首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In cultured mammalian cells, foreign DNA can be integrated into the host genome. Foreign DNA is frequently de novo methylated in specific patterns with successive cell generations. The sequence-specific methylation of promoter sequences in integrated foreign DNA is associated with the long-term inactivation of eukaryotic genes. We have now extended these experiments to studies on transgenic mice. As in previous work, a construct (pAd2E2AL-CAT) has been used which consists of the late E2A promoter of adenovirus type 2 (Ad2) DNA fused to the prokaryotic gene for chloramphenicol acetyltransferase (CAT). This construct has been integrated in the non-methylated in the 5'-CCGG-3' premethylated form in the genomes of transgenic mice. DNA from various organs was analyzed by HpaII/MspI cleavage to assess the state of methylation in 5'-CCGG-3' sequences. The results demonstrate that the transgenic construct is in general stable. Non-methylated constructs have remained partly non-methylated for four generations or can become de novo methylated at all or most 5'-CCGG-3' sequences in the founder animal. Preimposed patterns of 5'-CCGG-3' methylation have been preserved for up to four generations beyond the founder animal. In the testes of two different founder animals and two F1 males, the transgenic DNA has become demethylated by an unknown mechanism. In all other organs, the transgenic DNA preserves the preimposed 5'-CCGG-3' methylation pattern. In the experiments performed so far we have not observed differences in the transmission of methylation patterns depending on whether the transgene has been maternally or paternally inherited. The 5'-CCGG-3' premethylated transgene does not catalyze CAT activity in several organs, except in one example of the testes of an animal in which the transgenic construct has become demethylated. In contrast, when the nonmethylated construct has been integrated and remained largely non-methylated, CAT activity has been detected in extracts from some of the organs.  相似文献   

4.
A new concept for viral oncogenesis is presented which is based on experimental work on the chromosomal integration of adenovirus DNA into mammalian genomes. The mechanism of adenovirus DNA integration is akin to non-sequence-specific insertional recombination in which patch homologies between the recombination partners are frequently observed. This reaction has been imitated in a cell-free system by using nuclear extracts from hamster cells and partly purified fractions derived from them. As a consequence of foreign DNA insertion into the mammalian genome, the foreign DNA is extensively de novo methylated in specific patterns, presumably as part of a mammalian host cell defense mechanism against inserted foreign DNA which can be permanently silenced in this way. A further corollary of foreign (adenovirus or bacteriophage λ) DNA integration is seen in extensive changes in cellular DNA methylation patterns at sites far remote from the locus of insertional recombination. Repetitive cellular, retrotransposon-like sequences are particularly, but not exclusively, prone to these increases in DNA methylation. It is conceivable that these changes in DNA methylation are a reflection of a profound overall reorganization process in the affected genomes. Could these alterations significantly contribute to the transformation events during viral or other types of oncogenesis? These sequelae of foreign DNA integration into established mammalian genomes will have to be critically considered when interpreting results obtained with transgenic, knock-out, and knock-in animals and when devising schemes for human somatic gene therapy.The interpretation of de novo methylation as a cellular defense mechanism has prompted investigations on the fate of food-ingested foreign DNA. The gastrointestinal (GI) tract provides a large surface for the entry of foreign DNA into any organism. As a tracer molecule, bacteriophage M13 DNA has been fed to mice. Fragments of this DNA can be found in small amounts (about 1 % of the administered DNA) in all parts of the intestinal tract and in the feces. Furthermore, M13 DNA can be traced in the columnar epithelia of the intestine, in Peyer's plaque leukocytes, in peripheral white blood cells, in spleen, and liver. Authentic M13 DNA has been recloned from total spleen DNA. If integrated, this DNA might elicit some of the described consequences of foreign DNA insertion into the mammalian genome. Food-ingested DNA will likely infiltrate the organism more frequently than viral DNA.  相似文献   

5.
Eukaryotic DNA methylation: facts and problems   总被引:5,自引:0,他引:5  
Patterns of DNA methylation in complex genomes like those of mammalian cells have been viewed as indicators of different levels of genetic activities. It is as yet unknown how these complicated patterns are generated and maintained during cell replication. There is evidence from many different biological systems that the sequence-specific methylation of promoters in higher eukaryotes is one of the important factors in controlling gene activity at a long-term level. In general, the fifth nucleotide 5-methyldeoxycytidine can be considered as a modulator of protein-DNA interactions. The degree and direction of this modulation has to be assessed experimentally in each individual instance. The establishment of de novo patterns of DNA methylation is characterized by the gradual non-random spreading of DNA methylation by an essentially unknown mechanism. In this review, some of the general concepts of DNA methylation in mammalian systems are presented, and research currently performed in the authors' laboratory has been summarized.  相似文献   

6.
7.
DNA methylation and demethylation in mammals   总被引:1,自引:0,他引:1  
Cell type-specific DNA methylation patterns are established during mammalian development and maintained in adult somatic cells. Understanding how these patterns of 5-methylcytosine are established and maintained requires the elucidation of mechanisms for both DNA methylation and demethylation. The enzymes involved in the de novo methylation of DNA and the maintenance of the resulting methylation patterns have been fairly well characterized. However, important remaining challenges are to understand how DNA methylation systems function in vivo and in the context of chromatin. In addition, the enzymes and mechanisms for demethylation remain to be elucidated. There is still no consensus as to how active enzymatic demethylation is achieved in mammalian cells, but recent studies implicate base excision repair for genome-wide DNA demethylation in germ cells and early embryos.  相似文献   

8.
9.
On the Biological Significance of DNA Methylation   总被引:5,自引:0,他引:5  
  相似文献   

10.
EVI1 has pleiotropic functions during murine embryogenesis and its targeted disruption leads to prenatal death by severely affecting the development of virtually all embryonic organs. However, its functions in adult tissues are still unclear. When inappropriately expressed, EVI1 becomes one of the most aggressive oncogenes associated with human hematopoietic and solid cancers. The mechanisms by which EVI1 transforms normal cells are unknown, but we showed recently that EVI1 indirectly upregulates self-renewal and cell-cycling genes by inappropriate methylation of CpG dinucleotides in the regulatory regions of microRNA-124-3 (miR-124-3), leading to the repression of this small gene that controls normal differentiation and cell cycling of somatic cells. We used the regulatory regions of miR-124-3 as a read-out system to investigate how EVI1 induces de novo methylation of DNA. Here we show that EVI1 physically interacts with DNA methyltransferases 3a and 3b (Dnmt3a/b), which are the only de novo DNA methyltransferases identified to date in mouse and man, and that it forms an enzymatically active protein complex that induces de novo DNA methylation in vitro. This protein complex targets and binds to a precise region of miR-124-3 that is necessary for repression of a reporter gene by EVI1. Based on our findings, we propose that in cooperation with Dnmt3a/b EVI1 regulates the methylation of DNA as a sequence-specific mediator of de novo DNA methylation and that inappropriate EVI1 expression contributes to carcinogenesis through improper DNA methylation.  相似文献   

11.
G Orend  I Kuhlmann    W Doerfler 《Journal of virology》1991,65(8):4301-4308
The establishment of de novo-generated patterns of DNA methylation is characterized by the gradual spreading of DNA methylation (I. Kuhlmann and W. Doerfler, J. Virol. 47:631-636, 1983; M. Toth, U. Lichtenberg, and W. Doerfler, Proc. Natl. Acad. Sci. USA 86:3728-3732, 1989; M. Toth, U. Müller, and W. Doerfler J. Mol. Biol. 214:673-683, 1990). We have used integrated adenovirus type 12 (Ad12) genomes in hamster tumor cells as a model system to study the mechanism of de novo DNA methylation. Ad12 induces tumors in neonate hamsters, and the viral DNA is integrated into the hamster genome, usually nearly intact and in an orientation that is colinear with that of the virion genome. The integrated Ad12 DNA in the tumor cells is weakly methylated at the 5'-CCGG-3' sequences. These sequences appear to be a reliable indicator for the state of methylation in mammalian DNA. Upon explantation of the tumor cells into culture medium, DNA methylation at 5'-CCGG-3' sequences gradually spreads across the integrated viral genomes with increasing passage numbers of cells in culture. Methylation is reproducibly initiated in the region between 30 and 75 map units on the integrated viral genome and progresses from there in either direction on the genome. Eventually, the genome is strongly methylated, except for the terminal 2 to 5% on either end, which remains hypomethylated. Similar observations have been made with tumor cell lines with different sites of Ad12 DNA integration. In contrast, the levels of DNA methylation do not seem to change after tumor cell explanation in several segments of hamster cell DNA of the unique or repetitive type. Restriction (HpaII) and Southern blot experiments were performed with selected cloned hamster cellular DNA probes. The data suggest that in the integrated foreign DNA, there exist nucleotide sequences or structures or chromatin arrangements that can be preferentially recognized by the system responsible for de novo DNA methylation in mammalian cells.  相似文献   

12.
Regulation and function of DNA methylation in plants and animals   总被引:2,自引:0,他引:2  
He XJ  Chen T  Zhu JK 《Cell research》2011,21(3):442-465
  相似文献   

13.
《Epigenetics》2013,8(3):125-133
A synopsis will be presented of work on DNA methylation, the first epigenetic signal to be recognized. In the author´s laboratory, the following problems dealing with DNA methylation have been addressed over the past 32 years:(1) The de novo methylation of foreign DNA integrated into mammalian genomes. (2) Inverse correlations between promoter methylation and activity.(3) The long-term inactivating effect of site-specific promoter methylation. (4) Adenovirus E1 functions in trans and a strong enhancer in cis cancel the silencing effect of promoter methylation.(5) Frog virus 3, an iridovirus with a completely CpG-methylated genome. (6) Mechanisms of de novo methylation.(7) Different segments of the genome possess topical methylation memories.(8) Consequences of foreign DNA insertion into mammalian genomes: alterations of DNA methylation in cis and trans.(9) The epigenetic status of an adenovirus transgenome in Ad12-transformed hamster cells. (10) Cell type-specific patterns of DNA methylation: interindividual concordance in the human genome.  相似文献   

14.
15.
DNA methylation is a major determinant of epigenetic inheritance and plays an important role in genome stability. The accurate propagation of DNA methylation patterns with cell division requires that methylation be closely coupled to DNA replication, however the precise molecular determinants of this interaction have not been defined. In the present study, we show that the predominant DNA methyltransferase species in somatic cells, DNMT1, is a component of a multiprotein DNA replication complex termed the DNA synthesome that fully supports semi-conservative DNA replication in a cell-free system. DNMT1 protein and activity were found to co-purify with the human DNA synthesome through a series of subcellular fractionation and chromatography steps, resulting in an enrichment of methyltransferase specific activity from two human cell lines. DNA methyltransferase activity co-eluted with in vitro replication activity and DNA polymerase alpha activity on sucrose density gradients suggesting that DNMT1 is a tightly bound, core component of the replication complex. The synthesome-associated pool of DNA methyltransferase exhibited both maintenance and de novo methyltransferase activity and the ratio of the two was similar to that observed in whole cell lysates and for recombinant DNMT1. These data indicate that interactions within the synthesome complex do not influence the intrinsic preference of DNMT1 for hemimethylated DNA, but suggest that newly replicated DNA may be subject to low level de novo methylation. The data indicate that DNA methylation is tightly coupled to replication through physical interaction of DNMT1 and core components of the replication machinery. The definition of the molecular interactions between DNMT1 and other proteins in the replication complex in normal and neoplastic cells will provide further insight into the regulation of DNA methylation and the mechanisms underlying the alteration of DNA methylation patterns during carcinogenesis.  相似文献   

16.
DNA methylation is a major determinant of epigenetic inheritance and plays an important role in genome stability. The accurate propagation of DNA methylation patterns with cell division requires that methylation be closely coupled to DNA replication, however the precise molecular determinants of this interaction have not been defined. In the present study, we show that the predominant DNA methyltransferase species in somatic cells, DNMT1, is a component of a multiprotein DNA replication complex termed the DNA synthesome that fully supports semi-conservative DNA replication in a cell-free system. DNMT1 protein and activity were found to co-purify with the human DNA synthesome through a series of subcellular fractionation and chromatography steps, resulting in an enrichment of methyltransferase specific activity from two human cell lines. DNA methyltransferase activity co-eluted with in vitro replication activity and DNA polymerase a activity on sucrose density gradients suggesting that DNMT1 is a tightly bound, core component of the replication complex. The synthesome-associated pool of DNA methyltransferase exhibited both maintenance and de novo methyltransferase activity and the ratio of the two was similar to that observed in whole cell lysates and for recombinant DNMT1. These data indicate that interactions within the synthesome complex do not influence the intrinsic preference of DNMT1 for hemimethylated DNA, but suggest that newly replicated DNA may be subject to low level de novo methylation. The data indicate that DNA methylation is tightly coupled to replication through physical interaction of DNMT1 and core components of the replication machinery. The definition of the molecular interactions between DNMT1 and other proteins in the replication complex in normal and neoplastic cells will provide further insight into the regulation of DNA methylation and the mechanisms underlying the alteration of DNA methylation patterns during carcinogenesis.  相似文献   

17.
《Gene》1998,206(1):63-67
Mouse ES cells with a null mutation of the known DNA methyltransferase retain some residual DNA methylation and can methylate foreign sequences de novo. We have used bisulfite genomic sequencing to examine the sequence specificity and distributions of methylation of a hypermethylated CG island sequence, mouse A-repeats. There were 13 CG dinucleotides in the region examined, 12 of which were methylated to variable extents in all DNAs. We found that: (1) there is considerable residual DNA methylation in ES cells lacking the known DNA methyltransferase (29% of normal methylation in the complete knockout ES DNA); (2) this other activity methylates at exactly the same CG sites as the major methyltransferase; and (3) differences in the distribution of methylated sites between A-repeats in these DNAs are consistent with this other activity methylating in a random de novo fashion. Also, the lack of any methylation in non-CG sites argues that, in other studies where non-CG methylation sites have been found by bisulfite sequencing, detection of such sites of non-CG methylation is not an inherent artifact in this methodology.  相似文献   

18.
A DNA target of 30 bp is sufficient for RNA-directed DNA methylation   总被引:11,自引:2,他引:9       下载免费PDF全文
In higher plants, RNA-DNA interactions can trigger de novo methylation of genomic sequences via a process that is termed RNA-directed DNA methylation (RdDM). In potato spindle tuber viroid (PSTVd)-infected tobacco plants, this process can potentially lead to methylation of all C residues at symmetrical and nonsymmetrical sites within chromosomal inserts that consist of multimers of the 359-bp-long PSTVd cDNA. Using PSTVd cDNA subfragments, we found that genomic targets with as few as 30 nt of sequence complementarity to the viroid RNA are detected and methylated. Genomic sequencing analyses of genome-integrated 30- and 60-bp-long PSTVd subfragments demonstrated that de novo cytosine methylation is not limited to the canonical CpG, CpNpG sites. Sixty-base-pair-long PSTVd cDNA constructs appeared to be densely methylated in nearly all tobacco leaf cells. With the 30-bp-long PSTVd-specific construct, the proportion of cells displaying dense transgene methylation was significantly reduced, suggesting that a minimal target size of about 30 bp is necessary for RdDM. The methylation patterns observed for two different 60-bp constructs further suggested that the sequence identity of the target may influence the methylation mechanism. Finally, a link between viroid pathogenicity and PSTVd RNA-directed methylation of host sequences is proposed.  相似文献   

19.
Changing DNA methylation patterns during embryonic development are discussed in relation to differential gene expression, changes in X-chromosome activity and genomic imprinting. Sperm DNA is more methylated than oocyte DNA, both overall and for specific sequences. The methylation difference between the gametes could be one of the mechanisms (along with chromatin structure) regulating initial differences in expression of parental alleles in early development. There is a loss of methylation during development from the morula to the blastocyst and a marked decrease in methylase activity. De novo methylation becomes apparent around the time of implantation and occurs to a lesser extent in extra-embryonic tissue DNA. In embryonic DNA, de novo methylation begins at the time of random X-chromosome inactivation but it continues to occur after X-chromosome inactivation and may be a mechanism that irreversibly fixes specific patterns of gene expression and X-chromosome inactivity in the female. The germ line is probably delineated before extensive de novo methylation and hence escapes this process. The marked undermethylation of the germ line DNA may be a prerequisite for X-chromosome reactivation. The process underlying reactivation and removal of parent-specific patterns of gene expression may be changes in chromatin configuration associated with meiosis and a general reprogramming of the germ line to developmental totipotency.  相似文献   

20.
DNA methylation dynamics in plant genomes   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号