首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of chilling and freezing temperature on membrane permeability and ATP content were studied in the leaves of cucumber ( Cucumis sativus L.) and winter rape ( Brassica napus L. var. oleifera L.) leaves, grown at different temperatures. In the winter rape leaves, the endogenous ATP content was modified by application of dinitrophenol (DNP) solutions of different concentrations. The low temperature-induced changes in membrane permeability (as monitored by the conductivity method) were found to be associated with ATP decrease, both in the chilling-sensitive and chilling-resistant (subjected to freezing) plants. In tissues showing reversible injuries, changes in ATP content preceded those in membrane permeability and the adenylate energy charge was affected slightly. In tissues showing irreversible membrane damage, the ATP content was always below 0.4 μmol (g dry weight)−1 and the adenylate energy charge was near 0.5. DNP treatment increased freezing sensitivity of winter rape leaves. In the cold-hardened winter rape leaves, however, freezing and thawing did not significantly affect ATP content or the energy charge, although the specimen showed a rather large increase in membrane permeability. In these leaves ATP content recovered about 20 h after a freezing and thawing treatment. It is proposed that a decrease in ATP supply might be the primary reason for the membrane leakiness at low temperature, both in chilling-sensitive and chilling-resistant (subjected to freezing) plants. The conclusion is, however, not true for the cold-acclimated, frostadapted cells.  相似文献   

2.
Freeze-induced cell tensions were determined by cell water relations in leaves of broadleaf evergreen species and cell cultures of grapes (Vitis spp.) and apple (Malus domestica). Cell tensions increased in response to cold acclimation in leaves of broadleaf evergreen species during extracellular freezing, indicating a higher resistance to cell volume changes during freezing in cold-hardened leaves than in unhardened leaves. Unhardened leaves, typically, did not develop tension greater than 3.67 MPa, whereas cold-hardened leaves attained tensions up to 12 MPa. With further freezing there was a rapid decline and a loss of tension in unhardened leaves of all the broadleaf evergreen species studied. Also, similar results were observed in cold-hardened leaves of all of the species except in those of inkberry (Ilex glabra) and Euonymus fortunei, in which negative pressures persisted below -40[deg]C. Abscisic acid treatment of inkberry and Euonymus kiautschovica resulted in increases in freeze-induced tensions in leaves, suggesting that both cold acclimation and abscisic acid have similar effects on freezing behavior[mdash] specifically on the ability of cell walls to undergo deformation. Decreases in peak tensions were generally associated with lethal freezing injury and may suggest cavitation of cellular water. However, in suspension-cultured cells of grapes and apple, no cell tension was observed during freezing. Cold acclimation of these cells resulted in an increase in the cell-wall strength and a decrease in the limiting cell-wall pore size from 35 to 22 A in grape cells and from 29 to 22 A in apple cells.  相似文献   

3.
光合作用的冰冻伤害研究大多利用离体叶片、原生质体,甚至叶绿体类囊体进行人工冰冻预处理,关于室外自然温度下出现的植物光合作用冰冻伤害,特别是冰冻影响光合量子效率的研究报告还很少。虽然光合碳同化受抑是最早可以测到的冰冻伤害征状,但其机理迄今不清楚(Krause等1982,Krause和Klosson1983)。  相似文献   

4.
5.
Changes in the antigenic content of resting cysts of ciliates after freezing at −196 °C have been studied. The results obtained from experiments with native immunosera using the immobilizing and agglutinating activity allow the conclusion that freezing causes significant changes in the cyst surface antigens. Ultraviolet irradiation did not cause any notable shifts in the surface antigen composition.By means of immunodiffusion methods, changes in the soluble antigen set of cysts after freezing have been demonstrated. Freezing induces a specific simplification in the antigen spectrum and a new antigen appearance characteristic of cysts subjected to freezing.  相似文献   

6.
Seven-day-old seedlings of winter wheat (Triticum aestivum L.) in a growth chamber were exposed to ultraviolet-B (UV-B) irradiation for 20 days with daily biologically effective (BE) UV-B irradiation (UV-BBE) at low (4.2 kJ m−2 day−1, LUVB) and high (7.0 kJ m−2 day−1, HUVB) levels. The UV-B irradiated seedlings and the control without UV-B irradiation were then subjected to freezing stress at −6 °C for 6 h and recovered to 20 °C with gradually increased temperature, to investigate the effects of UV-B irradiation on freezing tolerance. During the UV-B exposure, both LUVB and HUVB irradiated seedlings had lower half lethal temperature (LT50) values in comparison with the control, and LUVB more effectively decreased the LT50 values than HUVB. Moreover, foliar concentrations of thiobarbituric acid reactive substances (TBARS) in the UV-B irradiated seedlings were lower than that of control after recovery from freezing stress. Hydrogen peroxide (H2O2) rapidly increased after UV-B exposure, as did activity of superoxide dismutase (SOD). After recovery from freezing stress, activities of catalase (CAT), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased in both LUVB and HUVB leaves, whereas activities of ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) significantly increased only in the LUVB leaves. Furthermore, the ascorbic acid (AsA) concentration and reduced-to-oxidized ascorbate ratio (AsA/DHA) increased in the LUVB leaves both at the end of UV-B exposure and after recovery from freezing stress. However, the reduced glutathione (GSH) concentration, together with reduced-to-oxidized glutathione ratio (GSH/GSSG) increased in both LUVB and HUVB leaves after recovery from freezing stress. UV-B irradiation increased freezing tolerance in winter wheat seedlings, and this response appears to involve the scavenging enzymes and compounds in the antioxidant defense systems, particularly the ascorbate–glutathione cycle.  相似文献   

7.
Low temperature induced physiological changes that increased the ability of second-stage juveniles of Meloidogyne hapla to survive external freezing. Second-stage juveniles in polyethylene glycol solution were exposed to -4 , 0, 4, or 24 C, and then their survival was determined after ice-induced freezing of the suspensions at - 4 C for 24 hours. Survival was greatest for juveniles exposed to 4 C before freezing. Some juveniles were killed by exposure to - 4 C before freezing of the suspensions. The percentage of juveniles surviving freezing increased from about 30% to 80% within 12 hours of exposure to 4 C. This tolerance of external freezing was lost during subsequent exposure to 24 C. Longer exposures, of 1 to 15 days, to low temperature did not increase the percentage surviving external freezing, as compared to the 12-hour exposure, but reduced the tolerance of external freezing lost during subsequent exposure to 24 C for 48 hours.  相似文献   

8.
Frost hardiness of spinach (Spinacia oleracea L.) leaves was increased by high concentrations of NaCl in the hydroponic culture medium. Freezing damage was determined by measurement of slow chlorophyll fluorescence quenching after freezing of leaves. Both the osmolality of the leaf sap and forst hardiness of the leaves were linearly correlated with the salt concentration in the hydroponic culture medium. Freezing damage occurred, irrespective of the extent of frost hardening, when dehydration of cells during extracellular ice formation decreased cellular volume to approximately 14% of the volume of unfrozen cells. The resistance of isolated, washed thylakoids against mechanical and chemical damage by freezing was investigated. Chemical damage by freezing caused by salt accumulation was measured as release of chloroplast coupling factor (CF1; EC 3.6.1.3), and mechanical damage was measured as release of the lumenal protein plastocyanin from the membranes during an in-vitro freeze-thaw cycle. Isolated thylakoids from salt-treated frost-hardy spinach and those from plants hardened under natural conditions did not exhibit improved tolerance against chemical freezing stress exerted by high salt concentrations. They were, however, more hardy than thylakoids from unhardened control leaves against mechanical damage by freezing.Abbreviation CF1 peripheral part of chloroplast coupling factor ATPase  相似文献   

9.
Ness JH 《Oecologia》2003,134(2):210-218
Inducible anti-herbivore defenses are found within many plant taxa, but there are fewer examples of inducible indirect defenses that incorporate the third trophic level. This study links caterpillar foraging, herbivore-induced changes in extrafloral nectar production, and the attraction of ants to vulnerable leaves and plants. Catalpa bignonioides Walter (Bignoniaceae) uses extrafloral nectar to attract ant (Forelius pruinosus(Roger)) bodyguards in response to Ceratomia catalpae (Boisduval)(Lepidoptera: Sphingidae) herbivory. Ant density per leaf increased with the sugar content of extrafloral nectar excreted by sampled leaves, suggesting that increased nectar production could attract or retain beneficial arthropods. The masses of sucrose, fructose, glucose and all three sugars combined in the extrafloral nectar increased two- to three-fold on attacked leaves within 36 h of the experimental addition of caterpillars. Production rates for neighboring non-attacked leaves and non-attacked leaves on adjacent plants did not differ over the same time period. Ant attendance at caterpillar-attacked leaves increased two- to three-fold within 24 h of herbivory, relative to attendance at neighboring, undamaged leaves. These attacked leaves attracted the fewest ants prior to the onset of herbivory, suggesting the specialist caterpillar may avoid or be excluded from leaves with more bodyguards. The removal of leaf tissue with scissors did not alter ant attendance at damaged leaves. Mean ant attendance per leaf on attacked plants increased 6- to 10-fold after caterpillar introduction, relative to adjacent unattacked plants. The plant's biotic defense thus operates at two scales; the number of bodyguards (ant workers) on the plant increases after attack, and this increased workforce is biased towards attacked leaves within plants. Fewer caterpillars remained on plants that attracted greater numbers of ants, suggesting these bodyguards benefit the plant.  相似文献   

10.
Cold-Induced Freezing Tolerance in Arabidopsis   总被引:34,自引:0,他引:34  
Changes in the physiology of plant leaves are correlated with enhanced freezing tolerance and include accumulation of compatible solutes, changes in membrane composition and behavior, and altered gene expression. Some of these changes are required for enhanced freezing tolerance, whereas others are merely consequences of low temperature. In this study we demonstrated that a combination of cold and light is required for enhanced freezing tolerance in Arabidopsis leaves, and this combination is associated with the accumulation of soluble sugars and proline. Sugar accumulation was evident within 2 h after a shift to low temperature, which preceded measured changes in freezing tolerance. In contrast, significant freezing tolerance was attained before the accumulation of proline or major changes in the percentage of dry weight were detected. Many mRNAs also rapidly accumulated in response to low temperature. All of the cold-induced mRNAs that we examined accumulated at low temperature even in the absence of light, when there was no enhancement of freezing tolerance. Thus, the accumulation of these mRNAs is insufficient for cold-induced freezing tolerance.  相似文献   

11.
Cold temperature acclimation in strawberry (Fragaria virginiana) leaves apparently involves the alteration of cellular osmotic properties. Alterations in leaf osmotic potential were closely correlated with alterations in soluble carbohydrate content of the leaf tissue and changing temperatures. Leaf starch content was inversely related to soluble carbohydrate levels, suggesting that starch is a partial source of osmoticum during osmotic adjustment associated with cold temperature stress. Free amino acid changes were more closely linked to senescence and growth processes while changes in ion content suggested a rapid mobilization of solutes at the onset of freezing temperatures. This was supported by changes in whole plant gradients in leaf osmotic potential before and after exposure to freezing temperatures. In terms of freezing resistance and the role of osmotic adjustment in the development of resistance, it was found that of all leaves undergoing osmotic adjustment only the younger leaves survived, suggesting an age-dependent component to freezing resistance in leaves. Freezing resistance appears to involve alterations in several cellular properties that act in concert to confer a hardy state of the tissue. Although osmotic adjustment may be an important component of the final combination of cellular properties, this study indicates that solute accumulation does not function alone to confer freezing resistance.  相似文献   

12.
Salix paraplesia was used as an experimental model to investigate the effect of short day photoperiod (SD) and low temperature (LT) on development of freezing tolerance and on endogenous abscisic acid (ABA) contents. We characterized differences in SD and LT-induced cold acclimation in three ecotypes from different altitudes. The results demonstrated that cold acclimation could be triggered by exposing the plants to SD or LT alone, and that a combination of the different treatments had an additive effect on freezing tolerance in all ecotypes studied. However, the high altitudinal ecotype was more responsive to SD and LT than the low altitudinal ecotype. Development of freezing tolerance induced by SD and LT was accompanied by changes in ABA contents which were ecotype-dependent. Although the stem had higher initial freezing tolerance, the leaves developed freezing tolerance more quickly than the stem and thus leaves may provide an interesting experimental system for physiological and molecular studies of cold acclimation in woody plants.  相似文献   

13.
Effect of strong (75%) and complete (100%) artificial defoliation of weeping birch Betula pendula Roth on the dynamics of soluble sugars and phenols—flavonols, catechins, and tannins in leaves of damaged plants was investigated. Within the first 15 days after strong defoliation of birch, no changes were found in leaf contents of flavonol, catechin, and tannin. The concentration of sugars first increased but, on the 10th day after defoliation, it returned to the normal level. One year after strong defoliation, the lead concentrations of catechins and tannins in damaged trees increased, while the concentrations of flavonols and sugars did not differ from that in leaves of control trees. In two years after strong damage, the increased concentration of tannins was retained, while catechins and sugars remained at the control level. One year after complete (100%) artificial defoliation, the leaf concentrations of flavonols and sugars in damaged plants did not differ from that in control plants, while the leaf concentrations of catechins and tannins exceeded those in control plants. Two years after complete damage, the leaves contained an increased amount of tannins, whereas the amounts of catechins, flavonols, and sugars did not differ from the control levels.  相似文献   

14.
Subdominant evergreen broad-leaved plants occurring in deciduous forests throughout temperate zones have only a short window of optimum photoassimilation in spring before canopy closure. Yet increasing photosynthetic and metabolic activity occurs concurrently with reductions in freezing resistance, resulting in vulnerability of plant tissues to late spring freezing events. Our goal was to document the temporal patterns of photosynthesis versus freezing resistance during spring in adult and juvenile leaf phenotypes of Hedera helix in Switzerland. Freezing resistances in all leaves were well below long-term minimum temperatures experienced at the study site, with adult leaf phenotypes in the forest canopy being more freezing resistant than juvenile leaves occurring closer to the ground. Reductions in freezing resistance were followed by increases in leaf photosynthetic capacities, which appeared synchronized among leaf phenotypes. Adult canopy leaves maintained a higher freezing resistance but lower photosynthetic capacity than juvenile leaves through the end of winter and into early spring. However, shortly after the cessation of freezing temperatures, adult leaves greatly increased their photosynthetic capacity relative to juvenile leaves, yet maintained freezing resistances sufficient to resist late spring freezing events. These patterns highlight the importance of the tradeoff in H. helix between exposure to potentially damaging cold temperatures in late spring and the need for high photosynthetic carbon gains before full canopy closure.  相似文献   

15.
Increases of extreme weather events are predicted to occur with ongoing climate change, but impacts to freshwaters have rarely been examined. We assessed the effects of temperature on leaf‐litter associated fungi by exposing leaves colonized in a stream to 18 °C (control), 25 °C, or 18 °C after freezing. Treatments altered fungal dominance on leaves; Lunulospora curvula sporulation was stimulated by increased temperature and stopped by the freeze‐thaw treatment. Fungal biomass and diversity decreased at 18 °C after freezing, but not at 25 °C. Leaf decomposition was retarded by the freeze‐thaw treatment (k = –0.024 day–1) and stimulated at 25 °C (k = –0.069 day–1). Results suggest that occasional freezing may constrain fungal diversity and their ecological functions, while warming appears to accelerate plant‐litter decomposition in streams. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The objective of this study was to determine the influence of freezing versus hypertonic stress on the ATPase activity and polypeptide profile of the plasma membrane of nonacclimated winter rye leaves (Secale cereale L. cv Puma). Exposure of leaves to hypertonic sorbitol solutions resulted in a similar extent of injury as did freezing to subzero temperatures that resulted in equivalent osmotic stresses. When isolated with a two-phase partition system of aqueous polymers, the plasma membrane fractions of control, frozen, or hypertonically stressed leaves were of similar purity as judged by the distribution of marker enzyme activities. When assayed in the presence of Triton X-100 (0.05% w/w), ATPase activity was decreased only slightly in plasma membrane fractions isolated from either frozen or hypertonically stressed leaves. In contrast, the specific ATPase activity of the plasma membrane fractions assayed in the absence of Triton X-100 increased following freezing or hypertonic stress. As a result, the Triton X-100 stimulation of the ATPase activity decreased significantly from sixfold in control leaves to threefold in lethally stressed leaves and reflects an increase in the permeability of the plasma membrane vesicles. The increased permeability was also manifested as a decrease in H+-transport following exposure to freezing or hypertonic stress. Both freezing and hypertonic exposure at subzero temperatures altered the polypeptide profile of the plasma membrane, but with the exception of one polypeptide, there was no difference between the two treatments.  相似文献   

17.
Infrared video thermography was used to observe ice nucleation temperatures, patterns of ice formation, and freezing rates in nonacclimated and cold acclimated leaves of a spring (cv Quest) and a winter (cv Express) canola (Brassica napus). Distinctly different freezing patterns were observed, and the effect of water content, sugars, and soluble proteins on the freezing process was characterized. When freezing was initiated at a warm subzero temperature, ice growth rapidly spread throughout nonacclimated leaves. In contrast, acclimated leaves initiated freezing in a horseshoe pattern beginning at the uppermost edge followed by a slow progression of ice formation across the leaf. However, when acclimated leaves, either previously killed by a slow freeze (2 degrees C h(-1)) or by direct submersion in liquid nitrogen, were refrozen their freezing pattern was similar to nonacclimated leaves. A novel technique was developed using filter paper strips to determine the effects of both sugars and proteins on the rate of freezing of cell extracts. Cell sap from nonacclimated leaves froze 3-fold faster than extracts from acclimated leaves. The rate of freezing in leaves was strongly dependent upon the osmotic potential of the leaves. Simple sugars had a much greater effect on freezing rate than proteins. Nonacclimated leaves containing high water content did not supercool as much as acclimated leaves. Additionally, wetted leaves did not supercool as much as nonwetted leaves. As expected, cell solutes depressed the nucleation temperature of leaves. The use of infrared thermography has revealed that the freezing process in plants is a complex process, reminding us that many aspects of freezing tolerance occur at a whole plant level involving aspects of plant structure and metabolites rather than just the expression of specific genes alone.  相似文献   

18.
The relationship between freezing tolerance and sugar contentin cabbage seedlings was investigated. Seedlings exposed tonon-freezing low temperature (5 °C) acquired freezing tolerancedown to -6 °C. The degree of freezing tolerance increasedwith duration of exposure to low temperature (up to 10 d). Sucrose,glucose, fructose and myo -inositol were detected as solublesugars in cabbage leaves, and all soluble sugars, except formyo -inositol, and starch increased gradually during cold acclimationsuch that their levels were positively correlated with the degreeof freezing tolerance. The induced freezing tolerance was attributednot to ontogenetic changes but to cold acclimation. However,the induced freezing tolerance was lost after only 1 d of deacclimationat control temperatures, and this change was associated witha large reduction in sugar content. These results reveal that the sugar content of cabbage leavesis positively correlated with freezing tolerance. Brassica oleracea L.; cabbage; cold acclimation; deacclimation; freezing tolerance; sugars  相似文献   

19.
The change of chlorophyll fluorescence parameters in froze leaves of 3 leaf-age seedlings were examined using two winter barley cultivars (Chumai 1 and Mo 103) differing in cold tolerance to investigate physiological response to low temperature as affected by cold acclimation (under 3/1 degrees C, day/night for 5 days before freezing treatment) and irradiation size (high irradiance: 380+/-25 micromol m(-2)s(-1) and low irradiance: 60+/-25 micromol m(-2)s(-1)) during recovery. The results showed that non-lethal freezing shock (exposed to -8 degrees C for 18 h) did not obviously affect maximum quantum efficiency in photosystem II (PSII), but dramatically increased non-photochemical quenching and reduced effective quantum yield in PSII. Cold acclimation significantly improved stability of photosynthetic function of leaves after freezing stress through buffering excessive energy and alleviating photoinhibition during recovery, indicating it increased recovery ability of barley plants from freezing injury. High irradiance was quite harmful to the stability of PSII in barley plants during recovery from freezing injury. The electron transport rate of PSII varied with cold-acclimation, irradiance and genotype. Cold acclimation caused significant increase in electron transport rate of PSII for relatively tolerant cultivar Mo 103, but not for relatively sensitive cultivar Chumai 1. It can be concluded that some chlorophyll fluorescence parameters during recovery from freezing shock may be used as the indicators in identification and evaluation of cold tolerance in barley.  相似文献   

20.
Mechanical stimulation of plants can be caused by various abiotic and biotic environmental factors. Apart from the negative consequences, it can also cause positive changes, such as acclimatization of plants to stress conditions. Therefore, it is necessary to study the physiological and biochemical mechanisms underlying the response of plants to mechanical stimulation. Our aim was to evaluate the response of model plant Arabidopsis thaliana to a moderate force of 5 N (newton) for 20 s, which could be compared with the pressure caused by animal movement and weather conditions such as heavy rain. Mechanically stimulated leaves were sampled 1 h after exposure and after a recovery period of 20 h. To study a possible systemic response, unstimulated leaves of treated plants were collected 20 h after exposure alongside the stimulated leaves from the same plants. The effect of stimulation was assessed by measuring oxidative stress parameters, antioxidant enzymes activity, total phenolics, and photosynthetic performance. Stimulated leaves showed increased lipid peroxidation 1 h after treatment and increased superoxide dismutase activity and phenolic oxidation rate after a 20-h recovery period. Considering photosynthetic performance after the 20-h recovery period, the effective quantum yield of the photosystem II was lower in the stimulated leaves, whereas photochemical quenching was lower in the unstimulated leaves of the treated plants. Nonphotochemical quenching was lower in the stimulated leaves 1 h after treatment. Our study suggested that plants sensed moderate force, but it did not induce pronounced change in metabolism or photosynthetic performance. Principal component analysis distinguished three groups–leaves of untreated plants, leaves analysed 1 h after stimulation, while stimulated and unstimulated leaves of treated plants analysed 20 h after treatment formed together the third group. Observed grouping of stimulated and unstimulated leaves of treated plants could indicate signal transduction from the stimulated to distant leaves, that is, a systemic response to a local application of mechanical stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号