首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limited proteolysis of the 153-residue chain of horse apomyoglobin (apoMb) by thermolysin results in the selective cleavage of the peptide bond Pro88-Leu89. The N-terminal (residues 1-88) and C-terminal (residues 89-153) fragments of apoMb were isolated to homogeneity and their conformational and association properties investigated in detail. Far-UV circular dichroism (CD) measurements revealed that both fragments in isolation acquire a high content of helical secondary structure, while near-UV CD indicated the absence of tertiary structure. A 1:1 mixture of the fragments leads to a tight noncovalent protein complex (1-88/89-153, nicked apoMb), characterized by secondary and tertiary structures similar to those of intact apoMb. The apoMb complex binds heme in a nativelike manner, as given by CD measurements in the Soret region. Second-derivative absorption spectra in the 250-300 nm region provided evidence that the degree of exposure of Tyr residues in the nicked species is similar to that of the intact protein at neutral pH. Also, the microenvironment of Trp residues, located in positions 7 and 14 of the 153-residue chain of the protein, is similar in both protein species, as given by fluorescence emission data. Moreover, in analogy to intact apoMb, the nicked protein binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonate (ANS). Taken together, our results indicate that the two proteolytic fragments 1-88 and 89-153 of apoMb adopt partly folded states characterized by sufficiently nativelike conformational features that promote their specific association and mutual stabilization into a nicked protein species much resembling in its structural features intact apoMb. It is suggested that the formation of a noncovalent complex upon fragment complementation can mimic the protein folding process of the entire protein chain, with the difference that the folding of the complementary fragments is an intermolecular process. In particular, this study emphasizes the importance of interactions between marginally stable elements of secondary structure in promoting the tertiary contacts of a native protein. Considering that apoMb has been extensively used as a paradigm in protein folding studies for the past few decades, the novel fragment complementing system of apoMb here described appears to be very useful for investigating the initial as well as late events in protein folding.  相似文献   

2.
Solvation and desolvation dynamics around helices during the kinetic folding process of apomyoglobin (apoMb) were investigated by using time-resolved infrared (IR) spectroscopy based on continuous-flow rapid mixing devices and an IR microscope. The folding of apoMb can be described by the collapse and search mechanism, in which the initial collapse occurring within several hundreds of microseconds is followed by the search for the correct secondary and tertiary structures. The time-resolved IR measurements showed a significant increase in solvated helix possessing a component of amide I' at 1633 cm(-1) within 100 mus after initiating the folding by a pD jump from pD2.2 to 6.0. In contrast, there was a minor increase in buried helices having amide I' at 1652 cm(-1) in this time domain. The observations demonstrate that the initially collapsed conformation of apoMb possesses a large amount of solvated helices, and suggest that much water is retained inside the collapsed domain. The contents of solvated and buried helices decrease and increase, respectively, in the time domain after the collapse, showing that the stepwise desolvation around helices is associated with the conformational search process. Interestingly, the largest changes in solvated and buried helices were observed at the final rate-limiting step of the apoMb folding. The persistence of the solvated helix until the final stage of apoMb folding suggests that the dissociation of hydrogen bonds between water and main-chain amides contributes to the energy barrier in the rate-determining step of the folding.  相似文献   

3.
Proteins are biosynthesized from N to C terminus before they depart from the ribosome and reach their bioactive state in the cell. At present, very little is known about the evolution of conformation and the free energy of the nascent protein with chain elongation. These parameters critically affect the extent of folding during ribosome‐assisted biosynthesis. Here, we address the impact of vectorial amino acid addition on the burial of nonpolar surface area and on the free energy of native‐like structure formation in the absence of the ribosomal machinery. We focus on computational predictions on proteins bearing the globin fold, which is known to encompass the 3/3, 2/2, and archaeal subclasses. We find that the burial of nonpolar surface increases progressively with chain elongation, leading to native‐like conformations upon addition of the last C‐terminal residues, corresponding to incorporation of the last two helices. Additionally, the predicted folding entropy for generating native‐like structures becomes less unfavorable at nearly complete chain lengths, suggesting a link between the late burial of nonpolar surface and water release. Finally, the predicted folding free energy takes a progressive favorable dip toward more negative values, as the chain gets longer. These results suggest that thermodynamic stabilization of the native structure of newly synthesized globins during translation in the cell is significantly enhanced as the chain elongates. This is especially true upon departure of the last C‐terminal residues from the ribosomal tunnel, which hosts ca., 30–40 amino acids. Hence, we propose that release from the ribosome is a crucial step in the life of single‐domain proteins in the cell. Proteins 2014; 82:2318–2331. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Chen Z  Kurt N  Rajagopalan S  Cavagnero S 《Biochemistry》2006,45(40):12325-12333
Little is known about polypeptide conformation and folding in the presence of molecular chaperones participating in protein biosynthesis. In vitro studies on chaperone-substrate complexes have been mostly carried out with small peptide ligands. However, the technical challenges associated with either competing aggregation or spectroscopically unfavorable size and exchange rates have typically prevented analysis of larger substrates. Here, we report the high-resolution secondary structure of relatively large N-terminal protein fragments bound to the substrate-binding domain of the cotranslationally active chaperone DnaK. The all-alpha-helical protein apomyoglobin (apoMb), bearing the ubiquitous globin fold, has been chosen as a model substrate. On the basis of NMR secondary chemical shift analysis, we identify, for the first time, weak helical content (similar to that found in the chemically unfolded full-length protein) for the assigned residues of the chaperone-bound chain away from the chaperone binding sites. In contrast, we found that the residues corresponding to the strongest specific binding site for DnaK, examined via a short 13-mer apoMb peptide fragment matching the binding site sequence, display highly reduced helical content in their chaperone-bound form. Given that the free state of the peptide is weakly helical in isolation, we conclude that the substrate residues corresponding to the chaperone binding site undergo helix unwinding upon chaperone binding.  相似文献   

5.
Apomyoglobin (apoMb) folds through at least two partially folded forms that are detected both as transient intermediates during folding/unfolding kinetics or as stable intermediates at equilibrium. Here, I summarize the results of recent kinetic studies, which combined with detailed characterizations of equilibrium forms of the protein, provide a very detailed picture of apoMb folding process. The data are consistent with a linear U<->Ia<->Ib<->N model where compaction and structure are progressively acquired.  相似文献   

6.
Newly synthesized proteins must form their native structures in the crowded environment of the cell, while avoiding non-native conformations that can lead to aggregation. Yet, remarkably little is known about the progressive folding of polypeptide chains during chain synthesis by the ribosome or of the influence of this folding environment on productive folding in vivo. P22 tailspike is a homotrimeric protein that is prone to aggregation via misfolding of its central β-helix domain in vitro. We have produced stalled ribosome:tailspike nascent chain complexes of four fixed lengths in vivo, in order to assess cotranslational folding of newly synthesized tailspike chains as a function of chain length. Partially synthesized, ribosome-bound nascent tailspike chains populate stable conformations with some native-state structural features even prior to the appearance of the entire β-helix domain, regardless of the presence of the chaperone trigger factor, yet these conformations are distinct from the conformations of released, refolded tailspike truncations. These results suggest that organization of the aggregation-prone β-helix domain occurs cotranslationally, prior to chain release, to a conformation that is distinct from the accessible energy minimum conformation for the truncated free chain in solution.  相似文献   

7.
Currently many facets of genetic information are illdefined.In particular,how protein folding is genetically regulated has been a long-standing issue for genetics and protein biology.And a generic mechanistic model with supports of genomic data is still lacking.Recent technological advances have enabled much needed genome-wide experiments.While putting the effect of codon optimality on debate,these studies have supplied mounting evidence suggesting a role of mRNA structure in the regulation of protein folding by modulating translational elongation rate.In conjunctions with previous theories,this mechanistic model of protein folding guided by mRNA structure shall expand our understandings of genetic information and offer new insights into various biomedical puzzles.  相似文献   

8.
Two monoclonal antibodies specific for staphylococcal nuclease R (SNase R) (McAb2C9 and McAb1B8) were prepared and used to probe protein folding during peptide elongation, by measuring antibody binding to seven N-terminal fragments (SNR141, SNR135, SNR121, SNR110, SNR102, SNR79 and SNR52) of SNase R. Comparative studies of the conformations of the N-terminal fragments have shown that all seven fragments of SNase R have a certain amount of residual structure, indicating that folding may occur during elongation of the nascent peptide chain. We show that the binding abilities of the intact enzyme and its seven fragments to the monoclonal antibodies are not simply proportional to the length of the peptide chain, suggesting that there may be continuous conformational adjustment in the nascent peptide chain as new C-terminal amino acids are added. A folding intermediate close in structure to the native state but with structural features in common with SNR121 is highly populated in 0.6 M GuHCl, and is also formed transiently during folding.  相似文献   

9.
The production of preferred lipopolysaccharide O antigen chain lengths is important for the survival of pathogenic Gram-negative bacteria in different environments, yet how Wzz proteins regulate these lengths is not well understood. The Wzz2 proteins from two different serotype O11 Pseudomonas aeruginosa strains are responsible for the expression of different very long chain lengths despite high sequence homology. Site-directed mutagenesis was performed to determine whether a specific amino acid was responsible for this difference in chain length; the residue present in position 321 within the second predicted coiled-coil region was able to determine which chain length was produced. A panel of site-directed mutants introducing different amino acids at this position implicated that the charge of the amino acid affected chain length, with positively charged residues associated with shorter chain lengths. Expression data also suggested this site was important for overall stability of the protein because mutants predicted to disrupt proper folding of the α helix led to lower protein levels. Cross-linking studies found that Wzz2 proteins producing shorter chain lengths had more stable higher-order oligomers. Mapping residue 321 onto the solved Escherichia coli Wzz FepE crystal structure predicted it to be located within α helix 8, which participates in intermonomeric interactions. These data further support the observation that Wzz oligomerization is necessary for chain length regulating activity but also provide evidence that differences in complex stability or changes in the conformation of the oligomer can lead to shifts in the length of the O antigen side chain.  相似文献   

10.
Outer membrane protein A (OmpA) of Escherichia coli is a beta-barrel membrane protein that unfolds in 8 M urea to a random coil. OmpA refolds upon urea dilution in the presence of certain detergents or lipids. To examine the minimal requirements for secondary and tertiary structure formation in beta-barrel membrane proteins, folding of OmpA was studied as a function of the hydrophobic chain length, the chemical structure of the polar headgroup, and the concentration of a large array of amphiphiles. OmpA folded in the presence of detergents only above a critical minimal chain length of the apolar chain as determined by circular dichroism spectroscopy and a SDS-PAGE assay that measures tertiary structure formation. Details of the chemical structure of the polar headgroup were unimportant for folding. The minimal chain length required for folding correlated with the critical micelle concentration in each detergent series. Therefore, OmpA requires preformed detergent micelles for folding and does not adsorb monomeric detergent to its perimeter after folding. Formation of secondary and tertiary structure is thermodynamically coupled and strictly dependent on the interaction with aggregated amphiphiles.  相似文献   

11.
The folding process for newly synthesized, multispanning membrane proteins in the endoplasmic reticulum (ER) is largely unknown. Here, we describe early folding events of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC-transporter family. In vitro translation of CFTR in the presence of semipermeabilized cells allowed us to investigate this protein during nascent chain elongation. We found that CFTR folds mostly during synthesis as determined by protease susceptibility. C-terminally truncated constructs showed that individual CFTR domains formed well-defined structures independent of C-terminal parts. We conclude that the multidomain protein CFTR folds mostly cotranslationally, domain by domain.  相似文献   

12.
The rate of formation of intramolecular interactions in unfolded proteins determines how fast conformational space can be explored during folding. Characterization of the dynamics of unfolded proteins is therefore essential for the understanding of the earliest steps in protein folding. We used triplet-triplet energy transfer to measure formation of intrachain contacts in different unfolded polypeptide chains. The time constants (1/k) for contact formation over short distances are almost independent of chain length, with a maximum value of about 5 ns for flexible glycine-rich chains and of 12 ns for stiffer chains. The rates of contact formation over longer distances decrease with increasing chain length, indicating different rate-limiting steps for motions over short and long chain segments. The effect of the amino acid sequence on local chain dynamics was probed by using a series of host-guest peptides. Formation of local contacts is only sixfold slower around the stiffest amino acid (proline) compared to the most flexible amino acid (glycine). Good solvents for polypeptide chains like EtOH, GdmCl and urea were found to slow intrachain diffusion and to decrease chain stiffness. These data allow us to determine the time constants for formation of the earliest intrachain contacts during protein folding.  相似文献   

13.
Ribosome-associated chaperone Trigger Factor (TF) initiates folding of newly synthesized proteins in bacteria. Here, we pinpoint by site-specific crosslinking the sequence of molecular interactions of Escherichia coli TF and nascent chains during translation. Furthermore, we provide the first full-length structure of TF associated with ribosome-nascent chain complexes by using cryo-electron microscopy. In its active state, TF arches over the ribosomal exit tunnel accepting nascent chains in a protective void. The growing nascent chain initially follows a predefined path through the entire interior of TF in an unfolded conformation, and even after folding into a domain it remains accommodated inside the protective cavity of ribosome-bound TF. The adaptability to accept nascent chains of different length and folding states may explain how TF is able to assist co-translational folding of all kinds of nascent polypeptides during ongoing synthesis. Moreover, we suggest a model of how TF's chaperoning function can be coordinated with the co-translational processing and membrane targeting of nascent polypeptides by other ribosome-associated factors.  相似文献   

14.
15.
Organization of actin filaments into a well-organized sarcomere structure is critical for muscle development and function. However, it is not completely understood how sarcomeric actin/thin filaments attain their stereotyped lengths. In an RNAi screen in Drosophila primary muscle cells, we identified a gene, sarcomere length short (sals), which encodes an actin-binding, WH2 domain-containing protein, required for proper sarcomere size. When sals is knocked down by RNAi, primary muscles display thin myofibrils with shortened sarcomeres and increased sarcomere number. Both loss- and gain-of-function analyses indicate that SALS may influence sarcomere lengths by promoting thin-filament lengthening from pointed ends. Furthermore, the complex localization of SALS and other sarcomeric proteins in myofibrils reveals that the full length of thin filaments is achieved in a two-step process, and that SALS is required for the second elongation phase, most likely because it antagonizes the pointed-end capping protein Tropomodulin.  相似文献   

16.
Vega CA  Kurt N  Chen Z  Rüdiger S  Cavagnero S 《Biochemistry》2006,45(46):13835-13846
Hsp70 chaperones are involved in the prevention of misfolding, and possibly the folding, of newly synthesized proteins. The members of this chaperone family are capable of interacting with polypeptide chains both co- and posttranslationally, but it is currently not clear how different structural domains of the chaperone affect binding specificity. We explored the interactions between the bacterial Hsp70, DnaK, and the sequence of a model all-alpha-helical globin (apoMb) by cellulose-bound peptide scanning. The binding specificity of the full-length chaperone was compared with that of its minimal substrate-binding domain, DnaK-beta. Six specific chaperone binding sites evenly distributed along the apoMb sequence were identified. Binding site locations are identical for the full-length chaperone and its substrate-binding domain, but relative affinities differ. The binding specificity of DnaK-beta is only slightly decreased relative to that of full-length DnaK. DnaK's binding motif is known to comprise hydrophobic regions flanked by positively charged residues. We found that the simple fractional mean buried area correlates well with Hsp70's binding site locations along the apoMb sequence. In order to further characterize the properties of the minimal binding host, the stability of DnaK-beta upon chemical denaturation by urea and protons was investigated. Urea unfolding titrations yielded an apparent folding DeltaG degrees of 3.1 +/- 0.9 kcal mol-1 and an m value of 1.7 +/- 0.4 kcal mol-1 M-1.  相似文献   

17.
The elongation step of translation is a key contributor to the abundance, folding and quality of proteins and to the stability of mRNA. However, control over translation elongation has not been thoroughly investigated. In this study, a Renilla–firefly luciferase fusion reporter system was further developed to investigate the in vitro elongation rate and processivity of ribosomes independent of the initiation and termination steps. The reporter mRNA was constructed to contain a single ORF encoding in-frame Renilla luciferase, a specific domain moiety and firefly luciferase. Such a reporter structure enables the quantitative and individual evaluation of the synthesis of a specific domain. As a proof of principle, the synthesis of three protein domains of different lengths and structures was analyzed. Using a cell-free translation assay, both the elongation rate and processivity of ribosomes were shown to vary depending on the domain synthesized. Additionally, a stalling sequence consisting of ten rare arginine codons notably reduced the elongation rate and the processivity of the ribosomes. All these results are consistent with the previously known dynamics of elongation in vivo. Overall, the methodology presented in this report provides a framework for studying aspects that contribute to the elongation step of translation.  相似文献   

18.
Proteins can begin the conformational search for their native structure in parallel with biosynthesis on the ribosome, in a process termed co-translational folding. In contrast to the reversible folding of isolated domains, as a nascent chain emerges from the ribosome exit tunnel during translation the free energy landscape it explores also evolves as a function of chain length. While this presents a substantially more complex measurement problem, this review will outline the progress that has been made recently in understanding, quantitatively, the process by which a nascent chain attains its full native stability, as well as the mechanisms through which interactions with the nearby ribosome surface can perturb or modulate this process.  相似文献   

19.
Messenger RNA (mRNA) secondary structure decreases the elongation rate, as ribosomes must unwind every structure they encounter during translation. Therefore, the strength of mRNA secondary structure is assumed to be reduced in highly translated mRNAs. However, previous studies in vitro reported a positive correlation between mRNA folding strength and protein abundance. The counterintuitive finding suggests that mRNA secondary structure affects translation efficiency in an undetermined manner. Here, we analyzed the folding behavior of mRNA during translation and its effect on translation efficiency. We simulated translation process based on a novel computational model, taking into account the interactions among ribosomes, codon usage and mRNA secondary structures. We showed that mRNA secondary structure shortens ribosomal distance through the dynamics of folding strength. Notably, when adjacent ribosomes are close, mRNA secondary structures between them disappear, and codon usage determines the elongation rate. More importantly, our results showed that the combined effect of mRNA secondary structure and codon usage in highly translated mRNAs causes a short ribosomal distance in structural regions, which in turn eliminates the structures during translation, leading to a high elongation rate. Together, these findings reveal how the dynamics of mRNA secondary structure coupling with codon usage affect translation efficiency.  相似文献   

20.
《Biophysical journal》2023,122(1):20-29
The exit tunnel is the subcompartment of the ribosome that contains the nascent polypeptide chain and, as such, is involved in various vital functions, including regulation of translation and protein folding. As the geometry of the tunnel shows important differences across species, we focus on key geometrical features of eukaryote and prokaryote tunnels. We used a simple coarse-grained molecular dynamics model to study the role of the tunnel geometry in the post-translational escape of short proteins (short open reading frames [sORFs]) with lengths ranging from 6 to 56 amino acids. We found that the probability of escape for prokaryotes is one for all but the 12-mer chains. Moreover, proteins of this length have an extremely low escape probability in eukaryotes. A detailed examination of the associated single trajectories and energy profiles showed that these variations can be explained by the interplay between the protein configurational space and the confinement effects introduced by the constriction sites of the ribosome exit tunnel. For certain lengths, either one or both of the constriction sites can lead to the trapping of the protein in the “pocket” regions preceding these sites. As the distribution of existing sORFs indicates some bias in length that is consistent with our findings, we finally suggest that the constraints imposed by the tunnel geometry have impacted the evolution of sORFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号