首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate release induced by mild depolarization was studied in astroglial preparations from the adult rat cerebral cortex, that is acutely isolated glial sub-cellular particles (gliosomes), cultured adult or neonatal astrocytes, and neuron-conditioned astrocytes. K+ (15, 35 mmol/L), 4-aminopyridine (0.1, 1 mmol/L) or veratrine (1, 10 micromol/L) increased endogenous glutamate or [3H]D-aspartate release from gliosomes. Neurotransmitter release was partly dependent on external Ca2+, suggesting the involvement of exocytotic-like processes, and partly because of the reversal of glutamate transporters. K+ increased gliosomal membrane potential, cytosolic Ca2+ concentration [Ca2+]i, and vesicle fusion rate. Ca2+ entry into gliosomes and glutamate release were independent from voltage-sensitive Ca2+ channel opening; they were instead abolished by 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiurea (KB-R7943), suggesting a role for the Na+/Ca2+ exchanger working in reverse mode. K+ (15, 35 mmol/L) elicited increase of [Ca2+]i and Ca2+-dependent endogenous glutamate release in adult, not in neonatal, astrocytes in culture. Glutamate release was even more marked in in vitro neuron-conditioned adult astrocytes. As seen for gliosomes, K+-induced Ca2+ influx and glutamate release were abolished by KB-R7943 also in cultured adult astrocytes. To conclude, depolarization triggers in vitro glutamate exocytosis from in situ matured adult astrocytes; an aptitude grounding on Ca2+ influx driven by the Na+/Ca2+ exchanger working in the reverse mode.  相似文献   

2.
Glutamate-mediated excitotoxicity plays a major role in the degeneration of motor neurons in amyotrophic lateral sclerosis and reduced astrocytary glutamate transport, which in turn increases the synaptic availability of the amino acid neurotransmitter, was suggested as a cause. Alternatively, here we report our studies on the exocytotic release of glutamate as a possible source of excessive glutamate transmission. The basal glutamate efflux from spinal cord nerve terminals of mice-expressing human soluble superoxide dismutase (SOD1) with the G93A mutation [SOD1/G93A(+)], a transgenic model of amyotrophic lateral sclerosis, was elevated when compared with transgenic mice expressing the wild-type human SOD1 or to non-transgenic controls. Exposure to 15 mM KCl or 0.3 μM ionomycin provoked Ca(2+)-dependent glutamate release that was dramatically increased in late symptomatic and in pre-symptomatic SOD1/G93A(+) mice. Increased Ca(2+) levels were detected in SOD1/G93A(+) mouse spinal cord nerve terminals, accompanied by increased activation of Ca(2+)/calmodulin-dependent kinase II and increased phosphorylation of synapsin I. In line with these findings, release experiments suggested that the glutamate release augmentation involves the readily releasable pool of vesicles and a greater capability of these vesicles to fuse upon stimulation in SOD1/G93A(+) mice.  相似文献   

3.
The multifunctional protein high mobility group box 1 (HMGB1) is expressed in hippocampus and cerebellum of adult mouse brain. Our aim was to determine whether HMGB1 affects glutamatergic transmission by monitoring neurotransmitter release from glial (gliosomes) and neuronal (synaptosomes) re-sealed subcellular particles isolated from cerebellum and hippocampus. HMGB1 induced release of the glutamate analogue [(3)H]d-aspartate form gliosomes in a concentration-dependent manner, whereas nerve terminals were insensitive to the protein. The HMGB1-evoked release of [(3)H]d-aspartate was independent of modifications of cytosolic Ca(2+) , but it was blocked by dl-threo-beta-benzyloxyaspartate (dl-TBOA), an inhibitor of glutamate transporters. HMGB1 also stimulated the release of endogenous glutamate in a Ca(2+)-independent and dl-TBOA-sensitive manner. These findings suggest the involvement of carrier-mediated release. Moreover, dihydrokainic acid, a selective inhibitor of glutamate transporter 1 (GLT1), does not block the effect of HMGB1, indicating a role for the glial glutamate-aspartate transporter (GLAST) subtype in this response. We also demonstrate that HMGB1/glial particles association is promoted by Ca(2+). Furthermore, although HMGB1 can physically interact with GLAST and the receptor for advanced glycation end products (RAGE), only its binding with RAGE is promoted by Ca(2+). These results suggest that the HMGB1 cytokine could act as a modulator of glutamate homeostasis in adult mammal brain.  相似文献   

4.
[14C]Glutamine uptake in a crude synaptosomal (P2) fraction, (representing the sum of [14C]glutamine accumulated and [14C]glutamate formed by hydrolysis), is distinct from glutamate uptake. Glutamine uptake is Na+-independent and unaffected by the Na+–K+-ATPase inhibitor ouabain, whereas glutamate uptake is Na+-dependent and inhibited by ouabain. The uptake of both glutamine and glutamate is unaffected by the gamma-glutamyltransferase inhibitor, Acivicin. This indicates that glutamine uptake is not mediated by a carrier, as distinct from that of glutamate, and also not linked to gamma-glutamyl-transferase. Na+ affects the distribution of glutamine-derived glutamate by increasing the synaptosomal content and reducing that of the medium. When glutamate release from synaptosomes preloaded with [14C]glutamate is measured by superfusion technique in order to prevent reuptake, Na+ has been found to inhibit release in a non-depolarizing medium (Ringer buffer with no Ca2+) of the [14C]glutamate as well as of endogenous glutamate. The specific activity of the [14C]glutamine-derived glutamate in the incubation medium is much higher than that in the synaptosomes, indicating that there exists a readily releasable pool of newly formed glutamate in addition to another pool. The latter glutamate pool is partially reduced by Na+.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

5.
It had been thought that quantal size in synaptic transmission is invariable. Evidence has been emerging, however, that quantal size can be varied under certain conditions. We present evidence that alteration in vesicular [(3)H]L-glutamate (Glu) content within the synaptosome (a pinched-off nerve ending preparation) leads to a change in the amount of exocytotically released [(3)H]Glu. We found that Rose Bengal, a polyhalogenated fluorescein derivative, is a quite potent membrane-permeant inhibitor (K(i) = 19 nM) of glutamate uptake into isolated synaptic vesicles. This vesicular Glu uptake inhibition was achieved largely without affecting H(+)-pump ATPase. We show that various degrees of reduction elicited by Rose Bengal in [(3)H]Glu in synaptic vesicles inside the synaptosome result in a corresponding decrease in the amount of [(3)H]Glu released in a depolarization- (induced by 4-aminopyridine) and Ca(2+)-dependent manner. In contrast, fluorescein, the halogen-free analog of Rose Bengal, which is devoid of inhibitory activity on vesicular [(3)H]Glu uptake, failed to change the amount of exocytotically released [(3)H]Glu. These observations suggest that glutamate synaptic transmission could be altered by pharmacological intervention of glutamate uptake into synaptic vesicles in the nerve terminal, a new mode of synaptic manipulation for glutamate transmission.  相似文献   

6.
Astroglial excitability operates through increases in Ca2+cyt (cytosolic Ca2+), which can lead to glutamatergic gliotransmission. In parallel fluctuations in astrocytic Na+cyt (cytosolic Na+) control metabolic neuronal-glial signalling, most notably through stimulation of lactate production, which on release from astrocytes can be taken up and utilized by nearby neurons, a process referred to as lactate shuttle. Both gliotransmission and lactate shuttle play a role in modulation of synaptic transmission and plasticity. Consequently, we studied the role of the PMCA (plasma membrane Ca2+-ATPase), NCX (plasma membrane Na+/Ca2+ exchanger) and NKA (Na+/K+-ATPase) in complex and coordinated regulation of Ca2+cyt and Na+cyt in astrocytes at rest and upon mechanical stimulation. Our data support the notion that NKA and PMCA are the major Na+ and Ca2+ extruders in resting astrocytes. Surprisingly, the blockade of NKA or PMCA appeared less important during times of Ca2+ and Na+ cytosolic loads caused by mechanical stimulation. Unexpectedly, NCX in reverse mode appeared as a major contributor to overall Ca2+ and Na+ homoeostasis in astrocytes both at rest and when these glial cells were mechanically stimulated. In addition, NCX facilitated mechanically induced Ca2+-dependent exocytotic release of glutamate from astrocytes. These findings help better understanding of astrocyte-neuron bidirectional signalling at the tripartite synapse and/or microvasculature. We propose that NCX operating in reverse mode could be involved in fast and spatially localized Ca2+-dependent gliotransmission, that would operate in parallel to a slower and more widely distributed gliotransmission pathway that requires metabotropically controlled Ca2+ release from the ER (endoplasmic reticulum).  相似文献   

7.
8.
The release of glutamate and GABA in response to K+ depolarization was determined for tissue prisms prepared from brain subregions removed from rats following 30 min of forebrain ischemia or recirculation periods up to 24 h. There were statistically significant effects of this treatment on release of both amino acids from samples of the dorsolateral striatum, an area developing selective neuronal degeneration. However, for at least the first 3 h of recirculation the calcium-dependent and calcium-independent release of both amino acids in this region were similar to pre-ischemic values. Differences were observed under some conditions at longer recirculation times. In particular there was a decrease in calcium-dependent GABA release at 24 h of recirculation and a trend towards increased release of glutamate at 6 h of recirculation and beyond. No statistically significant differences were seen in samples from the paramedian neocortex, a region resistant to post-ischemic damage. These results suggest that changes in the ability to release glutamate and GABA in response to stimulation are not necessary for the development of neurodegeneration in the striatum but rather that release of these amino acids may be modified as a result of the degenerative process.  相似文献   

9.
Extracellular [K+] can increase during some pathological conditions, resulting into excessive glutamate release through multiple mechanisms. We here investigate the overflow of [3H]D-aspartate ([3H] D-ASP) and of endogenous glutamate elicited by increasing [K+] from purified rat cerebrocortical synaptosomes. Depolarization with [K+] 15 mmol/L were prevented by the glutamate transporter inhibitors DL-threo-beta-benzyloxyaspartate (DL-TBOA) and dihydrokainate. Differently, the overflows of endogenous glutamate provoked by [K+] > 15 mmol/L were insensitive to both inhibitors; the external Ca2+-independent glutamate overflow caused by 50 mmol/L KCl was prevented by bafilomycin, by chelating intraterminal Ca2+, by blocking the mitochondrial Na+/Ca2+ exchanger and, for a small portion, by blocking anion channels. In contrast to purified synaptosomes, the 50 mmol/L K+-evoked release of endogenous glutamate or [3H]D-ASP was inhibited by DL-TBOA in crude synaptosomes; moreover, it was external Ca2+-insensitive and blocked by DL-TBOA in purified gliosomes, suggesting that carrier-mediated release of endogenous glutamate provoked by excessive [K+] in CNS tissues largely originates from glia.  相似文献   

10.
d-aspartate was used in the present study to partially deplete the cytosolic pool of glutamate, which is released independent of extracellular Ca2+, prior to measuring the K+-evoked release of this endogenous acidic amino acid from rat hippocampal mossy fiber synaptosomes. This pretreatment is known to be an effective method for substantially reducing the Ca2+-independent component of glutamate release. The rate of glutamate efflux is dependent on the concentration of sodium ions in the external medium and can be stimulated by exposure of hippocampal mossy fiber synaptosomes to externald-aspartate (50 M). Following the partial displacement of this cytosolic pool of glutamate withd-aspartate, the K+-evoked release of the residual, presumably vesicular, pool of endogenous glutamate has a strict requirement for external calcium and is highly dependent on the extent to which depolarization elevates the level of free cytosolic calcium. It is concluded that the protocol described in this study for the displacement of cytosolic glutamate withd-aspartate provides a useful alternative method of controlling for the Ca2+-independent component of glutamate release in synaptosomal preparations.Abbreviations used Ca calcium - Ca2+ free calcium - EGTA (ethylene-dioxy)diethylenedinitrilotetraacetic acid - KBM Krebs-bicarbonate medium The animals involved in this study were procured, maintained and used in accordance with the Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals prepared by the Institute of Laboratory Animal Resources, National Research Council.  相似文献   

11.
The biochemical characterization of the SNARE proteins present in lipid microdomains, also known as "lipid rafts," has been addressed in earlier studies, with conflicting data from different laboratories. In this study, we use rat brain synaptosomes as a model with which to examine the presence of proteins involved in exocytosis in detergent-resistant membranes (DRM), also known as 'lipid rafts.' By means of buoyancy analysis in sucrose gradients of Triton X-100-solubilized synaptosomes, we identified a pool of SNARE proteins (SNAP 25, syntaxin 1, and synaptobrevin2/VAMP2) significantly associated with DRM. Furthermore, Munc18, synaptophysin, and high amounts of the isoforms I and II of synaptotagmin were also found in DRM. In addition, SDS-resistant and temperature-dependent SNARE complexes were also detected in DRM. Treatment of synaptosomes with methyl-beta-cyclodextrin resulted in persistence of the proteins present in the DRM isolated using Triton X-100, whilst strongly impairing calcium-dependent glutamate release. The results from the present work show that lipid microdomains are sites where SNARE proteins and complexes are actually present, as well as important elements in the control of regulated exocytosis.  相似文献   

12.
Astrocytes can exocytotically release the gliotransmitter glutamate from vesicular compartments. Increased cytosolic Ca2+ concentration is necessary and sufficient for this process. The predominant source of Ca2+ for exocytosis in astrocytes resides within the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate and ryanodine receptors of the ER provide a conduit for the release of Ca2+ to the cytosol. The ER store is (re)filled by the store-specific Ca2+-ATPase. Ultimately, the depleted ER is replenished by Ca2+ which enters from the extracellular space to the cytosol via store-operated Ca2+ entry; the TRPC1 protein has been implicated in this part of the astrocytic exocytotic process. Voltage-gated Ca2+ channels and plasma membrane Na+/Ca2+ exchangers are additional means for cytosolic Ca2+ entry. Cytosolic Ca2+ levels can be modulated by mitochondria, which can take up cytosolic Ca2+ via the Ca2+ uniporter and release Ca2+ into cytosol via the mitochondrial Na+/Ca2+ exchanger, as well as by the formation of the mitochondrial permeability transition pore. The interplay between various Ca2+ sources generates cytosolic Ca2+ dynamics that can drive Ca2+-dependent exocytotic release of glutamate from astrocytes. An understanding of this process in vivo will reveal some of the astrocytic functions in health and disease of the brain. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

13.
O6‐methylguanine‐DNA methyltransferase (MGMT) is a DNA‐repair protein promoting resistance of tumor cells to alkylating chemotherapeutic agents. Glioma cells are particularly resistant to this class of drugs which include temozolomide (TMZ) and carmustine (BCNU). A previous study using the RNA microarray technique showed that decrease of MGMT mRNA stands out among the alterations in gene expression caused by the cell growth‐depressing transfection of a T98G glioma cell line with liver‐type glutaminase (LGA) [Szeliga et al. (2009) Glia, 57, 1014]. Here, we show that stably LGA‐transfected cells (TLGA) exhibit decreased MGMT protein expression and activity as compared with non‐transfected or mock transfected cells (controls). However, the decrease of expression occurs in the absence of changes in the methylation of the promoter region, indicating that LGA circumvents, by an as yet unknown route, the most common mechanism of MGMT silencing. TLGA turned out to be significantly more sensitive to treatment with 100–1000 μM of TMZ and BCNU in the acute cell growth inhibition assay (MTT). In the clonogenic survival assay, TLGA cells displayed increased sensitivity even to 10 μM TMZ and BCNU. Our results indicate that enrichment with LGA, in addition to inhibiting glioma growth, may facilitate chemotherapeutic intervention.  相似文献   

14.
The effects of metabotropic glutamate receptor agonists on the basal and potassium (50 mM K+)-stimulated release of [3H]GABA from mouse hippocampal slices were investigated using a superfusion system. The group I agonist (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate enhanced the basal GABA release and reduced the K+-evoked release by a mechanism antagonized by (RS)-1-aminoindan-1,5-dicarboxylate in both cases. The group II agonist (2S,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine failed to have any effect on the basal release, but inhibited the stimulated release. This inhibition was not affected by the antagonist (2S)-2-ethylglutamate. The group III agonists L(+)-amino-4-phosphonobutyrate and O-phospho-L-serine inhibited the basal GABA release, which effects were blocked by the antagonist (RS)-2-cyclopropyl-4-phosphonophenylglycine. Moreover, the suppression of the K+-evoked release by L(+)2-amino-4-phosphonobutyrate was apparently receptor-mediated, being blocked by (RS)-2-cyclopropyl-4-phosphonophenylglycine. The results show that activation of metabotropic glutamate receptors of group I is able to potentiate the basal release of GABA, whereas activation of groups I and III receptors reduce K+-stimulated release in mouse hippocampal slices.  相似文献   

15.
The role of l -aspartate as a classical neurotransmitter of the CNS has been a matter of great debate. In this study, we have characterized the main mechanisms of its depolarization-induced release from rat purified cerebrocortical synaptosomes in superfusion and compared them with those of the well-known excitatory neurotransmitter l -glutamate. High KCl and 4-aminopyridine were used as depolarizing agents. At 15 mM KCl, the overflows of both transmitters were almost completely dependent on external Ca2+. At 35 and 50 mM KCl, the overflows of l -aspartate, but not those of l -glutamate, became sensitive to dl -threo-β-benzyloxyaspartic acid ( dl -TBOA), an excitatory amino acid transporter inhibitor. In the presence of dl -TBOA, the 50 mM KCl-evoked release of l -aspartate was still largely external Ca2+-dependent. The dl -TBOA insensitive, external Ca2+-independent component of the 50 mM KCl-evoked overflows of l -aspartate and l -glutamate was significantly decreased by the mitochondrial Na+/Ca2+ exchanger blocker CGP 37157. The Ca2+-dependent, KCl-evoked overflows of l -aspartate and l -glutamate were diminished by botulinum neurotoxin C, although to a significantly different extent. The 4-aminopyridine-induced l -aspartate and l -glutamate release was completely external Ca2+-dependent and never affected by dl -TBOA. Superimposable results have been obtained by pre-labeling synaptosomes with [3H] d -aspartate and [3H] l -glutamate. Therefore, our data showing that l -aspartate is released from nerve terminals by calcium-dependent, exocytotic mechanisms support the neurotransmitter role of this amino acid.  相似文献   

16.
Kainic acid is known to stimulate the release of glutamate (GLU) and aspartate (ASP) from presynaptic neurons. It has been suggested that the enhanced release of these endogenous EAA's plays a significant role in the excitotoxic effects of KA. Domoic acid (DOM), a shellfish toxin, is structurally similar to KA, and has been shown to be 3–8 times more toxic than KA. In this study, effects of KA and DOM on the release of GLU and ASP from rat brain synaptosomes were investigated. Amino acid analysis was performed by the reversed phase HPLC, following derivatization with 9-fluorenylmethyl chloroformate (FMOC). Potassium chloride (40 mM) was used as a positive control, and stimulated GLU release from rat brain synaptosomes in presence or absence of Ca2+. DOM enhanced the release of GLU, whereas KA stimulated the release of both GLU and ASP from synaptosomes in the presence of Ca2+. However, their potency to stimulate GLU and ASP release was enhanced in absence of Ca2+. These results indicate that diferent mechanisms may be involved in the release of GLU and ASP in response to DOM and KA, and that neurotransmitter release appeared to be highly specific for these agonists. It would appear that DOM and KA may interact with different receptors on the presynaptic nerve terminal, and/or activate different subtypes of voltage-dependent Ca2+ channels to promote influx of Ca2+ which is targeted for different pools of neurotransmitters.Abbreviations ANOVA analysis of variance - ASP aspartate - DOM domoic acid - DHKA dihydrokainic acid - EAA excitatory amino acid - FMOC 9-fluorenylmethyl chloroformate - GLU glutamate - KA kainic acid  相似文献   

17.
Although growing evidence suggests that extracellular ATP might play roles in the control of astrocyte/neuron crosstalk in the CNS by acting on P2X7 receptors, it is still unclear whether neuronal functions can be attributed to P2X7 receptors. In the present paper, we investigate the location, pharmacological profile, and function of P2X7 receptors on cerebrocortical nerve terminals freshly prepared from adult rats, by measuring glutamate release and calcium accumulation. The preparation chosen (purified synaptosomes) ensures negligible contamination of non-neuronal cells and allows exposure of 'nude' release-regulating pre-synaptic receptors. To confirm the results obtained, we also carried out specific experiments on human embryonic kidney 293 cells which had been stably transfected with rat P2X7 receptors. Together, our findings suggest that (i) P2X7 receptors are present in a subpopulation of adult rat cerebrocortical nerve terminals; (ii) P2X7 receptors are localized on glutamatergic nerve terminals; (iii) P2X7 receptors play a significant role in ATP-evoked glutamate efflux, which involves Ca2+-dependent vesicular release; and (iv) the P2X7 receptor itself constitutes a significant Ca2+-independent mode of exit for glutamate.  相似文献   

18.
The effects of glutamate agonists and their selective antagonists on the Ca2+-dependent and independent releases of [3H]GABA from rat coronal hippocampal slices were studied in a superfusion system. The Ca2+-dependent release evoked by glutamate, kainate and N-methyl-D-aspartate (NMDA) gradually declined with time despite the continuous presence of the agonists. Quisqualate (QA) caused a sustained release which exhibited no tendency to decline within the 20-min period of stimulation. This release was enhanced in Ca2+-free medium. The release evoked by QA in Ca2+-containing medium was significantly inhibited by (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohept-5,10-imine hydrogen maleate (MK-801) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), showing that QA activates NMDA receptors directly or indirectly through (RS)--amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. The inhibition of MK-801 was slightly diminished and that of CNQX totally abolished in Ca2+-free medium. Verapamil inhibited the QA-activated release in both Ca2+-containing and Ca2+-free media. The effect of QA but not that of AMPA was blocked in Ca2+-free medium by L(+)-2-amino-3-phosphonopropionate (L-AP3), a selective antagonist of the metabotropic glutamate receptor. It is suggested that the sustained release of GABA is also mediated partly by activation of metabotropic receptors and mobilization of Ca2+ from intracellular stores.  相似文献   

19.
ATP stimulates calcium-dependent glutamate release from cultured astrocytes   总被引:9,自引:0,他引:9  
ATP caused a dose-dependent, receptor-mediated increase in the release of glutamate and aspartate from cultured astrocytes. Using calcium imaging in combination HPLC we found that the increase in intracellular calcium coincided with an increase in glutamate and aspartate release. Competitive antagonists of P(2) receptors blocked the response to ATP. The increase in intracellular calcium and release of glutamate evoked by ATP were not abolished in low Ca(2+)-EGTA saline, suggesting the involvement of intracellular calcium stores. Pre-treatment of glial cultures with an intracellular Ca(2+) chelator abolished the stimulatory effects of ATP. Thapsigargin (1 microM), an inhibitor of Ca(2+)-ATPase from the Ca(2+) pump of internal stores, significantly reduced the calcium transients and the release of aspartate and glutamate evoked by ATP. U73122 (10 microM, a phospholipase C inhibitor, attenuated the ATP-stimulatory effect on calcium transients and blocked ATP-evoked glutamate release in astrocytes. Replacement of extracellular sodium with choline failed to influence ATP-induced glutamate release. Furthermore, inhibition of the glutamate transporters p-chloromercuri-phenylsulfonic acid and Ltrans-pyrolidine-2,4-dicarboxylate failed to impair the ability of ATP to stimulate glutamate release from astrocytes. However, an anion transport inhibitor, furosemide, and a potent Cl(-) channel blocker, 5-nitro-2(3-phenylpropylamino)-benzoate, reduced ATP-induced glutamate release. These results suggest that ATP stimulates excitatory amino acid release from astrocytes via a calcium-dependent anion-transport sensitive mechanism.  相似文献   

20.
Phagocytosis relies on extension of plasmalemmal pseudopods generated by focal actin polymerisation and delivery of membranes from intracellular pools. Here we show that compartments of the late endocytic pathway, bearing the tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP/VAMP7), are recruited upon particle binding and undergo exocytosis before phagosome sealing in macrophages during Fc receptor (FcR)-mediated phagocytosis. Expression of the dominant-negative amino-terminal domain of TI-VAMP or depletion of TI-VAMP with small interfering RNAs inhibited phagocytosis mediated by Fc or complement receptors. In addition, inhibition of TI-VAMP activity led to a reduced exocytosis of late endocytic vesicles and this resulted in an early blockade of pseudopod extension, as observed by scanning electron microscopy. Therefore, TI-VAMP defines a new pathway of membrane delivery required for optimal FcR-mediated phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号