首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Secondary metabolite signalling in host-parasitic plant interactions   总被引:7,自引:0,他引:7  
The parasitic weeds Orobanche and Striga spp. are a serious threat to agriculture in large parts of the world. The lifecycle of the parasitic weeds is closely regulated by the presence of their hosts, and secondary metabolites that are produced by host plants play an important role in this interaction. Model plants, such as Arabidopsis and maize mutant collections, have been increasingly used to study these chemical signals, especially those host-produced stimulants that induce the germination of parasite seeds.  相似文献   

2.
Witchweeds (Striga spp.) and broomrapes (Orobanche spp.) are obligate root parasitic plants on economically important field and horticultural crops. The parasites' seeds are induced to germinate by root-derived chemical signals. The radicular end is transformed into a haustorium which attaches, penetrates the host root and establishes connection with the vascular system of the host. Reactions of Lotus japonicus, a model legume for functional genomics, were studied for furthering the understanding of host-parasite interactions. Lotus japonicus was compatible with Orobanche aegyptiaca, but not with Orobanche minor, Striga hermonthica and Striga gesnerioides. Orobanche minor successfully penetrated Lotus japonicus roots, but failed to establish connections with the vascular system. Haustoria in Striga hermonthica attached to the roots, but penetration and subsequent growth of the endophyte in the cortex were restricted. Striga gesnerioides did not parasitize Lotus japonicus. Among seven mutants of Lotus japonicus (castor-5, har1-5, alb1-1, ccamk-3, nup85-3, nfr1-3 and nsp2-1) with altered characteristics in relation to rhizobial nodulation and mycorrhizal colonization, castor-5 and har1-5 were parasitized by Orobanche aegyptiaca with higher frequency than the wild type. In contrast, Orobanche aegyptiaca tubercle development was delayed on the mutants nup85-3, nfr1-3 and nsp2-1. These results suggest that nodulation, mycorrhizal colonization and infection by root parasitic plants in Lotus japonicus may be modulated by similar mechanisms and that Lotus japonicus is a potential model legume for studying plant-plant parasitism.  相似文献   

3.
寄生植物种子萌发特异性及其与寄主的识别机制   总被引:9,自引:1,他引:8  
寄生植物广泛分布于不同的生态环境中,并具有不同的生育习性及与寄主识别特性.本文阐述了根寄生植物列当属和独脚金属种子萌发的特异性,以及目前已发现的寄生植物种子萌发的信号物质,并就不同萌发信号物质、植物激素、真菌代谢物在寄生植物种子识别寄主中的作用以及寄生植物种子预培养阶段的呼吸作用特性与萌发信号物质的活化机理等做了综述.探讨了各种列当不同分化类型的愈伤组织诱导、离体无菌侵染新系统及其在寄生植物与寄主互作识别研究中的应用,提出了寄生植物与寄主识别机理研究中存在的问题并对研究前景进行了展望.  相似文献   

4.
5.
Strigolactones are germination stimulants for seeds of the root parasitic weeds, Striga and Orobanche spp. The imino analog of GR24 showed moderate germination stimulating activity against the seeds of S. hermonthica. The seed germination stimulating activity of some phenyliminoacetates and phenyliminoacetonitriles was also examined. The degree of activity of the phenyliminoacetate was less than that of the phenylacrylates. On the other hand, the degree of activity of the phenyliminoacetonitrile was comparable to that of the phenylacrylonitriles. Among the tested compounds, the 3-pyridyliminoacetonitrile showed higher activity against the seeds of O. crenata than GR24. These findings demonstrate that it is not always essential to have the Michael acceptor of the C-D ring junction moiety which has been proposed to react with nucleophilic species presented at the target site to enhance the activity.  相似文献   

6.
Yoneyama K  Yoneyama K  Takeuchi Y  Sekimoto H 《Planta》2007,225(4):1031-1038
Plant derived sesquiterpene strigolactones, which have previously been characterized as germination stimulants for root parasitic plants, have recently been identified as the branching factors which induce hyphal branching morphogenesis, a critical step in host recognition by arbuscular mycorrhizal (AM) fungi. We show here that, in red clover plants (Trifolium pratense L.), which is known as a host for both AM fungi and the root holoparasitic plant Orobanche minor Sm., reduced supply of phosphorus (P) but not of other elements examined (N, K, Mg, Ca) in the culture medium significantly promotes the release of a strigolactone, orobanchol, by the roots of this plant. In red clover plants, the level of orobanchol exudation appeared to be regulated by P availability and was in good agreement with germination stimulation activity of the root exudates. This implies that under P deficiency, plant roots attract not only symbiotic fungi but also root parasitic plants through the release of strigolactones. This is the first report demonstrating that nutrient availability influences both symbiotic and parasitic interactions in the rhizosphere.  相似文献   

7.
Striga spp. are obligate parasitic weeds of tropical cereals and generally have the same host range as rhizospheric bacteria of the genus Azospirillum. Four strains of Azospirillum brasilense, isolated from soil where sorghum is grown, have been tested for their effect on germination of Striga hermonthica seeds and on cereal (Sorghum vulgare) growth. Two out of four strains assayed significantly inhibited germination of the parasite. Moreover, one of the two strains showed a plant growth promoting (PGPR) effect.  相似文献   

8.
Strigol: biogenesis and physiological activity   总被引:2,自引:0,他引:2  
The role played by molecules of the strigolactone family in stimulating the germination of seeds of parasitic weeds of the genera Striga, Orobanche and Alectra has never been clearly elucidated. The biogenesis of these unusual terpenoid lactones, originally identified in minute quantities in the root exudates of a small number of host plants and two or three "false hosts", also remains obscure. These lactones, as the chemical signals which initiate the life cycle of Striga, are consequently at the forefront of the Striga research effort. This paper reviews recent key discoveries relating to the biosynthesis and mode of action of strigolactones, and summarises the evidence suggesting that these molecules may be far more widely distributed and have a greater physiological significance than has hitherto been appreciated.  相似文献   

9.
根寄生植物种子萌发刺激物研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
周峰  陈君  徐荣  于晶 《植物生态学报》2009,33(3):607-616
根寄生植物是被子植物中一类寄生在寄主根部, 以摄取寄主水分和营养物质为生的特殊植物类群, 其种子萌发需要寄主萌发刺激物的诱导。该文主要阐述根寄生植物种子萌发的特异性, 以及目前已发现的刺激种子萌发的信号物质及其调节机制和生物合成途径, 并就萌发刺激物的识别机制及其在根寄生植物或丛枝菌根真菌与寄主建立寄生关系过程中所起的作用进行综述, 提出根寄生植物种子萌发研究中存在的问题, 并对其研究前景进行了展望。  相似文献   

10.
The germination stimulants for root parasitic plants Striga and Orobanche produced by cotton (Gossypium hirsutum L.) were examined in detail. Seeds of cotton were germinated and grown on glass wool wetted with sterile distilled water in sterile filter units. The root exudate was collected daily and extracted with ethyl acetate. Each of these ethyl acetate extracts was analyzed directly by high-performance liquid chromatography linked with tandem mass spectrometry (LC/MS/MS). The results demonstrate that cotton roots exuded strigol and strigyl acetate, but no other known strigolactones such as orobanchol and alectrol. The production of strigol was detected even in the root exudate collected during the first 24 h of incubation and reached a maximum 5-7 days later. The average exudation of strigol and strigyl acetate during the incubation period was ca. 15 and 2 pg/plant/day, respectively, indicating that strigol mainly contributed to germination stimulation by the cotton root exudate.  相似文献   

11.
* Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). * Strigolactone production under phosphate starvation, in the presence of the carotenoid biosynthesis inhibitor fluridone and in the abscisic acid (ABA) mutant notabilis were assessed using a germination bioassay with seeds of Orobanche ramosa; a hyphal branching assay with Gigaspora spp; and by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis. * The root exudates of tomato cv. MoneyMaker induced O. ramosa seed germination and hyphal branching in AM fungi. Phosphate starvation markedly increased, and fluridone strongly decreased, this activity. Exudates of notabilis induced approx. 40% less germination than the wild-type. The LC-MS/MS analysis confirmed that the biological activity and changes therein were due to the presence of several strigolactones; orobanchol, solanacol and two or three didehydro-orobanchol isomers. * These results show that the AM branching factors and parasitic plant germination stimulants in tomato root exudate are strigolactones and that they are biosynthetically derived from carotenoids. The dual activity of these signalling compounds in attracting beneficial AM fungi and detrimental parasitic plants is further strengthened by environmental conditions such as phosphate availability.  相似文献   

12.
Parasitic plants are plants that connect with a haustorium to the vasculature of another, host, plant from which they absorb water, assimilates, and nutrients. Because of this parasitic lifestyle, parasitic plants need to coordinate their lifecycle with that of their host. Parasitic plants have evolved a number of host detection/host response mechanisms of which the germination in response to chemical host signals in one of the major families of parasitic plants, the Orobanchaceae, is a striking example. In this update review, we discuss these germination stimulants. We review the different compound classes that function as germination stimulants, how they are produced, and in which host plants. We discuss why they are reliable signals, how parasitic plants have evolved mechanisms that detect and respond to them, and whether they play a role in host specificity. The advances in the knowledge underlying this signaling relationship between host and parasitic plant have greatly improved our understanding of the evolution of plant parasitism and are facilitating the development of more effective control measures in cases where these parasitic plants have developed into weeds.

Root parasitic plants grow on the roots of other plants and germinate only in the presence of that host, on which they completely depend, through the perception of host presence signaling molecules called germination stimulants.

Outstanding questions
  • Have we overlooked the role of germination stimulants in facultative parasites?
  • What is the biological relevance of the observation that many plant species produce and secrete a range of different strigolactones?
  • Have parasitic plants evolved mechanisms to compensate for low phosphorus availability, a condition that stimulates their germination?
  • What is the contribution of the HTL strigolactone receptors to host specificity in parasitic plants or does downstream signaling play a role?
  • What other, nonstrigolactone, germination stimulants can parasitic plants respond to and does this require adaptation in the HTL receptors?
  • What is the role of germination and underlying mechanism in the rapid adaptation of (orobanchaceous) parasitic plants to a new host?
  相似文献   

13.
Strigolactones are host factors that stimulate seed germination of parasitic plant species such as Striga and Orobanche. This hormone is also important in shoot branching architecture and photomorphogenic development. Strigolactone biosynthetic and signaling mutants in model systems, unlike parasitic plants, only show seed germination phenotypes under limited growth condition. To understand the roles of strigolactones in seed germination, it is necessary to develop a tractable experimental system using model plants such as Arabidopsis. Here, we report that thermoinhibition, which involves exposing seeds to high temperatures, uncovers a clear role for strigolactones in promoting Arabidopsis seed germination. Both strigolactone biosynthetic and signaling mutants showed increased sensitivity to seed thermoinhibition. The synthetic strigolactone GR24 rescued germination of thermoinbibited biosynthetic mutant seeds but not a signaling mutant. Hormone analysis revealed that strigolactones alleviate thermoinhibition by modulating levels of the two plant hormones, GA and ABA. We also showed that GR24 was able to counteract secondary dormancy in Arabidopsis ecotype Columbia (Col) and Cape Verde island (Cvi). Systematic hormone analysis of germinating Striga helmonthica seeds suggested a common mechanism between the parasitic and non-parasitic seeds with respect to how hormones regulate germination. Thus, our simple assay system using Arabidopsis thermoinhibition allows comparisons to determine similarities and differences between parasitic plants and model experimental systems for the use of strigolactones.  相似文献   

14.
The strigolactones are internal and rhizosphere signalling molecules in plants that are biosynthesised through carotenoid cleavage. They are secreted by host roots into the rhizosphere where they signal host-presence to the symbiotic arbuscular mycrorrhizal (AM) fungi and the parasitic plants of the Orobanche, Phelipanche and Striga genera. The seeds of these parasitic plants germinate after perceiving these signalling molecules. After attachment to the host root, the parasite negatively affects the host plant by withdrawing water, nutrients and assimilates through a direct connection with the host xylem. In many areas of the world these parasites are a threat to agriculture but so far very limited success has been achieved to minimize losses due to these parasitic weeds. Considering the carotenoid origin of the strigolactones, in the present study we investigated the possibilities to reduce strigolactone production in the roots of plants by blocking carotenoid biosynthesis using carotenoid inhibitors. Hereto the carotenoid inhibitors fluridone, norflurazon, clomazone and amitrole were applied to rice either through irrigation or through foliar spray. Irrigation application of all carotenoid inhibitors and spray application of amitrole significantly decreased strigolactone production, Striga hermonthica germination and Striga infection, also in concentrations too low to affect growth and development of the host plant. Hence, we demonstrate that the application of carotenoid inhibitors to plants can affect S. hermonthica germination and attachment indirectly by reducing the strigolactone concentration in the rhizosphere. This finding is useful for further studies on the relevance of the strigolactones in rhizosphere signalling. Since these inhibitors are available and accessible, they may represent an efficient technology for farmers, including poor subsistence farmers in the African continent, to control these harmful parasitic weeds.  相似文献   

15.
Striga is a parasitic weed attacking mainly maize, sorghum, millet and cowpea. Studying the interaction between rice and Striga is valuable since rice is a model monocot. In this paper, the susceptibility of different rice cultivars to S. hermonthica was tested and quantitative trait loci (QTL) for Striga tolerance mapped on the Bala x Azucena F(6) population. Seven rice cultivars were grown with and without S. hermonthica for 14 wk. For the mapping experiment, 115 recombinant inbred lines (RILs), along with Azucena and Bala, were grown with and without Striga for 11 wk. Rice cultivars tested had different susceptibilities to Striga, ranging from highly susceptible to completely resistant. Azucena and Bala differed in the speed of Striga emergence and the impact on host growth. A genomic region between positions 139 and 166 cM on chromosome 1 was identified containing strong QTL (LOD = 4.9-15.7) for all traits measured. This indicates that genes for Striga tolerance exist in rice germplasm and the mapped QTL can be further studied to promote understanding of the nature of resistance/tolerance and breeding for Striga-resistant crop plants.  相似文献   

16.
Investigations were carried out at the Gezira Research Farm in the Anglo-Egyptian Sudan. The greater majority of the seeds of Striga hermonthica can only be germinated by excretions from roots of certain plants not all of which can act as hosts for this parasite. Unless it becomes attached to a host plant, the Striga seedling dies. The growing of those plants whose roots can stimulate the germination of Striga seed but cannot be parasitized by it, may be a means of ridding infested land of this parasite. Green ovaries picked from flowering plants produce viable seeds if left to dry. Sorghum is sown in the field during the rainy season, viz. June to October: the earlier the sowing date within this period the greater is the Striga attack. In the field Striga seeds are distributed in the soil to a depth of at least 15 in. When Striga seeds are evenly distributed through the soil, the number of Striga seedlings attached to a sorghum root is proportional to the root's development. Size of sorghum seed has no effect on the root size of a sorghum plant and consequently no effect on the degree of parasitism. The effect of severe Striga attack on the sorghum plant is to produce a reduction of about 60% in leaf and root weight. No reduction of Striga attack is obtained when various micro-elements are coated on sorghum seeds before sowing. Field and laboratory experiments show that light irrigation of the sorghum crop during the normal sowing period increases the Striga attack and heavy irrigation decreases it. This result was not obtained in laboratory experiments when sorghum was sown out of season. Striga attack is lessened when conditions favouring growth of the sorghum crop are improved.  相似文献   

17.
Strigolactones (SLs) trigger germination of parasitic plant seeds and hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi. There is extensive structural variation in SLs and plants usually produce blends of different SLs. The structural variation among natural SLs has been shown to impact their biological activity as hyphal branching and parasitic plant seed germination stimulants. In this study, rice root exudates were fractioned by HPLC. The resulting fractions were analyzed by MRM-LC-MS to investigate the presence of SLs and tested using bioassays to assess their Striga hermonthica seed germination and Gigaspora rosea hyphal branching stimulatory activities. A substantial number of active fractions were revealed often with very different effect on seed germination and hyphal branching. Fractions containing (−)−orobanchol and ent-2''-epi-5-deoxystrigol contributed little to the induction of S. hermonthica seed germination but strongly stimulated AM fungal hyphal branching. Three SLs in one fraction, putative methoxy-5-deoxystrigol isomers, had moderate seed germination and hyphal branching inducing activity. Two fractions contained strong germination stimulants but displayed only modest hyphal branching activity. We provide evidence that these stimulants are likely SLs although no SL-representative masses could be detected using MRM-LC-MS. Our results show that seed germination and hyphal branching are induced to very different extents by the various SLs (or other stimulants) present in rice root exudates. We propose that the development of rice varieties with different SL composition is a promising strategy to reduce parasitic plant infestation while maintaining symbiosis with AM fungi.  相似文献   

18.
Parasitic plants cause devastating losses to crop yields in several parts of the world. The root parasites, Striga and Orobanche species, use chemical signalling molecules that are exuded by the roots of plants in extremely low concentrations, and that can induce germination of the seeds of these parasites, to detect the vicinity of a suitable host. The majority of the so far identified germination stimulants belong to the strigolactones. It was recently discovered that this class of compounds can also induce hyphal branching in the symbiotic arbuscular mycorrhizal fungi, a process involved in root colonisation. The elucidation of the structure of new strigolactones is hindered by their low abundance and instability. In the present paper, we have used existing knowledge on the structure of strigolactones and combined it with recently obtained insight in the biosynthetic origin of these signalling compounds. This enabled us to postulate structures for strigolactones that have been isolated but for which so far the structure has not been elucidated, but also to propose structures of strigolactones that may be discovered in the future. Considering the strongly increased importance of the strigolactones, we expect that more groups will look for these compounds and also in systems so far not exploited. This could lead to the discovery of new strigolactones for which we expect the present biogenetic considerations will facilitate identification and structure elucidation.  相似文献   

19.
Maize ( Zea mays L.) plants parasitized by the root hemi-parasitic angiosperm, Striga hermonthica (Del.) Benth., consistently display a range of symptoms similar to those found in droughted plants. The mechanisms by which these changes occur are largely unknown. However, S. hermonthica has unusually high rates of transpiration, and stomata which are relatively insensitive to water deficit. Consequently, it has often been suggested that the parasite might cause a severe depletion of the available water in the host's rooting zone. To determine whether the lower stomatal conductance and retarded growth of infected plants could be a result of parasite-induced water deficit, we have monitored the matric potential of the growth medium, water use, growth and stomatal conductance of infected vs. uninfected maize plants.
Host plant height and stomatal conductance of parasitized plants were significantly lower than those of control plants from 31 or 37 d after planting (d.a.p.) respectively. However, there was no indication of an increase in the rate of water depletion in the rooting zone of infected plants until approx. 63 d into the parasitic association. In fact, from 39 until 59 d.a.p. infected plants used less water than uninfected control plants, probably the result of the plants having fewer expanded leaves during part of this period, combined with the lower stomatal conductance exhibited by the infected plants from day 37 onwards. Leaf RWC of infected plants was unchanged in comparison with that of uninfected plants, therefore the change in stomatal conductance was not a response to dehydration of the leaf tissue. Our results indicate that parasitism by S. hermonthica does not cause an increase in water uptake/use in the host until well after most of the symptoms of infection have become fully established. It is highly unlikely, therefore, that the observed effects on the host are primarily due to soil water deficit.  相似文献   

20.
The germination of the obligate root parasites of the Orobanchaceae depends on the perception of chemical stimuli from host roots. Several compounds, collectively termed strigolactones, stimulate the germination of the various Orobanche species, but do not significantly elicit germination of Orobanche cumana, a specific parasite of sunflower.Phosphate starvation markedly decreased the stimulatory activity of sunflower root exudates toward O. cumana, and fluridone - an inhibitor of the carotenoid biosynthesis pathway - did not inhibit the production of the germination stimulant in both shoots and roots of young sunflower plants, indicating that the stimulant is not a strigolactone.We identified the natural germination stimulant from sunflower root exudates by bioassay-driven purification. Its chemical structure was elucidated as the guaianolide sesquiterpene lactone dehydrocostus lactone (DCL). Low DCL concentrations effectively stimulate the germination of O. cumana seeds but not of Phelipanche aegyptiaca (syn. Orobanche aegyptiaca). DCL and other sesquiterpene lactones were found in various plant organs, but were previously not known to be exuded to the rhizosphere where they can interact with other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号