首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ubiquitous nature of mitochondria, the dual genetic foundation of the respiratory chain in mitochondrial and nuclear genome, and the peculiar rules of mitochondrial genetics all contribute to the extraordinary heterogeneity of clinical disorders associated with defects of oxidative phosphorylation (mitochondrial encephalomyopathies). Here, we review recent findings about nuclear gene defects in isolated OXPHOS enzyme complex deficiency. This information should help in identifying patients with mitochondrial disease and defining a biochemical and molecular basis of the disorder found in each patient. This knowledge is indispensable for accurate genetic counseling and prenatal diagnosis, and is a prerequisite for the development of rational therapies, which are still, at present, woefully inadequate.  相似文献   

2.
Biochemical diagnosis of mitochondrial respiratory chain disorders requires caution to avoid misdiagnosis of secondary enzyme defects, and can be improved by the use of conservative diagnostic criteria. Pathogenic mutations causing mitochondrial disorders have now been identified in more than 30 mitochondrial DNA (mtDNA) genes encoding respiratory chain subunits, ribosomal- and t-RNAs. mtDNA mutations appear to be responsible for most adult patients with mitochondrial disease and approximately a quarter of paediatric patients. A family history suggesting maternal inheritance is the exception rather than the norm for children with mtDNA mutations, many of whom have de novo mutations. Prenatal diagnosis and pre-implantation genetic diagnosis can be offered to some women at risk of transmitting a mtDNA mutation, particularly those at lower recurrence risk. Mutations in more than 30 nuclear genes, including those encoding for respiratory chain subunits and assembly factors, have now been shown to cause mitochondrial disorders, creating difficulties in prioritising which genes should be studied by mutation analysis in individual patients. A number of approaches offer promise to guide the choice of candidate genes, including Blue Native-PAGE immunoblotting and microarray expression analysis.  相似文献   

3.
4.
Mitochondria play a prominent role in cardiac energy metabolism, and their function is critically dependent on the integrity of mitochondrial membranes. Disorders characterized by mitochondrial dysfunction are commonly associated with cardiac disease. The mitochondrial phospholipid cardiolipin directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins critical for mitochondrial morphology. Barth syndrome is an X-linked disorder caused by an inherited defect in the biogenesis of the mitochondrial phospholipid cardiolipin. How cardiolipin deficiency impacts on mitochondrial function and how mitochondrial dysfunction causes cardiomyopathy has been intensively studied in cellular and animal models of Barth syndrome. These findings may also have implications for the molecular mechanisms underlying other inherited disorders associated with defects in cardiolipin, such as Sengers syndrome and dilated cardiomyopathy with ataxia (DCMA).  相似文献   

5.
We showed that the human respiratory chain is organized in supramolecular assemblies of respiratory chain complexes, the respirasomes. The mitochondrial complexes I (NADH dehydrogenase) and III (cytochrome c reductase) form a stable core respirasome to which complex IV (cytochrome c oxidase) can also bind. An analysis of the state of respirasomes in patients with an isolated deficiency of single complexes provided evidence that the formation of respirasomes is essential for the assembly/stability of complex I, the major entry point of respiratory chain substrates. Genetic alterations leading to a loss of complex III prevented respirasome formation and led to the secondary loss of complex I. Therefore, primary complex III assembly deficiencies presented as combined complex III/I defects. This dependence of complex I assembly/stability on respirasome formation has important implications for the diagnosis of mitochondrial respiratory chain disorders.  相似文献   

6.
Genetic defects affecting the mitochondrial respiratory chain comprise an important cause of encephalomyopathies. Considering the structural complexity of the respiratory chain, its dual genetic control, and the numerous nuclear genes required for proper assembly of the enzyme complexes, the phenotypic heterogeneity is not surprising. From a neuropathological view point, application of in situ hybridization and immunohistochemistry to study the choroid plexus and brain-blood barrier in "prototypes" of mitochondrial encephalopathies have revealed alterations that we think are important in the pathogenesis of central nervous system dysfunction in these disorders. As the role of the blood-cerebrospinal fluid (CSF) and brain-blood barriers in mitochondrial encephalopathies is better understood, manipulation of their functions offers promises for therapeutic interventions.  相似文献   

7.
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. Today, AD affects millions of people worldwide and the number of AD cases will increase with increased life expectancy. The AD brain is marked by severe neurodegeneration like the loss of synapses and neurons, atrophy and depletion of neurotransmitter systems in the hippocampus and cerebral cortex. Recent findings suggest that these pathological changes are causally induced by mitochondrial dysfunction and increased oxidative stress. These changes are not only observed in the brain of AD patients but also in the periphery. In this review, we discuss the potential role of elevated apoptosis, increased oxidative stress and especially mitochondrial dysfunction as peripheral markers for the detection of AD in blood cells especially in lymphocytes. We discuss recent not otherwise published findings on the level of complex activities of the respiratory chain comprising mitochondrial respiration and the mitochondrial membrane potential (MMP). We obtained decreased basal MMP levels in lymphocytes from AD patients as well as enhanced sensitivity to different complex inhibitors of the respiratory chain. These changes are in line with mitochondrial defects obtained in AD cell and animal models, and in post-mortem AD tissue. Importantly, these mitochondrial alterations where not only found in AD patients but also in patients with mild cognitive impairment (MCI). These new findings point to a relevance of mitochondrial function as an early peripheral marker for the detection of AD and MCI.  相似文献   

8.
Naviaux RK 《Mitochondrion》2004,4(5-6):351-361
The accurate diagnosis and classification of mitochondrial diseases are essential first steps in understanding the natural history and true health care burden imposed by these protean and devastating disorders. Epidemiologic studies place the incidence of genetic forms of mitochondrial disease between 1 in 2000 and 1 in 5000 live births. Symptoms may not appear for years after birth, even when inherited. Once they occur, however, the course is often relentlessly progressive. Diagnosis requires a combination of clinical and laboratory studies that are applied systematically. DNA analysis and respiratory chain studies remain the mainstays of diagnosis, but several other disciplines may contribute to achieving diagnostic confidence when a single study is suggestive but inconclusive. A comprehensive classification system for mitochondrial diseases has not yet been developed. The current International Classification of Diseases, 10th Revision (ICD-10) includes just 10 codes for mitochondrial disorders. Supplementary data of 347 proposed ICD-10 codes is included to assist with the development of a more comprehensive system for the diagnosis and classification of mitochondrial disease.  相似文献   

9.
Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.  相似文献   

10.
Activity defects in respiratory chain complexes are responsible for a large variety of pathological situations, including neuromuscular diseases and multisystemic disorders. Their impact on energy production is highly variable and disproportional. The same biochemical or genetic defect can lead to large differences in clinical symptoms and severity between tissues and patients, making the pathophysiological analysis of mitochondrial diseases difficult. The existence of compensatory mechanisms operating at the level of the respiratory chain might be an explanation for the biochemical complexity observed for respiratory defects. Here, we analyzed the role of cytochrome c and coenzyme Q in the attenuation of complex III and complex IV pharmacological inhibition on the respiratory flux. Spectrophotometry, HPLC–EC, polarography and enzymology permitted the calculation of molar ratios between respiratory chain components, giving values of 0.8:61:3:12:6.8 in muscle and 1:131:3:9:6.5 in liver, for CII:CoQ:CIII:Cyt c:CIV. The results demonstrate the dynamic functional compartmentalization of respiratory chain substrates, with the existence of a substrate pool that can be recruited to maintain energy production at normal levels when respiratory chain complexes are inhibited. The size of this reserve was different between muscle and liver, and in proportion to the magnitude of attenuation of each respiratory defect. Such functional compartmentalization could result from the recently observed physical compartmentalization of respiratory chain substrates. The dynamic nature of the mitochondrial network may modulate this compartmentalization and could play a new role in the control of mitochondrial respiration as well as apoptosis.  相似文献   

11.
The mitochondrial respiratory chain and oxidative phosphorylation system are responsible for the production of ATP by aerobic metabolism. Defects of the respiratory chain are increasingly recognised as important causes of human disease, and neurodegenerative disorders in particular. This article will seek to review the clinical and biochemical effects of respiratory chain defects, and summarise what is known about the molecular mechanisms that underlie them. Increasing age is also associated with a decline in mitochondrial function. The biochemical correlates of this dysfunction and the possible molecular defects that may cause it will also be reviewed.  相似文献   

12.
An extensive range of molecular defects have been identified in the human mitochondrial genome (mtDNA), causing a range of clinical phenotypes characterized by mitochondrial respiratory chain dysfunction. Sadly, given the complexities of mitochondrial genetics, there are no available cures for mtDNA disorders. In this review, we consider experimental, genetic-based strategies that have been or are being explored towards developing treatments, focussing on two specific areas which we are actively pursuing—assessing the benefit of exercise training for patients with mtDNA defects, and the prevention of mtDNA disease transmission.  相似文献   

13.
米慧  林蓓  管敏鑫 《生命科学》2012,(6):549-557
线粒体呼吸链缺陷一直被认为是诱发线粒体疾病的重要因素,这有助于研究人员阐释其遗传和临床多样性。然而,线粒体的其他功能也具有重要意义,包括蛋白质运输、细胞器动力学和细胞凋亡。调控这些功能的基因缺陷不仅导致神经和精神疾病,而且还导致年龄相关的神经变性疾病。因此,引起越来越多的关注。在讨论呼吸链缺陷引起相关神经系统疾病的一些致病难题后,就线粒体动力学改变引起的相关神经系统疾病病因和常见神经变性疾病的病理生理机制作一综述。  相似文献   

14.
The oxidative phosphorylation system (OXPHOS) is organized in five multi-protein complexes, comprising four complexes (I-IV) of the respiratory chain and ATP synthase (complex V). OXPHOS has a vital role in cellular energy metabolism and ATP production. Enzyme analysis of individual OXPHOS complexes in a skeletal muscle biopsy remains the mainstay of the diagnostic process for patients suspected of mitochondrial cytopathy. A fresh muscle biopsy is preferable to a frozen muscle biopsy because of the possibility to measure the overall capacity of the OXPHOS system. In about 25% of patients referred to our center for muscle biopsy, reduced substrate oxidation rates and ATP + creatine phosphate production rates were found without any defect in complex I-V and the pyruvate dehydrogenase complex. In a subset of patients it is necessary to investigate fibroblasts for diagnostic purposes. The indications for biochemical investigations in fibroblasts are: (a) If no muscle sample is available; (b) If prenatal diagnosis is required; (c) To clarify the results obtained in muscle tissue if no clear-cut diagnosis can be made; (d) If molecular-genetic investigations are required; (e) For research purposes. Fibroblasts are less suitable than fresh muscle for investigating respiratory chain disorders, for the following reasons: (i) A defect that is present in a muscle is not always expressed in fibroblasts. (ii) Exclusion of a defect in fibroblasts does not exclude the diagnosis with regard to muscle. (iii) A specific pattern of abnormalities demonstrated in fibroblasts may not be reflected in muscle tissue. (iv) Enzyme deficiencies found in muscle are generally more pronounced than in fibroblasts. An exact diagnosis of respiratory chain defects is a prerequisite for rational therapy and genetic counseling. Provided guidelines for specimen collection are followed, there are now reliable methods for identifying respiratory chain defects.  相似文献   

15.
Taking advantage of a series of questions raised by an association of patients with mitochondrial disease, this review, after a brief overview of basic concepts of mitochondrial bioenergetics and genetics, discusses the pros and cons of a number of practical options in the field of mitochondrial therapy. This makes it clear that, in contrast to the spectacular progress in our understanding of the biochemical and molecular bases of the mitochondrial diseases defined restrictively as disorders due to defects in the mitochondrial respiratory chain, we are still extremely limited in our ability to treat these conditions. We finally discussed the emerging genetic-based strategies that show some promise, even if much work remains to be done.  相似文献   

16.
There is a renewed interest in the structure and functioning of the mitochondrial respiratory chain with the realization that a number of genetic disorders result from defects in mitochondrial electron transfer. These so-called mitochondrial myopathies include diseases of muscle, heart, and brain. The respiratory chain can be fractionated into four large multipeptide complexes, an NADH ubiquinone reductase (complex I), succinate ubiquinone reductase (complex II), ubiquinol oxidoreductase (complex III), and cytochromec oxidase (complex IV). Mitochondrial myopathies involving each of these complexes have been described. This review summarizes compositional and structural data on the respiratory chain proteins and describes the arrangement of these complexes in the mitochondrial inner membrane. This biochemical information is provided as a framework for the diagnosis and molecular characterization of mitochondrial diseases.  相似文献   

17.
Deficiency of 5-methyltetrahydrofolate (5-MTHF) in cerebrospinal fluid (CSF) is associated with a number of neurometabolic conditions including mitochondrial electron transport chain defects. Whilst failure of the active transport of 5-methyltetrahydrofolate (5-MTHF) into the CSF compartment has been proposed as a potential mechanism responsible for the 5-MTHF deficiency seen in mitochondrial disorders, it is becoming increasingly clear that other mechanisms are involved. Here, we have considered the role of oxidative stress as a contributing mechanism. Concerning, ascorbic acid (AA), we have established a CSF reference range (103–303 μM) and demonstrated a significant positive correlation between 5-MTHF and AA. Furthermore, CSF itself was also shown to convey antioxidant properties towards 5-MTHF. However, this protection could be overcome by the introduction of a hydroxyl radical generating system. Using a neuronal model system, inhibition of mitochondrial complex I, by 58%, was associated with a 23% increase in superoxide generation and a significantly increased loss of 5-MTHF from the extracellular medium. Addition of AA (150 μM) was able to prevent this increased 5-MTHF catabolism. We conclude that increased generation of reactive oxygen species and/or loss of CSF antioxidants are also factors to consider with regard to the development of a central 5-MTHF deficiency. Co-supplementation of AA together with appropriate folate replacement may be of therapeutic benefit.  相似文献   

18.
Mitochondrial respiratory chain deficiencies represent one of the major causes of metabolic disorders that are related to genetic defects in mitochondrial or nuclear DNA. The mitochondrial protein synthesis allows the synthesis of the 13 respiratory chain subunits encoded by mtDNA. Altogether, about 100 different proteins are involved in the translation of the 13 proteins encoded by the mitochondrial genome emphasizing the considerable investment required to maintain mitochondrial genetic system. Mitochondrial protein synthesis deficiency can be caused by mutations in any component of the translation apparatus including tRNA, rRNA and proteins. Mutations in mitochondrial rRNA and tRNAs have been first identified in various forms of mitochondrial disorders. Moreover abnormal translation due to mutation in nuclear genes encoding tRNA-modifying enzymes, ribosomal proteins, aminoacyl-tRNA synthetases, elongation and termination factors and translational activators have been successively described. These deficiencies are characterized by a huge clinical and genetic heterogeneity hampering to establish genotype-phenotype correlations and an easy diagnosis. One can hypothesize that a new technique for gene identification, such as exome sequencing will rapidly allow to expand the list of genes involved in abnormal mitochondrial protein synthesis.  相似文献   

19.
Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome   总被引:12,自引:0,他引:12  
Cardiolipin (CL) and phosphatidylglycerol (PG) are the major polyglycerophospholipids observed in mammalian tissues. CL is exclusively found in the inner mitochondrial membrane and is required for optimal function of many of the respiratory and ATP-synthesizing enzymes. The role of CL in oxidative phosphorylation is, however, not fully understood and although reduced CL content leads to aberrant cell function, no human disorders with a primary defect in cardiolipin metabolism have been described. In this paper we present evidence that patients with the rare disorder X-linked cardioskeletal myopathy and neutropenia (Barth syndrome, MIM 302060) have a primary defect in CL and PG remodeling. We investigated phospholipid metabolism in cultured skin fibroblasts of patients and show that the biosynthesis rate of PG and CL is normal but that the CL pool size is 75% reduced, indicating accelerated degradation. Moreover, the incorporation of linoleic acid, which is the characteristic acyl side chain found in mammalian CL, into both PG and CL is significantly reduced, whereas the incorporation of other fatty acids into these phospholipids is normal. We show that this defect was only observed in Barth syndrome patients' cells and not in cells obtained from patients with primary defects in the respiratory chain, demonstrating that the observed defect is not secondary to respiratory chain dysfunction. These results imply that the G4.5 gene product, which is mutated in Barth syndrome patients, is specifically involved in the remodeling of PG and CL and for the first time identify an essential factor in this important cellular process.  相似文献   

20.
The present article presents a survey of the characteristics of our case series of 322 patients suffering from circadian rhythm sleep disorders (CRSDs), a case-control study comparing a group of 50 CRSD patients and 56 age- and gender-matched normal subjects, and a proposal for new guidelines for improving the diagnosis of CRSD. The major findings were that 83.5% of our CRSD patients who seek medical help are of the delayed sleep phase syndrome (DSPS) type; 89.6% report that the onset of CRSD occurred in early childhood or adolescence; CRSD exhibits no gender differences; a familial trait exists in 44% of patients; and learning disorders (19.3%) and personality disorders (22.4%) in the DSPS-type patients are of high prevalence. The findings of this study point to the importance of clinician awareness of the clinical picture of patients presenting with CRSD so that early diagnosis and effective treatment can be achieved to prevent harmful consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号