首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨Kun  丁虎 《生理学报》1991,43(4):345-351
The norepinephrine (NE) and angiotensin II (A II) contents in the brain regions of SHR and WKY (Wistar Kyoto) rats at different ages were determined by fluorospectrophotometry and radioimmunoassay. The systolic blood pressure (SBP) of the rats was measured indirectly with a tail cuff technique in conscious state. The results were as follows: There was no significant difference in the central A II and NE contents between SHR and WKY rats at 8-week age. Since 12th week age the SBP of SHR has increased gradually, up to 16th to 20th week and then maintained steady level. Whereas there was no significant change of SBP in WKY rats in the same span of age. In the early and late states of hypertension the A II contents in the medulla oblongata, pons, hypothalamus and nucleus caudatus of SHR were markedly higher than those of the age-matched WKY rats. But the change of NE content of SHR in the early stage showed a different picture as compared with that of WKY rats, i.e., NE decreased in medulla oblongata and anterior hypothalamus but increased in pons, posterior hypothalamus and nucleus caudatus. However, in the late stage there was no such significant difference between SHR and WKY rats. Consequently, it is suggested that the central A II and NE participated in the development of hypertension of SHR, and that the maintenance of hypertension is mainly dependent upon the increased A II content. Microinjection of captopril or 6-OHDA in the lateral cerebroventricle of SHR elicited a decrease of BP and reduction of both A II and NE contents in the medulla and hypothalamus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
An effect of peptide released by the heart atria of mammals and called the atrial natriuretic factor (ANF) on blood pressure and heart contractions was studied in rats with genetically determined arterial hypertension (SHR) and in normotensive Wistar-Kyoto rats (WKY). Nine male SHR rats and 11 male WKY rats, aged between 12 and 16 weeks, were given normal saline infusion for 30 minutes through implanted catheters to both ulnar vein and artery. Then, an infusion of ANF at the rate of 0.3 microgram/kg per hour followed for 35 minutes. An infusion of ANF produces significant decrease in the mean arterial blood pressure, systolic and diastolic pressures without significant effect on pulse pressure and heart contractions. AFN infusion with the same rate did not produce any significant differences in the arterial blood pressure and heart contractions in Wistar-Kyoto rats. The obtained results suggest that ANF may play a role in pathogenesis of the arterial blood hypertension.  相似文献   

3.
H N Bhargava  S Das  M Bansinath 《Peptides》1987,8(2):231-235
The binding of [3H] [3-MeHis2] thyrotropin releasing hormone [( 3H]MeTRH) to brain membranes prepared from 8 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. [3H]MeTRH bound specifically to rat brain membranes at a single high affinity site. The density (Bmax value) of [3H]MeTRH binding sites was significantly greater (28%) in SHR rats compared to WKY rats. The apparent dissociation constants (Kd values) for the binding of [3H]MeTRH in SHR and WKY rats did not differ. Binding in the various brain regions revealed that the density of [3H]MeTRH was highest in the hypothalamus followed in decreasing order by pons + medulla, midbrain, cortex and striatum. The binding of [3H]MeTRH was approximately 25% greater in cortex, hypothalamus and striatum of SHR rats in comparison to WKY rats. The binding in pons + medulla, midbrain and pituitary of SHR and WKY rats did not differ. To assess the significance of increased binding sites for [3H]MeTRH in some brain regions of SHR rats, the binding studies were carried out during normotensive and hypertensive stages of postnatal age in the two strains. In 3 and 4 week old SHR rats there was neither an increase in blood pressure nor any increase in [3H]MeTRH binding in the hypothalamus and striatum as compared to age matched WKY rats. With the development of elevated blood pressure at 6 weeks, an increase in [3H]MeTRH binding in the hypothalamus and striatum of SHR rats in comparison to the tissues from WKY rats was observed. The results provide, for the first time, evidence for a parallel increase in the density of brain TRH receptors with elevation of blood pressure, and suggest that brain TRH receptors may play an important role in the pathophysiology of hypertension.  相似文献   

4.
To determine the role of body fluid volume in the chronic hypotensive effect of atrial natriuretic factor (ANF), spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats were infused with the peptide (Arg 101-Tyr 126) at a rate of 100 ng/h/rat for 5 days. Blood pressure (BP) was decreased from 176 +/- 4 to 133 +/- 3 mmHg in the SHR group 4 days after ANF infusion was initiated, whereas no changes were observed in ANF-infused WKY animals. Starting 5 days after the infusion began, body fluid measurements revealed no differences in plasma, blood and extracellular fluid volumes or in interstitial spaces. BP and plasma ANF concentrations were determined in another set of experiments before, during and after chronic ANF infusion. BP declined from 169 +/- 3 to 133 +/- 5 mmHg in SHR 5 days after the infusion commenced, but returned to basal values by day 10 or 11. Plasma ANF was significantly higher in SHR than in WKY rats throughout the observation period. However, there were no discernible changes in this parameter in ANF-infused SHR compared to non-infused SHR. A 3-fold rise in plasma ANF was noted in infused WKY rats at day 3 only. It is concluded that the chronic hypotensive effect of ANF in hypertensive animals is not related to changes in either body fluid volume or distribution. Moreover, the finding that chronic ANF infusion reduces BP in SHR without altering its plasma levels suggests a rapid ANF turnover.  相似文献   

5.
The activity of adenosine deaminase (ADA) has been measured in the hypothalamus, pons medulla and cerebral cortex from 30-day-old and 100-day-old spontaneously-hypertensive rats (SHR) and age-matched WKY controls. At 100 days there was a significant reduction in ADA activity in the hypothalamus (18.0%), pons medulla (20.6%) and cerebral cortex (14.7%). In 30-day-old SHR animals (prior to the development of significant hypertension) no significant changes were seen in the cerebral cortex or pons medulla but there was a small but significant reduction in ADA activity in the hypothalamus (9.2%). There was no significant reduction in the ADA activity in heart or kidney. Extracts of 100-day-old pons medulla which had been briefly heated to destroy endogenous ADA activity did not differentially affect the activity of exogenous purified ADA.  相似文献   

6.
The binding of [3H] DAMGO, a highly selective ligand for mu-opiate receptors, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. [3H] DAMGO bound to membranes of brain regions and spinal cord at a single high affinity site. The receptor density (Bmax value) and apparent dissociation constant (Kd value) of [3H] DAMGO to bind to membranes of hippocampus, corpus striatum, pons and medulla, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of [3H] DAMGO in membranes of hypothalamus and midbrain of SHR rats was significantly higher than in WKY rats but the Kd values in the two strains did not differ. On the other hand, the Bmax value of [3H] DAMGO in membranes of amygdala of SHR rats was lower than that of WKY rats but the Kd values in the two strains were similar. It is concluded that SHR rats have higher density of mu-opiate receptors in hypothalamus and midbrain but lower density in amygdala in comparison with WKY rats, and that such differences in the distribution of mu-opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

7.
Conscious SHR and WKY rats were infused during 7 days with synthetic ANF (Arg 101-Tyr 126), 100 ng/hr/rat (35 pmol/hr/rat) by means of miniosmotic pumps. The SHR initial blood pressure of 177 +/- 5 mmHg gradually dropped to 133 +/- 3 and 142 +/- 4 mmHg the last two days of infusion. No significant change in blood pressure was observed in the ANF-infused WKY group. No apparent difference in natriuresis or diuresis was observed in ANF-infused SHR and WKY when compared with non-infused control groups. A slight but significant lower immunoreactive ANF concentration was found in the atria of SHR than in their normotensive controls. No difference in cardiac weight was found between infused and non-infused rats. It is suggested that the hypotensive response observed in SHR and not in WKY is due to a decrease in vascular peripheral resistance. Whether ANF is involved in the development and maintenance of high blood pressure in SHR remains to be elucidated.  相似文献   

8.
The binding of 3H-naltrexone, an opiate receptor antagonist, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. 3H-Naltrexone bound to membranes of brain regions and spinal cord at a single high affinity site with an apparent dissociation constant value of 3 nM. The highest density of 3H-naltrexone binding sites were in hippocampus and lowest in the cerebral cortex. The receptor density (Bmax value) and apparent dissociation constant (Kd value) values of 3H-naltrexone to bind to opiate receptors on the membranes of amygdala, hippocampus, corpus striatum, pons and medulla, midbrain, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of 3H-naltrexone binding to membranes of hypothalamus of SHR rats was 518% higher than WKY rats but the Kd values in the two strains did not differ. It is concluded that SHR rats have higher density of opiate receptors labeled with 3H-naltrexone in the hypothalamus only, in comparison with WKY rats, and that such a difference in the density of opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

9.
To study the role of central cholinergic mechanisms in hypertension, we have determined muscarinic receptors using [3H](-)quinuclidinyl benzilate (QNB) and choline acetyltransferase (ChAT) activity in the brain regions of spontaneously hypertensive rats (SHR), stroke-prone SHR (SHRSP) and renal hypertensive rats. The number of muscarinic receptors was significantly (33–38%) elevated in the hypothalamus of SHR and SHRSP at the ages of 16 and 24 weeks compared to that of Wistar-Kyoto rats (WKY). An increased density of muscarinic receptors was consistently observed in the prehypertensive (5 weeks) and developmental (10 weeks) stages of hypertension. In contrast, in the hypothalamus of rats with renal hypertension there was no muscarinic receptor alteration. The receptor alteration in the SHRSP hypothalamus was not abolished by a chronic hypotensive treatment which prevented the development of hypertension, suggesting that an enhancement of the muscarinic receptors in spontaneous hypertension does not occur secondarily to the elevation of blood pressure. The hypothalamus of SHR and SHRSP at the ages of 5 and 24 weeks showed significantly less activity of ChAT. These data demonstrate that there is a specific increase in muscarinic receptors and a decrease in cholinergic activity in the hypothalamus of SHR and SHRSP. Thus, the present study suggests an important role for hypothalamic cholinergic receptors in the pathogenesis of spontaneous hypertension.  相似文献   

10.
S Eliash  G Urca  S Cohen 《Life sciences》1988,42(17):1669-1674
The aim of this study was to ascertain whether drug-induced cholinergic hypofunction in the posterior hypothalamus would affect the development and the maintenance of hypertension in hypertensive rats. Spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats were treated with AF64A, a neurotoxin which can irreversibly inhibit cholinergic transmission in vivo. AF64A or saline was injected bilaterally into the posterior hypothalamus of rats of two age groups: normotensive one month-old rats whose blood pressure was subsequently measured at the age of three months and hypertensive three month-old rats, whose blood pressure was measured four weeks later. In both age groups there was a significant fall in mean arterial blood pressure in SHR but not WKY rats. In SHR injected at the age of one month, there was a fall of at least 15.9 mm Hg, while in the rats injected at the age of three months there was a fall of 14.3 mm Hg. Heart rate in either strain was not affected. When AF64A was injected into the anterior hypothalamus of one month-old SHR, no antihypertensive effect was observed in these rats at the age of three months. These results show that cholinergic stimulation in the posterior hypothalamus may play a role in both the development and maintenance of hypertension in SHR.  相似文献   

11.
The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of 125I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neuro-intermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR.  相似文献   

12.
The central hypertensive effects induced by bradykinin are known to be mediated via B2 receptors, which are present constitutively in the brain. B, receptors are rapidly upregulated during inflammation, hyperalgesia, and experimental diabetes. The hypothalamus plays an important role in the regulation of cardiovascular homeostasis, and all components of kallikrein-kinin system have been identified in this area. Therefore, we analyzed the mRNA expression of B1 and B2 receptors in the hypothalamus of spontaneously hypertensive rats (SHR) by RT-PCR. Male SHR were studied at three different ages corresponding to the three phases in the development of hypertension: (i) 3-4 (prehypertensive), (ii) 7-8 (onset of hypertension), and (iii) 12-13 weeks (established hypertension) after birth, and compared with age-matched Wistar-Kyoto (WKY) rats. At all ages tested, B2 receptor mRNA levels in the hypothalamus of SHR were higher than age-matched WKY rats (p < 0.001). However, the B1 receptor mRNA levels were higher at the established phase of hypertension only. We conclude that B1 and B2 receptor mRNA are differentially expressed in the hypothalamus of SHR and may play different roles in the pathogenesis of hypertension: upregulation of B2 receptor mRNA from early age may participate in the pathogenesis of hypertension, whereas an upregulation of B1 receptor mRNA in the established phase of hypertension may reflect an epiphenomenon in essential hypertension.  相似文献   

13.
With the techniques of specific radioimmunoassay and gel filtration it was found that CGRP was distributed in various tissues of normotensive (WKY) and spontaneously hypertensive rats (SHR) with the highest concentration in the lumbar spinal cord (1197 +/- 94.8 pg/mg tissue) and the lowest in the auricle (15.0 +/- 2.1 pg/mg tissue). In comparison with WKY, CGRP concentration in the plasma was decreased and in the abdominal aorta and hypothalamus was increased in SHR. Gel filtration revealed only one major CGRP molecular form in the tissues. In addition, CGRP reduced the mean arterial pressure (MAP) in SHR in a dose-dependent manner. These data suggest that CGRP may play an important role in the pathogenesis of hypertension and its possible therapy.  相似文献   

14.
The effect of atrial natriuretic factor (ANF) on baroreflex sensitivity was determined in unanesthetized normotensive (Wistar-Kyoto, WKY) or spontaneously hypertensive rats (SHR) during acute hypertensive stimuli (phenylephrine) or hypotensive stimuli (sodium nitroprusside). The i.v. dose of rat ANF [( Ser99,Tyr126]ANF) was 50 ng/min per rat, sufficient to decrease mean arterial blood pressure (ABP) by about 6 mmHg (1 mmHg = 133.3 Pa) in WKY. SHR showed no change in ABP with this ANF dose. During a control infusion of physiological saline, the mean heart rate (HR) response to increases in ABP was -1.30 +/- 0.27 beats/min (bpm)/mmHg in WKY and -0.37 +/- 0.22 in SHR (p less than 0.05). These values were not affected significantly by ANF. However, ANF blunted chronotropic responses to ABP decreases. The control values of the delta HR/delta ABP slope in WKY and SHR were -2.34 +/- 0.57 and -2.01 +/- 0.37 bpm/mmHg, respectively. In the presence of ANF, the slope changed to -0.36 +/- 0.43 (i.e., bradycardia in response to hypotension) in WKY and to +0.20 +/- 0.21 in SHR (p less than 0.005 for the difference from control for both). This ANF-induced loss of baroreflex sensitivity was reversed in WKY by the addition of angiotensin I (sufficient to increase ABP by 5 mmHg in control rats). Angiotensin did not restore baroreflex sensitivity in ANF-infused SHR, and ANF had no effect on the ABP increase caused by angiotensin in either group. The data suggest that ANF does not act on baroreceptor structures directly, but inhibits mechanisms involved in efferent sympathetic activation. Parasympathetic responses do not appear to be compromised.  相似文献   

15.
Vascular permeability and endothelial glycocalyx were examined in young adult spontaneously hypertensive rats (SHR), stroke-prone SHR (SHRSP), and Wistar Kyoto rats (WKY) as a control, in order to determine earlier changes in the blood-brain barrier (BBB) in the hypothalamus in chronic hypertension. These rats were injected with horseradish peroxidase (HRP) as an indicator of vascular permeability. Brain slices were developed with a chromogen and further examined with cationized ferritin, a marker for evaluating glycocalyx. Staining for HRP was seen around vessels in the hypothalamus of SHR and SHRSP, but was scarce in WKY. The reaction product of HRP appeared in the abluminal pits of endothelial cells and within the basal lamina of arterioles, showing increased vascular permeability in the hypothalamus of SHR and SHRSP, whereas there were no leaky vessels in the frontal cortex of SHR and SHRSP, or in both areas of WKY. The number of cationized ferritin particles binding to the capillary endothelial cells was decreased in the hypothalamus of SHR and SHRSP, while the number decreased in the frontal cortex of SHRSP, compared with those in WKY. Cationized ferritin binding was preserved in some leaky arterioles, while it was scarce or disappeared in other leaky vessels. These findings suggest that BBB disruption occurs in the hypothalamus of 3-month-old SHR and SHRSP, and that endothelial glycocalyx is markedly damaged there without a close relationship to the early changes in the BBB.  相似文献   

16.
W Debinski  O Kuchel  N T Buu  G Thibault 《Peptides》1988,9(5):1101-1105
Atrial natriuretic factor (ANF) was investigated in the rat spinal cord and hypothalamus using two radioimmunoassays. ANF was also quantified in both tissues of Spontaneously Hypertensive Rats and Dahl rats. Spinal cord and hypothalamus were found to be immunoreactive to proANF and its near-NH2- or near-COOH-terminal fragments. A major part of the extracted ANF was a COOH-terminal peptide smaller than or the same as ANF (Ser99-Tyr 126). SHR had higher hypothalamic and spinal cord ANF concentrations than Wistar Kyoto rats, while the Dahl salt-sensitive animals exhibited an increase in spinal cord ANF when compared with the Dahl salt-resistant group. The data suggest that spinal cord may produce ANF locally with processing similar to that in hypothalamus. Changes in ANF concentrations occurring during the course of hypertension remain to be further investigated.  相似文献   

17.
To investigate the possible involvement of endothelin-1 (ET-1), an endothelium-derived potent vasoconstrictor peptide, in the pathophysiology of hypertension, plasma ET-1 levels in 15-week-old spontaneously hypertensive rats (SHR) and DOCA-salt hypertensive rats were measured with a sandwich-type enzyme immunoassay. The vasocontractile effect of ET-1 in aortic helical preparations was significantly more sensitive in DOCA-salt hypertensive rats than in control sham-operated rats, but plasma levels of ET-1 did not differ between them. Plasma ET-1 levels in genetically hypertensive rats (SHR and stroke-prone SHR) were significantly lower than those in age-matched normotensive Wistar-Kyoto (WKY) rats. The plasma concentrations of big ET-1, a precursor of ET-1, in both SHR and SHR-SP were significantly lower than those of WKY, suggesting that the production of ET-1 is decreased in rats of genetic hypertension. Although the vascular reactivity to ET-1 increased in both DOCA-salt hypertensive and genetically hypertensive rats, present findings of the plasma ET-1 levels suggest that the role of ET-1 in the vascular control system may be different in DOCA-salt hypertensive rats and genetically hypertensive rats.  相似文献   

18.
Instrumental conditioning techniques were used to obtain objective evidence of differences in behavioral arousal between the spontaneously hypertensive rat (SHR) and the normotensive ancestral Wistar Kyoto (WKY) strain. Subjective emotionality ratings previously indicated that the genetically hypertensive rats were more active and aggressive than their normotensive cousins. In a lengthy series of operant conditioning sessions using a small number of adult female SHR and WKY rats, hyperarousal in the SHR was confirmed by their significantly higher response outputs on either response contingent or time contingent schedules of reinforcement. Conditioned emotionality tests during this series of experiments also suggested hyperarousal and aggressiveness in the SHR, since the fear-conditioned stimulus suppressed bar-pressing in the SHR much less than in the WKY. Further experiments with young prehypertensive SHR rats provided the same evidence of hyperresponsivity in the SHR compared to the WKY strain. Furthermore, these young SHR failed to develop hypertension by the end of the study (14 weeks of age), while their nonconditioned SHR cousins had become clearly hypertensive by the same age. This suggests that factors related to the conditioning methods modified the development of high blood pressure in this animal model of essential hypertension.  相似文献   

19.
Conscious SHR and WKY rats were infused during 7 days with ANF (Arg 101-Tyr 126), 100 ng/hr/rat, by means of miniosmotic pumps and their basal blood pressure (BP), changes in sodium excretion and urinary catecholamines compared with those at the last day of the infusion. The SHR initial BP of 181 +/- 3 mmHg gradually declined to 137 +/- 5 mmHg. No significant change in blood pressure was observed in the ANF-infused WKY group. However, WKY rats exhibited an increased sodium excretion and urinary dopamine/norepinephrine ratio when compared to sham-infused rats. No such differences were observed in SHR. It is suggested that an ANF-induced withdrawal of the renal sympathetic tone permits the manifestation of its natriuretic action in WKY rats. When, however, a BP decrease predominates, as in SHR, this decrease results in a reflex sympathetic discharge with a renal sympathetic activity over-riding the ANF induced natriuresis seen in WKY rats. Secondary sympathetic responses to the ANF-induced BP decrease have to be thus taken into account when a dissociation between the hypotensive and natriuretic action of ANF is observed in vivo.  相似文献   

20.
In order to investigate the pathophysiological role of atrial natriuretic polypeptide (ANP) in genetic hypertensive rats, the atrial content and plasma concentration of ANP were measured by a sensitive radioimmunoassay (RIA) for rat ANP in 5-, 10- and 20-week-old spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP) and compared to age-matched Wistar Kyoto rats (WKY). Atrial content of immunoreactive ANP (ir-ANP) tended to be higher in SHR and was already significantly higher in SHRSP than in WKY at 5 weeks of age. Atrial content in the hypertensive strains became significantly higher than in WKY when hypertension developed at 10 and 20 weeks. On the other hand, plasma ir-ANP in SHR was significantly lower than in WKY at 5 weeks, however, it became significantly higher in both SHR and SHRSP than in WKY at 10 and 20 weeks. These findings suggest that ANP release may increase to compensate for the elevation of blood pressure in SHR and SHRSP and that biosynthesis of ANP may be concomitantly stimulated, resulting in an increase in atrial ANP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号