首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, or surface-enhanced laser desorption/ionization ProteinChip technology, has been widely used in obtaining the quantitative profiles of tissue proteomes, particularly plasma proteomes. Its high-throughput nature and simplicity in its experimental procedures have allowed this technology to become a popular research tool for biomarker discovery in the past 5 years. After accumulating more research experiences, researchers now have a better understanding of the characteristics and limitations of this technology, as well as the pitfalls in biomarker research, by undertaking a comparative proteomic approach. This review provides an overview of the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, discusses its limitations and provides some possible solutions to help apply this technology to biomarker research.  相似文献   

2.
Carcinoma tissue consists of not only tumor cells but also fibroblasts, endothelial cells or vascular structures, and inflammatory cells forming the supportive tumor stroma. Therefore, the spatial distribution of proteins that promote growth and proliferation in these complex functional units is of high interest. Matrix-assisted laser desorption/ionization imaging mass spectrometry is a newly developed technique that generates spatially resolved profiles of protein signals directly from thin tissue sections. Surface-enhanced laser desorption/ionization mass spectrometry (MS)combined with tissue microdissection allows analysis of defined parts of the tissue with a higher sensitivity and a broader mass range. Nevertheless, both MS-based techniques have a limited spatial resolution. IHC is a technique that allows a resolution down to the subcellular level. However, the detection and measurement of a specific protein expression level is possible only by semiquantitative methods. Moreover, prior knowledge about the identity of the proteins of interest is necessary. In this study, we combined all three techniques to gain highest spatial resolution, sensitivity, and quantitative information. We used frozen tissue from head and neck tumors and chose two exemplary proteins (HNP1–3 and S100A8) to highlight the advantages and disadvantages of each technique. It could be shown that the combination of these three techniques results in congruent but also synergetic data. (J Histochem Cytochem 58:929–937, 2010)  相似文献   

3.
Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has become a valuable tool to address a broad range of questions in many areas of biomedical research. One such application allows spectra to be obtained directly from intact tissues, termed "profiling" (low resolution) and "imaging" (high resolution). In light of the fact that MALDI tissue profiling allows over a thousand peptides and proteins to be rapidly detected from a variety of tissues, its application to disease processes is of special interest. For example, protein profiles from tumors may allow accurate prediction of tumor behavior, diagnosis, and prognosis and uncover etiologies underlying idiopathic diseases. MALDI MS, in conjunction with laser capture microdissection, is able to produce protein expression profiles from a relatively small number of cells from specific regions of heterogeneous tissue architectures. Imaging mass spectrometry enables the investigator to assess the spatial distribution of proteins, drugs, and their metabolites in intact tissues. This article provides an overview of several tissue profiling and imaging applications performed by MALDI MS, including sample preparation, matrix selection and application, histological staining prior to MALDI analysis, tissue profiling, imaging, and data analysis. Several applications represent direct translation of this technology to clinically relevant problems.  相似文献   

4.
Analysis of whole genomes to monitor specific changes in gene activation or changes in gene copy number due to perturbation has recently become possible using DNA chip technologies. It is now becoming apparent, however, that knowing the genetic sequence encoding a protein is not sufficient to predict the size or biological nature of a protein. This can be particularly important in cancer research where posttranslational modifications of a protein can specifically lead to the disease. To address this area, several proteomic tools have been developed. Currently the most widely used proteomics tool is two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), which can display protein expression patterns to a high degree of resolution. However, 2D-PAGE can be time consuming; the analysis is complicated and, compared with DNA techniques, is not very sensitive. Although some of these problems can be alleviated by using high-quality homogeneous samples, such as those generated using microdissection techniques, the quantity of sample is often limited and may take several days to generate sufficient material for a single 2D-PAGE analysis. As an alternative to 2D-PAGE, a preliminary study using a new technique was used to generate protein expression patterns from either whole tissue extracts or microdissected material. Surface-enhanced laser desorption and ionization allows the retention of proteins on a solid-phase chromatographic surface or ProteinChip Array with direct detection of retained proteins by time-of-flight mass spectrometry. Using this system, we analyzed tumor and normal tissue from head and neck cancer and microdissected melanoma to determine differentially expressed proteins. In particular, comparisons of the protein expression patterns from microdissected normal and tumor tissues indicated several differences, highlighting the importance of extremely defined tissue lysates for protein profiling.  相似文献   

5.
Surface-enhanced laser desorption/ionization (SELDI)-time of flight is an affinity-based mass spectrometric method in which proteins of interest are selectively absorbed to a chemically modified surface on a chip, which allows proteomic analysis with limited material requirements. This characteristic makes it a valuable technique for microbiologists handling problematic samples, such as low cell number cultures. In this study, we explored differential-expressed proteome of Acidithiobacillus ferrooxidans cultivated with Fe(2+) and elemental sulfur separately by adopting the protein biochip SELDI approach. The cell lysates of A. ferrooxidans were applied onto Ciphergen ProteinChip WCX2, SAX2 and IMAC-Cu arrays. Proteins bound to the chips were analyzed on a ProteinChip Reader Model PBS II. A summary of the molecular masses of the differentially regulated proteins found on WCX2, IMAC-Cu and SAX2 was obtained and 28 differentially expressed proteins were found on the molecular weight range of 5.0 to 25 kDa.  相似文献   

6.
Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, or surface-enhanced laser desorption/ionization ProteinChip® technology, has been widely used in obtaining the quantitative profiles of tissue proteomes, particularly plasma proteomes. Its high-throughput nature and simplicity in its experimental procedures have allowed this technology to become a popular research tool for biomarker discovery in the past 5 years. After accumulating more research experiences, researchers now have a better understanding of the characteristics and limitations of this technology, as well as the pitfalls in biomarker research, by undertaking a comparative proteomic approach. This review provides an overview of the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, discusses its limitations and provides some possible solutions to help apply this technology to biomarker research.  相似文献   

7.
Here, we describe a novel approach for investigating differential protein expression within three epidermal cell types. In particular, 3000 single pavement, basal, and trichome cells from leaves of Arabidopsis thaliana were harvested by glass micro-capillaries. Subsequently, these single cell samples were joined to form pools of 100 individual cells and analyzed using the ProteinChip technology; SELDI: surface-enhanced laser desorption and ionization. As a result, numerous protein signals that were differentially expressed in the three epidermal cell types could be detected. One of these proteins was characterized by tryptical digestion and subsequent identification via tandem quadrupole-time of flight (Q-TOF) mass spectrometry. Down regulation of this sequenced small subunit precursor of ribulose-1,5 bisphophate carboxylase(C) oxygenase(O) (RuBisCo) in trichome and basal cells indicates the sink status of these cell types that are located on the surface of A. thaliana source leaves. Based on the obtained protein profiles, we suggest a close functional relationship between basal and trichome cells at the protein level.  相似文献   

8.
Protein biochips are emerging in two distinct formats. The first involves high-density immobilized arrays of recognition molecules (e.g. antibodies), where target binding is monitored indirectly (e.g. via fluorescence). This technology is in its infancy, being limited by the availability of suitable binding molecules that can cope effectively with protein diversity. The second format involves the capture of proteins by biochemical or intermolecular interaction, coupled with direct detection by MS. This technology is available as the ProteinChip Biomarker System. ProteinChip technology uses surface-enhanced laser desorption/ionization processes to analyse proteins directly from biological samples. Chromatographic surfaces are placed on to ProteinChip Arrays and used to capture subclasses of proteins, dependent on their physical properties. Time-of-flight MS then assigns native molecular masses to the captured proteins. Reproducible protein profiles can be generated from crude biological fluids (e.g. cell lysates, urine or serum). The technology is being applied to a wide range of disciplines, from plant sciences to cancer research, and will be reviewed here.  相似文献   

9.
In this study, we demonstrated that low levels (1.5 microM) of arsenite induces B[a]P-treated lung cell transformation. We then used a proteomic approach to identify protein expression by ProteinChips, which could potentially be important for transformation induced by this toxic metal. Most of the protein peaks in cell extracts of all samples, including the control, B[a]P-treated, and B[a]P + As-treated cells are identical. However, surface-enhanced laser desorption/ionization time of flight (SELDI-TOF) analysis with Cu-ProteinChips and WCX-ProteinChips revealed several dramatically different protein peaks that appeared in lung cells after being transformed by a treatment of 1.5 microM arsenite for 12 weeks. SAX2 ProteinChip also identified a prominent protein peak that was preferentially expressed in control cells. Interestingly, by using a SAX2 chip, we were able to detect several protein peaks that increased their expression in lung epithelial cells (LEC) treated with only B[a]P. Identification and characterization of these proteins may reveal the molecular basis of As-induced cell transformation and provide insight into the mechanisms by which arsenic induces carcinogenesis.  相似文献   

10.
Archived formalin-fixed paraffin-embedded (FFPE) tissue collections represent a valuable informational resource for proteomic studies. Multiple FFPE core biopsies can be assembled in a single block to form tissue microarrays (TMAs). We describe a protocol for analyzing protein in FFPE-TMAs using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). The workflow incorporates an antigen retrieval step following deparaffinization, in situ trypsin digestion, matrix application and then mass spectrometry signal acquisition. The direct analysis of FFPE-TMA tissue using IMS allows direct analysis of multiple tissue samples in a single experiment without extraction and purification of proteins. The advantages of high speed and throughput, easy sample handling and excellent reproducibility make this technology a favorable approach for the proteomic analysis of clinical research cohorts with large sample numbers. For example, TMA analysis of 300 FFPE cores would typically require 6 h of total time through data acquisition, not including data analysis.  相似文献   

11.
Proteomics, the global study of protein expression and characteristics, has recently emerged as a key component in the field of molecular analysis. The dynamic nature of proteins, from ion channels to chaperones, presents a challenge, yet the understanding of these molecules provides a rich source of information. When applying proteomic analysis directly to human tissue samples, additional difficulties arise. The following article presents an overview of the current proteomic tools used in the analysis of tissues, beginning with conventional methods such as western blot analysis and 2D polyacrylamide gel electrophoresis. The most current high-throughput techniques being used today are also reviewed. These include protein arrays, reverse-phase protein lysate arrays, matrix-assisted laser desorption/ionization, surface-enhanced laser desorption/ionization and layered expression scanning. In addition, bioinformatics as well as issues regarding tissue preservation and microdissection to obtain pure cell populations are included. Finally, future directions of the tissue proteomics field are discussed.  相似文献   

12.
Proteomics, the global study of protein expression and characteristics, has recently emerged as a key component in the field of molecular analysis. The dynamic nature of proteins, from ion channels to chaperones, presents a challenge, yet the understanding of these molecules provides a rich source of information. When applying proteomic analysis directly to human tissue samples, additional difficulties arise. The following article presents an overview of the current proteomic tools used in the analysis of tissues, beginning with conventional methods such as western blot analysis and 2D polyacrylamide gel electrophoresis. The most current high-throughput techniques being used today are also reviewed. These include protein arrays, reverse-phase protein lysate arrays, matrix-assisted laser desorption/ionization, surface-enhanced laser desorption/ionization and layered expression scanning. In addition, bioinformatics as well as issues regarding tissue preservation and microdissection to obtain pure cell populations are included. Finally, future directions of the tissue proteomics field are discussed.  相似文献   

13.
Recent development of proteomic array technology, including protein profiling coupling ProteinChip array with surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF/MS), provides a potentially powerful tool for discovery of new biomarkers by comparison of its profiles according to patient phenotypes. We used this approach to identify the host factors associated with treatment response in patients with chronic hepatitis C (CHC) receiving a 48-wk course of pegylated interferon (PEG-IFN) alpha 2b plus ribavirin (RBV). Protein profiles of pretreatment serum samples from 32 patients with genotype 1b and high viral load were conducted by SELDI-TOF/MS by using the three different ProteinChip arrays (CM10, Q10, IMAC30). Proteins showed significantly different peak intensities between sustained virological responders (SVRs), and non-SVRs were identified by chromatography, SDS-PAGE, TOF/MS and tandem mass spectrometry (MS/MS) assay. Eleven peak intensities were significantly different between SVRs and non-SVRs. The three SVR-increased peaks could be identified as two apolipoprotein (Apo) fragments and albumin and, among the eight non-SVR-increased proteins, four peaks identified as two iron-related and two fibrogenesis-related protein fragments, respectively. Multivariate analysis showed that the serum ferritin and three peak intensity values (Apo A1, hemopexin and transferrin) were independent variables associated with SVRs, and the area under the receiver operating characteristic (ROC) curves for SVR prediction by using the Apo A1/hemopexin and hemopexin/transferrin were 0.964 and 0.936. In conclusion, pretreatment serum protein profiling by SELDI-TOF/MS is variable for identification of response-related host factors, which are useful for treatment efficacy prediction in CHC receiving PEG-IFN plus RBV. Our data also may help us understand the mechanism for treatment resistance and development of more effective antiviral therapy targeted toward the modulation of lipogenesis or iron homeostasis in CHC patients.  相似文献   

14.
Mass spectrometry (MS) imaging links molecular information and the spatial distribution of analytes within a sample. In contrast to most histochemical techniques, mass spectrometry imaging can differentiate molecular modifications and does not require labeling of targeted compounds. We have recently introduced the first mass spectrometry imaging method that provides highly specific molecular information (high resolution and accuracy in mass) at cellular dimensions (high resolution in space). This method is based on a matrix-assisted laser desorption/ionization (MALDI) imaging source working at atmospheric pressure which is coupled to an orbital trapping mass spectrometer. Here, we present a number of application examples and demonstrate the benefit of ‘mass spectrometry imaging with high resolution in mass and space.’ Phospholipids, peptides and drug compounds were imaged in a number of tissue samples at a spatial resolution of 5–10 μm. Proteins were analyzed after on-tissue tryptic digestion at 50-μm resolution. Additional applications include the analysis of single cells and of human lung carcinoma tissue as well as the first MALDI imaging measurement of tissue at 3 μm pixel size. MS image analysis for all these experiments showed excellent correlation with histological staining evaluation. The high mass resolution (R = 30,000) and mass accuracy (typically 1 ppm) proved to be essential for specific image generation and reliable identification of analytes in tissue samples. The ability to combine the required high-quality mass analysis with spatial resolution in the range of single cells is a unique feature of our method. With that, it has the potential to supplement classical histochemical protocols and to provide new insights about molecular processes on the cellular level.  相似文献   

15.
Different aspects of matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) have been used as discovery tools to obtain global and time-correlated information on the local proteomic composition of the sexually mature mouse epididymis from both qualitative and semiquantitative points of view. Tissue sections and laser captured microdissected cells and secretory products were analyzed by MALDI-MS and from the recovered protein profiles, over 400 different proteins were monitored. Over 50 of these, some of which have been identified, displayed regionalized behavior from caput to cauda within the epididymis. Combining the information obtained from high-resolution imaging mass spectrometry and laser captured microdissection experiments, numerous proteins were localized within the epididymis at the cellular level. Furthermore, from the signal intensities observed in the different protein profiles organized in space, semiquantitative information for each protein was obtained.  相似文献   

16.
ProteinChip array technology enables protein purification, protein profiling, and biomarker discovery on a convenient biochip platform. Traditional proteomic approaches towards protein identification rely upon the generation of peptides through the use of specific proteases. However, for a variety of reasons, the digestion of proteins bound to planar arrays by specific proteases, such as trypsin, has proven to be difficult, at times providing little or no protein digestion at all. Additionally, should more than one protein be present on the array surface, the digestion product consists of peptides from different proteins, adding another dimension of complexity to database mining approaches. These factors have driven our group to explore alternative means of on-chip protein digestion. In this article, we describe an approach to generate peptide maps by limited acid hydrolysis. Depending upon the adsorbed protein, this method requires between 500 femtomole to 5 picomole of protein for on-chip hydrolysis. Besides generating several internal peptide fragments, limited acid hydrolysis also has the advantage of generating peptide ladders from the N- or C-terminus of the protein. From these ladders, partial primary sequence of the protein can be directly derived when analyzed by a simple laser desorption/ionization mass spectrometer. Furthermore, tandem mass spectrometry can be performed on several internal peptide fragments, thus facilitating the identification of several proteins within a mixture. Based upon the preliminary results of this work, we continue to explore the possibility of using limited acid hydrolysis to identify unknown proteins captured on ProteinChip array surfaces.  相似文献   

17.
Although colorectal cancer is one of the best-characterized tumors with regard to the multistep progression, it remains one of the most frequent and deadly neoplasms. For a better understanding of the molecular mechanisms behind the process of tumorigenesis and tumor progression, changes in protein expression between microdissected normal and tumorous colonic epithelium were analyzed. Cryostat sections from colorectal tumors, adenoma tissue, and adjacent normal mucosa were laser-microdissected and analyzed using ProteinChip Arrays. The derived MS profiles exhibited numerous statistical differences. One peak showing significantly high expression in the tumor was purified by reverse-phase chromatography and SDS-PAGE. The protein band of interest was passively eluted from the gel and identified as heat shock protein 10 (HSP 10) by tryptic digestion, peptide mapping, and MS/MS analysis. This tumor marker was further characterized by immunohistochemistry. Analysis of HSP 10-positive tissue by ProteinChip technology confirmed the identity of this protein. This work demonstrates that biomarker in colorectal cancer can be detected, identified, and assessed by a proteomic approach comprising tissue microdissection, protein profiling, and immunological techniques. In our experience, histological defined microdissected tissue areas should be used to identify proteins that might be responsible for tumorigenesis.  相似文献   

18.
We report here using a novel technology-electrospray-assisted laser desorption ionization (ELDI)/mass spectrometry-for the rapid and sensitive detection of the major proteins that exist in dried biological fluids (e.g., blood, tears, saliva, serum), bacterial cultures, and tissues (e.g., porcine liver and heart) under ambient conditions. This technique required essentially no sample pretreatment. The proteins in the samples were desorbed using a pulsed nitrogen laser without the assistance of an organic matrix. The desorbed protein molecules were then post-ionized through their fusion into the charged solvent droplets produced from the electrospray of an acidic methanol solution; electrospray ionization (ESI) proceeded from the newly formed droplets to generate the ESI-like protein ions. This new ionization approach combines some of the features of electrospray ionization with those of matrix-assisted laser desorption ionization (MALDI), that is, sampling of a solid surface with spatial resolution, generating ESI-like mass spectra of the desorbed proteins, and operating under ambient conditions.  相似文献   

19.
The Helicobacter genus is associated with a wide spectrum of pathologies in the gastrointestinal tract. However, in contrast to Helicobacter pylori, few data are available regarding proteomic characteristics of enterohepatic helicobacters. Proteomic analysis of this genus has predominantly utilised two-dimensional gel electrophoresis methodology. In the present study we applied an innovative technique using ProteinChip arrays coupled with surface-enhanced laser desorption/ionisation time of flight mass spectroscopy to accurately assess the M(r) of proteins for comparative proteomic profiling. We analysed binding of outer membrane fractions to a weak cation exchange array for strains of H. pylori from culture collections and compared these profiles to fresh clinical isolates. In addition, we analysed profiles from Helicobacter pullorum, Helicobacter bilis and 'Helicobacter sp. flexispira'. The system proved rapid, accurate and reproducible. Distinct specific profiles for all the strains studied were identified. However, strains from culture collections that have undergone numerous subcultures had almost identical profiles. In contrast, profiles from fresh clinical isolates were markedly different. Moreover, certain features of the profiles from the enterohepatic species were conserved.  相似文献   

20.
The presence of numerous proteomics data and their results in literature reveal the importance and influence of proteins and peptides on human cell cycle. For instance, the proteomic profiling of biological samples, such as serum, plasma or cells, and their organelles, carried out by surface-enhanced laser desorption/ionization mass spectrometry, has led to the discovery of numerous key proteins involved in many biological disease processes. However, questions still remain regarding the reproducibility, bioinformatic artifacts and cross-validations of such experimental set-ups. The authors have developed a material-based approach, termed material-enhanced laser desorption/ionization mass spectrometry (MELDI-MS), to facilitate and improve the robustness of large-scale proteomic experiments. MELDI-MS includes a fully automated protein-profiling platform, from sample preparation and analysis to data processing involving state-of-the-art methods, which can be further improved. Multiplexed protein pattern analysis, based on material morphology, physical characteristics and chemical functionalities provides a multitude of protein patterns and allows prostate cancer samples to be distinguished from non-prostate cancer samples. Furthermore, MELDI-MS enables not only the analysis of protein signatures, but also the identification of potential discriminating peaks via capillary liquid chromatography mass spectrometry. The optimized MELDI approach offers a complete proteomics platform with improved sensitivity, selectivity and short sample preparation times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号