首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The present study is an initial analysis of whether p53 may function as guardian of the cardiomyocyte mitochondrial genome, with mitochondrial p53 localization proposed to be involved in both mitochondrial DNA (mtDNA) repair and apoptosis. Subcellular distribution, protein levels, and possible function(s) of p53 protein in the response of cardiomyocytes to adriamycin (ADR) were analyzed. Levels and subcellular localization of proteins were determined by Western blot and immunogold ultrastructural analysis techniques. Here we demonstrate that stress caused by ADR induced upregulation of p53 protein in cardiomyocyte mitochondria and nuclei between 3 and 24 hr. Increased expression of PUMA and Bax proteins, pro-apoptotic targets of p53, was documented following ADR treatment and was accompanied by increased levels of apoptotic markers, with elevation of cytosolic cytochrome c at 24 hr and subsequent caspase-3 cleavage at 3 days. Mitochondrial p53 levels correlated with mtDNA oxidative damage. Loss of p53 in knockout mouse heart resulted in a significant increase in mtDNA vulnerability to damage following ADR treatment. Our results suggest that mitochondrial p53 could participate in mtDNA repair as a first response to oxidative damage of cardiomyocyte mtDNA and demonstrate an increase of apoptotic markers as a result of mitochondrial/nuclear p53 localization.  相似文献   

4.
5.
The review considers the current problems of molecular phylogenetics based on mitochondrial and chromosomal DNA sequences. The emphasis is placed on mtDNA markers, which are widely employed in reconstructing molecular evolution, but often without a critical analysis of the physiological and biochemical features of mitochondria that affect the adequacy and reliability of the results. In addition to the factors that make mtDNA-based phylogenies difficult to interpret (unrecognized hybridization and introgression events, ancestral polymorphism, and nuclear paralogs of mtDNA sequences), attention is paid to the nonneutrality and unequal mutation rates of mtDNA genes and their fragments, violations of uniparental inheritance of mitochondria, recombination events, natural heteroplasmy, and mtDNA haplotypic diversity. These factors may influence the congruence of phylogenetic inferences and trees constructed for the same organisms with different mtDNA markers or with mitochondrial and nuclear markers. The review supports the viewpoint that mitochondrial genes and their fragments fail to provide reliable evolutionary markers when considered without a thorough study of the environmental conditions and life of the taxa. The influence of external conditions on the metabolism and physiology of mitochondria cannot be taken into account in full nor modeled well enough for phylogenetic applications. It is assumed that mtDNA is valuable as a phylogenetic marker primarily because its complete sequence may be analyzed to identify the apomorphic and synmorphic properties of a taxon and to search for informative nuclear paralogs of mtDNA for phylogeographical studies and estimations of relative evolution times.  相似文献   

6.
While the consequences of nuclear DNA damage have been well studied, the exact consequences of acute and selective mitochondrial DNA (mtDNA) damage are less understood. DNA damaging chemotherapeutic drugs are known to activate p53-dependent apoptosis in response to sustained nuclear DNA damage. While it is recognized that whole-cell exposure to these drugs also damages mtDNA, the specific contribution of mtDNA damage to cellular degeneration is less clear. To examine this, we induced selective mtDNA damage in neuronal axons using microfluidic chambers that allow for the spatial and fluidic isolation of neuronal cell bodies (containing nucleus and mitochondria) from the axons (containing mitochondria). Exposure of the DNA damaging drug cisplatin selectively to only the axons induced mtDNA damage in axonal mitochondria, without nuclear damage. We found that this resulted in the selective degeneration of only the targeted axons that were exposed to DNA damage, where ROS was induced but mitochondria were not permeabilized. mtDNA damage-induced axon degeneration was not mediated by any of the three known axon degeneration pathways: apoptosis, axon pruning, and Wallerian degeneration, as Bax-deficiency, or Casp3-deficiency, or Sarm1-deficiency failed to protect the degenerating axons. Strikingly, p53, which is essential for degeneration after nuclear DNA damage, was also not required for degeneration induced with mtDNA damage. This was most evident when the p53-deficient neurons were globally exposed to cisplatin. While the cell bodies of p53-deficient neurons were protected from degeneration in this context, the axons farthest from the cell bodies still underwent degeneration. These results highlight how whole cell exposure to DNA damage activates two pathways of degeneration; a faster, p53-dependent apoptotic degeneration that is triggered in the cell bodies with nuclear DNA damage, and a slower, p53-independent degeneration that is induced with mtDNA damage.Subject terms: Cell biology, Neuroscience  相似文献   

7.
8.
9.
The selective degradation of mutated mitochondrial DNA (mtDNA) molecules is a potential strategy to re-populate cells with wild-type (wt) mtDNA molecules and thereby alleviate the defective mitochondrial function that underlies mtDNA diseases. Zinc finger nucleases (ZFNs), which are nucleases conjugated to a zinc-finger peptide (ZFP) engineered to bind a specific DNA sequence, could be useful for the selective degradation of particular mtDNA sequences. Typically, pairs of complementary ZFNs are used that heterodimerize on the target DNA sequence; however, conventional ZFNs were ineffective in our system. To overcome this, we created single-chain ZFNs by conjugating two FokI nuclease domains, connected by a flexible linker, to a ZFP with an N-terminal mitochondrial targeting sequence. Here we show that these ZFNs are efficiently transported into mitochondria in cells and bind mtDNA in a sequence-specific manner discriminating between two 12-bp long sequences that differ by a single base pair. Due to their selective binding they cleave dsDNA at predicted sites adjacent to the mutation. When expressed in heteroplasmic cells containing a mixture of mutated and wt mtDNA these ZFNs selectively degrade mutated mtDNA, thereby increasing the proportion of wt mtDNA molecules in the cell. Therefore, mitochondria-targeted single-chain ZFNs are a promising candidate approach for the treatment of mtDNA diseases.  相似文献   

10.
11.
Summary A linear 2.3 kb DNA molecule found in maize mitochondria was cloned into pUC8. A natural deletion of this plasmid, found in cmsT and some N (fertile) types of maize plants, was mapped to one end of the plasmid. A minor sequence homology to S-2, another linear mitochondrial plasmid, was detected, as well as more significant sequence homology with chloroplast and maize nuclear DNA. Hybridization to teosinte mitochondrial DNA (mtDNA) revealed the presence of part of the maize plasmid in the high molecular weight mtDNA of the maize relatives. RNA dot hybridization indicates that the plasmid is transcribed in mitochondria. The termini of the 2.3 kb linear plasmid contain inverted repeated sequences; of the first 17 nucleotides of the termini, 16 are identical to the terminal inverted repeats of the linear S plasmids found in the mitochondria of cmsS maize plants.  相似文献   

12.
13.
14.
The oxidatively induced DNA lesion 8-oxo-dG in mitochondrial DNA (mtDNA) is commonly used as a marker for oxidative damage to mitochondria, which in turn is thought to be a fundamental cause of aging. For years, mitochondrial levels of 8-oxo-dG were believed to be approximately 10-fold higher in mtDNA than in nuclear DNA even in normal, young animals. However, studies in our own and other laboratories have shown that this lesion is efficiently repaired. Also, mutational consequences specific to 8-oxo-dG (G to T transversions) are rarely reported. In the present study, we showed that the levels of damage measured using high-pressure liquid chromatography/electrochemical detection and an enzymatic/Southern blot assay were comparable. The latter assay does not require isolation of mitochondria, and so this assay was then used to determine the level of in vivo damage present in rat liver mtDNA both with and without organelle isolation. Levels of 8-oxo-dG are approximately threefold higher when measured in mtDNA purified from isolated mitochondria than when measured without prior mitochondrial isolation. Furthermore, most genomes were free of endogenous enzyme-sensitive sites (i.e., they did not contain 8-oxo-dG), and only after mitochondrial isolation were levels higher in mtDNA than in a nuclear sequence. Anson, R. M., Hudson, E., Bohr, V. A. Mitochondrial endogenous oxidative damage has been overestimated.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号