They received 1.0 micrograms/kg of Escherichia coli LPS with (n = 8) and without (n = 8) OKY-046 (10 mg/kg bolus, then 10 micrograms.kg-1.min-1). OKY-046 prevented the increase of pulmonary arterial pressure and the decrease of cardiac index that occurred during the early phase of endotoxemia. Between 8 and 12 h after LPS, cardiac index increased from 6.8 +/- 0.7 to 8.9 +/- 0.51.min-1.m-2. Concomitantly, the end-systolic pressure-diameter relationship (ESPDR, sensitive myocardial contractility index) significantly decreased from 14.7 +/- 0.6 to 7.7 +/- 0.7. Other indexes of the LV contractility (+dP/dtmax) were also reduced. OKY-046 prevented the decreases of ESPDR and +dP/dtmax. OKY-046 also attenuated the increased lung lymph flow changes seen with LPS.  相似文献   

6.
Few studies have reported on the association of viscosity with coronary circulation. We evaluated the change in coronary flow after dextran was added to a perfusion solution to increase viscosity in isolated rat hearts. We also measured NOx- production induced by the change in shear stress in the coronary effluent, as a marker of NO synthesis. The baseline coronary flow was not influenced by the presence of either the cyclooxygenase inhibitor indomethacin, the thromboxane A2 (TXA2)-prostaglandin H2 (PGH2) receptor antagonist ONO-3708, or the TXA2 synthase inhibitor OKY-046. After exposure to solution containing 0.5% dextran, the coronary flow first decreased and then gradually increased until 10 min. The initial decrease in coronary flow was inhibited by indomethacin, ONO-3708, and OKY-046 individually. The gradual increase was completely inhibited by the NO inhibitor L-NAME, but not by indomethacin or ONO-3708. OKY-046 partially inhibited the increase. NOx- levels in the effluent were higher after the dextran solution was administered, and the increased NOx- levels were inhibited by L-NAME. The increased NOx- levels were not inhibited by inhibitors of the cyclooxygenase pathway. It appears that a higher viscosity of perfusion solution induced a gradual increase in NO production and was associated with increased production of indomethacin-sensitive contracting factor.  相似文献   

7.
In the rabbit, 5,6-epoxyeicosatrienoic acid (EET) was reported both to dilate and to constrict pulmonary blood vessels. We propose that these seemingly contradictory results could be explained by differences in responses to 5,6-EET in large-conductance pulmonary arteries (PA) compared with smaller PA and resistance vessels. Thus we found that in rings of extralobar PA [>2-mm outside diameter (OD)], in which active tension had been increased with PGF(2alpha), 5,6-EET produced relaxation in a concentration- and cyclooxygenase (COX)-dependent manner. In contrast, 5,6-EET increased tension in intralobar (1- to 2-mm OD) PA. Small extralobar PA (2- to 2.5-mm OD) exhibited intermediate responses. In the intact lung, the net effect of 5,6-EET (1 x 10(-8)-1 x 10(-5) M) was an increase in pulmonary vascular resistance (PVR) from 13.0 +/- 0.5 to 47.8 +/- 4.6 mmHg. 100 ml(-1) x min(-1) (EC(50) 5.9 +/- 1.7 x 10(-7) M). The increase in PVR was accompanied by a 10-fold increase in perfusate thromboxane (TX)B(2) concentration. The 5,6-EET-induced increase in PVR was prevented with indomethacin (100 microM), a cyclooxygenase inhibitor, or ONO-3708 (20 microM), a TX/PGH(2) (TP) receptor antagonist, but not with OKY-046 (700 microM), a TX synthase inhibitor. These results demonstrate that although 5,6-EET dilates large extralobar PA segments in a COX-dependent manner, in the intact rabbit lung 5,6-EET produces constriction that requires synthesis of a COX-dependent agonist of the TP receptor other than TX.  相似文献   

8.
We examined the effects of thromboxane synthetase inhibition with OKY-1581 and OKY-046 on pulmonary hemodynamics and lung fluid balance after thrombin-induced intravascular coagulation. Studies were made in anesthetized sheep prepared with lung lymph fistulas. Pulmonary intravascular coagulation was induced by i.v. infusion of alpha-thrombin over a 15 min period. Thrombin infusion in control sheep resulted in immediate increases in pulmonary artery pressure (Ppa) and pulmonary vascular resistance (PVR), which were associated with rapid 3-fold increase in pulmonary lymph flow (Qlym) and a delayed increase in lymph-to-plasma protein concentration (L/P) ratio, indicating an increase in the pulmonary microvascular permeability to proteins. Thrombin-induced intravascular coagulation also increased arterial thromboxane B2 (a metabolite of thromboxane A2) and 6-keto-PGF1 alpha concentrations (a metabolite of prostacyclin). Both OKY-1581 and OKY-046 prevented thromboxane B2 and 6-keto-PGF1 alpha generation. The initial increments in Ppa and PVR were attenuated in both treated groups. The increases in Qlym were gradual in the treated groups but attained the same levels as in control group. However, the increases in Qlym were associated with decreases in L/P ratio. In both treated groups, the leukocyte count decreased after thrombin infusion but then increased steadily above the baseline value, whereas the leukocyte count remained depressed in the control group after thrombin. These studies indicate that a part of the initial pulmonary vasoconstrictor response to thrombin-induced intravascular coagulation is mediated by thromboxane generation. In addition, thromboxane may also contribute to the increase in lung vascular permeability to proteins that occurs after intravascular coagulation and this effect may be mediated by a thromboxane-neutrophil interaction.  相似文献   

9.
Platelet-activating factor increases lung vascular permeability to protein   总被引:2,自引:0,他引:2  
We studied the effects of platelet-activating factor (PAF) on pulmonary hemodynamics and microvascular permeability in unanesthetized sheep prepared with lung-lymph fistulas. Since cyclooxygenase metabolites have been implicated in mediating these responses, we also examined the role of the cyclooxygenase pathway. PAF infusion (4 micrograms X kg-1 X h-1 for 3 h) produced a rapid, transient rise in pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), plasma thromboxane B2 concentration (TxB2), and pulmonary lymph flow (Qlym). The lymph-to-plasma protein concentration ratio (L/P) did not change from base line. Pretreatment with the cyclooxygenase inhibitor, sodium meclofenamate, prevented the generation of TxB2 and the hemodynamic changes but did not prevent the increase in Qlym. The estimated protein reflection coefficient decreased from a control value of 0.66 +/- 0.04 to 0.43 +/- 0.06 after PAF infusion. We also studied the effects of PAF on endothelial permeability in vitro by measuring the flux of 125I-albumin across cultured bovine pulmonary artery endothelial cells (EC) grown to confluency on a gelatinized micropore filter and mounted within a modified Boyden chemotaxis chamber. PAF (10(-8) to 10(-4) M) had no direct effect on EC albumin permeability, suggesting that the increase in permeability in sheep was not the direct lytic effect of PAF. In conclusion, PAF produces pulmonary vasoconstriction mediated by cyclooxygenase metabolites. PAF also increases pulmonary vascular permeability to protein that is independent of cyclooxygenase products and is not the result of a direct effect of PAF on the endothelium.  相似文献   

10.
We determined the role of an endothelium-derived contracting factor in the impaired relaxation response to ACh of conduit pulmonary arteries (PAs) isolated from rats with hypoxic pulmonary hypertension (PH). A PGH2/thromboxane A2 (TxA2)-receptor antagonist (ONO-3708) partially restored the impairment of ACh-induced relaxation, whereas TxA2 synthase inhibitors (OKY-046 and CV-4151) did not affect the impaired relaxation in phenylephrine-precontracted hypertensive PAs. Endothelium-denuded hypertensive PA rings showed no difference in the response to ACh between preparations with and without ONO-3708. In both endothelium-denuded control and hypertensive PAs, exogenous PGH2 induced contractions, and the magnitude of the contractions was greater in the control than in hypoxic PH preparations. An endothelin A-receptor antagonist (BQ-485), an endothelin B-receptor antagonist (BQ-788), and a superoxide anion scavenger (superoxide dismutase) did not restore the impaired response to ACh in hypertensive PAs. These findings suggest that PGH2 produced from the conduit PAs of rats with chronic hypoxic PH may be the endothelium-derived contracting factor responsible for the impairment of ACh-mediated vasorelaxation.  相似文献   

11.
The role of thromboxane (Tx) in hyperacute rejection of pig lung by human blood was studied in an ex vivo model, wherein lungs from juvenile piglets were perfused with fresh heparinized human blood. In this model, hyperacute lung rejection was characterized by an abrupt rise in pulmonary vascular resistance (PVR; >1 cmH2O x ml(-1) x min) and prolific Tx elaboration (>15 ng/ml) within 5 min and loss of function within 10 min. Although papaverine significantly blunted the rise in PVR (<0.2 cmH2O x ml(-1) x min), Tx production was not inhibited (>20 ng/ml), and florid tracheal edema was usually evident within 20 min. In contrast, both inhibition of Tx synthesis (Tx < 3 ng/ml) with OKY-046 and blockade of the Tx receptor with SQ-30741 (Tx > 20 ng/ml) were not only associated with significantly lower peak PVRs (<0.2 cmH2O x ml(-1) x min) but also with attenuated increase in lung wet-to-dry ratio and airway edema. In concert, elaboration of histamine and tumor necrosis factor was blunted, and median survival increased >10-fold to 2 h (SQ-30741) and >4 h (OKY-046). Depletion of the pig lung macrophages with dichloromethyl bisphosphonate in liposomes, but not Pall filtration of the human blood or liposomes alone, significantly inhibited Tx elaboration (<0.2 vs. >8 ng/ml for Pall filtration or liposomes) and blunted PVR elevation (<0.3 cmH(2)O x ml(-1) x min) during initial perfusion. C3a and histamine elaboration were inhibited, and median survival was significantly prolonged (>4 h). These findings implicate Tx in the inflammation associated with hyperacute lung rejection and demonstrate that pulmonary intravascular macrophages are critical to its elaboration.  相似文献   

12.
We evaluated the dose response to a stable thromboxane (Tx) A2 analogue (sTxA2; 0.3-30 micrograms) in the pulmonary circulation and its effect on the distribution of pressure gradients determined by the occlusion technique in isolated nonblood perfused newborn lamb lungs. The total pulmonary pressure gradient (delta Pt) was partitioned into pressure drops across the relatively indistensible arteries and veins (delta Pv) and relatively compliant vessels. We also evaluated the effects of prostacyclin (PGI2) and a Tx receptor antagonist (ONO 3708) on the sTxA2-induced pulmonary responses. Injection of sTxA2 caused a dose-related increase in the pulmonary arterial pressure, with the primary component of the increase in delta Pt (4.1 +/- 0.8 to 13.9 +/- 0.4 Torr) at 30 micrograms derived from the prominent rise in delta Pv (1.8 +/- 0.3 to 9.8 +/- 0.9 Torr). Infusion of PGI2 (0.4 microgram.kg-1.min-1) reduced the response to sTxA2 mainly by attenuating the delta Pv elevation. Infusion of ONO 3708 (100 micrograms.kg-1.min-1) completely abolished the sTxA2-induced pulmonary hypertension. Injection of sTxA2 resulted in pulmonary edema characterized by a significant increase in wet-to-dry lung weight ratio (9.13 +/- 0.35 vs. 7.15 +/- 0.41 in control lungs). The sTxA2-induced pulmonary edema was increased by PGI2 and inhibited by ONO 3708. We conclude that thromboxane-induced pulmonary hypertension is primarily produced by venoconstriction and prostacyclin may worsen the edema induced by thromboxane.  相似文献   

13.
The effects of OKY-046, a selective thromboxane A2 (TxA2) synthetase inhibitor, ONO-3708, a novel TxA2 receptor antagonist, AA-861, a selective 5-lipoxygenase inhibitor and LY-171883, a peptide leukotrienes (p-LTs) receptor antagonist on the chronic liver injury were investigated in mice. The chronic liver injury was induced by the injection of carbon tetrachloride (CCl4) two times a week for twelve weeks in mice. In chronic liver injury models, significant histopathological changes in the liver and extensive elevation of glutamate transaminase (GOT and GPT) activity were observed. Administration of OKY-046, ONO-3708, AA-861 and LY-171883 for 12 weeks suppressed the elevation of serum GOT and GPT levels and histopathological changes in CCl4-induced chronic liver injury. These results suggest that TxA2 and LTs inhibitors are effective for the onset and development of chronic liver injury in mice.  相似文献   

14.
Pulmonary vascular response to endothelin in rats   总被引:3,自引:0,他引:3  
This study investigated the pulmonary vascular response to endothelin (ET) in rats. In conscious rats, an incremental intravenous bolus of ET-1 (100-1,000 pM) caused, after an initial drop in systemic arterial pressure (Psa), a secondary dose-dependent increase of Psa concomitant with a decrease of cardiac output (CO) and heart rate (HR). Pulmonary arterial pressure (Ppa) remained unchanged, and pulmonary vascular resistance (PVR) increased significantly only after 1,000 pM (+ 40.0 +/- 10.4 at 15 min). Meclofenamate (6 mg/kg iv) did not alter hemodynamic response to ET (300 pM). After autonomic blockade with hexamethonium (6 mg/kg iv) plus atropine (0.75 mg/kg iv), bradycardia response to ET (300 pM) was blocked, but CO decreased, systemic vascular resistance increased, and PVR remained unchanged as in controls. In anesthetized ventilated rats, bolus injections of ET (10-1,000 pM) induced a transient dose-related decrease in compliance (-10.9 +/- 1.8% after 1,000 pM) but no change of conductance. In isolated lungs, Ppa increased at doses greater than 100 pM, and edema developed in response to 1,000 pM ET. The rise of Ppa in response to 300 pM was not altered by meclofenamate (3.2 x 10(-6) M) but was potentiated by inhibitors of endothelium-derived relaxing factor(s) (EDRF), methylene blue (10(-4) M), pyrogallol (3 x 10(-5) M), and NG-monomethyl-L-arginine (6 x 10(-4) M) (3.9 +/- 0.3, 4.6 +/- 0.5, and 5.9 +/- 0.3 mmHg, respectively, compared with 1.5 +/- 0.5 mmHg in control lungs). These results suggest that circulating ET is a more potent constrictor of the systemic circulation than of the pulmonary vascular bed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effects of adenosine (ADO) on pulmonary vascular resistance (PVR) distribution, vascular compliance (C), and permeability were determined in normal and PMA-injured isolated rabbit lungs perfused with a 1:1 mixture of 6% albumin in Krebs-Henseleit buffer and autologous blood. ADO or vehicle was continuously infused into the reservoir at 1,4, or 5 mumol/min after a 1-mumol bolus of ADO or vehicle. The capillary filtration coefficient (Kf) and arterial, venous, and double occlusion pressures were measured at baseline and 30 min after phorbol myristate acetate (PMA; 4 x 10(-8) M) or vehicle. Perfusate differential and total leukocyte counts as well as adenine nucleotides, 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), and thromboxane B2 (TxB2) concentrations were determined at each measurement period. ADO was recovered as hypoxanthine and inosine in the perfusate. ADO alone did not alter PVR, C, Kf, or TxB2 but reduced 6-keto-PGF1 alpha levels. PMA induced an increase in Kf (0.024 +/- 0.002 to 0.040 +/- 0.006 g.cmH2O-1.min-1, P less than 0.05) that was completely blocked by 4 or 5 mumol/min ADO. PVR increased by 63 +/- 11% after PMA, primarily in the arteries and arterial and venous microvessels. The postcapillary resistance increase was blunted by 4 mumol/min ADO; 5 mumol/min ADO prevented the PVR increase in all segments. ADO did not affect the initial adherence of neutrophils in the lung or the PMA-induced 87 +/- 2% decrease in circulating leukocytes (greater than 98% lymphocytes) or threefold increase in TxB2 levels. These results suggest that protection by ADO is not mediated by the altering of cyclooxygenase products or by leukocyte adherence.  相似文献   

16.
We examined the effects of leukotrienes C4 (LTC4) and D4 (LTD4) (1 microgram) on the pulmonary vascular filtration coefficient, a measure of vessel wall conductivity to water, and the alterations in pulmonary vascular resistance (PVR) in isolated-perfused guinea pig lungs. We also assessed whether LTC4 and LTD4 increased the permeability to albumin in cultured monolayers of pulmonary artery endothelial cells. In Ringer-perfused and blood-perfused lungs, LTC4 resulted in increases in pulmonary arterial pressure (Ppa) and the pulmonary capillary pressure (Pcap) measured as the equilibration pressure after simultaneous pulmonary arterial and venous occlusions. Pulmonary venous resistance (Rv) increased to a greater extent than arterial resistance (Ra) in both Ringer-perfused and blood-perused lungs challenged with LTC4. The greater increase in PVR in blood-perfused lungs corresponded with a greater elevation of lung effluent thromboxane B2 (TxB2) concentration. The LTC4-stimulated increase in PVR was prevented by pretreatment with meclofenamate (10(-4) M). LTD4 also induced rapid increases in Ppa and Pcap in both Ringer-perfused and blood-perfused lungs; however, Ppa decreased before stabilizing at a pressure higher than base line. The increases in Rv with LTD4 were greater than Ra. The LTD4-stimulated increases in Ra and Rv also paralleled the elevation in TxB2 concentration. As with LTC4, the increases in Ppa, Pcap, PVR, and TxB2 concentration were greater in blood-perfused than in Ringer-perfused lungs. Pretreatment with meclofenamate reduced the magnitude of the initial increase in Ppa, but did not prevent the response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The present experiments were undertaken to determine whether the response to nicotine in the isolated canine cerebral artery is endothelium-dependent. Changes in the tension of arterial strips were recorded isometrically. Removal of the endothelium was carried out by gentle rubbing, and confirmed by scanning electron microscopy. Rubbing procedure did not affect the contractile response of the strips to serotonin. Treatment of unrubbed strips with nicotine (10(-4)M) caused a transient contraction. This response was abolished by removal of endothelium and attenuated by hexamethonium (5 x 10(-6)M) and atropine (10(-6)M). The nicotine-induced contraction was attenuated also by aspirin (5 x 10(-5)M), a cyclooxygenase inhibitor, OKY-046 (5 x 10(-5)M), a thromboxane A2 (TXA2) synthetase inhibitor and ONO-3708 (5 x 10(-9)M), a TXA2 antagonist. These results indicate that the nicotine-induced contraction in canine cerebral artery is endothelium-dependent, and suggest that the endothelium-derived contracting factor (EDCF) in the nicotine-induced response is a TXA2-like substance.  相似文献   

18.
The objective of this study was to determine whether adenosine (ADO) prevents phorbol myristate acetate- (PMA) induced lung injury by modulating peptidoleukotrienes (LT) and/or tumor necrosis factor (TNF) production. PMA significantly increased pulmonary vascular resistance (PVR, 275 +/- 4 to 447 +/- 30 cmH2O.1-1.min) and microvascular filtration coefficient.(Kf, 0.024 +/- 0.002 to 0.040 +/- 0.006 g.min-1.cmH2O-1) in isolated blood-perfused rabbit lungs. ADO (5 mumol/min) blocked the increases in PVR (257 +/- 9 to 283 +/- 26) and Kf (0.028 +/- 0.005 to 0.018 +/- 0.002). After PMA (30 min), perfusate levels of LTC4 + LTD4 increased by 15.3 +/- 2.1 pg/ml; LTE4 increased by 15.1 +/- 4.1 pg/ml. ADO reduced the increase in LTC4 + LTD4 to 2.7 +/- 6.1 pg/ml, but total LT increased by 31.9 +/- 16.6 pg/ml, implying that ADO enhanced the conversion of LTC4 and LTD4 to LTE4. MK-886 (L663,536), an LT synthesis inhibitor, blocked the increase in total LT (6.1 +/- 13.9 pg/ml) but did not reduce the PMA-induced increase in Kf (0.022 +/- 0.003 to 0.035 +/- 0.005) or PVR (238 +/- 11 to 495 +/- 21). After PMA administration, perfusate TNF levels were not different from the 10-fold increase observed in control experiments and were not reduced by ADO or MK-886. TNF production was independent of perfusate blood components and presumably due to low levels of endotoxin in the perfusate (70-90 ng/ml). These results indicate that ADO does not protect against PMA-induced acute lung injury by altering circulating levels of LT or TNF.  相似文献   

19.
To study the role of thromboxane (Tx) A2 in Forssman systemic shock (FSS) in guinea pig, the effect of (E)-3-[p(1H-Imidazol-1-ylmethyl) phenyl]-2-propenoic acid hydrochloride (OKY-046), a specific Tx A2 synthetase inhibitor, was studied. OKY-046 administered intravenously clearly prolonged survival time and protected against fatal shock. In shocked animals, definite decreases in serum complement hemolytic activity (CH50), leucocyte counts and platelet counts and an increase in lactate dehydrogenase (LDH) activity were observed. In addition, a significant increase of Tx B2 and incoagulability of blood were observed after shock. Whereas OKY-046 had no effect on the decreases in CH50, platelet counts and leucocyte counts, it inhibited the increase of Tx B2 and increased the amount of 6-keto PG F. When Forssman antibody (half a lethal dose) was injected, a diphasic increase in airway resistance was observed. OKY-046 inhibited this diphasic increase in airway resistance. These data suggest a pathophysiological role for Tx A2 in FSS. OKY-046 inhibited the Forssman antibody induced respiratory disorders probably due to the inhibition of Tx A2 synthesis after shock.  相似文献   

20.
In a previous study, we demonstrated that phorbol myristate acetate-(PMA) induced injury in isolated blood-perfused rabbit lungs was characterized by increased pulmonary vascular resistance (PVR) and permeability to water as measured by fluid filtration coefficient (Kf). The Kf increase was prevented by pretreatment with three cyclooxygenase inhibitors, indomethacin, ibuprofen, and meclofenamate. Other studies have shown that PMA causes a decrease in pulmonary vascular surface area, probably due to the increase in arterial resistance. Measurement of Kf requires increased microvascular pressure, and therefore Kf estimates the permeability of the entire vascular bed. Thus the permeability of the flowing vessels may be overestimated by Kf. In this study, we chose to investigate the effect of PMA on vascular permeability to protein by measuring albumin leak. Because this measurement does not require a hydraulic stress, it is more likely to reflect the permeability of flowing vessels. PMA administration (5 x 10(-8) M) caused significant increases in both PVR and 125I-labeled bovine serum albumin leak. Cyclooxygenase inhibition with indomethacin, ibuprofen, or meclofenamate prevented the PMA-induced increase in albumin leak without affecting the PVR increase. These results suggest that cyclooxygenase-mediated products of arachidonic acid mediate the PMA-induced increase in vascular permeability to both water and protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号