首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone) electrospun scaffold (70:30 col/PCL) containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM), and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344) rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14%) over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold). Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration. Collectively these results suggest that microporous electrospun scaffolds pre-seeded with fibroblasts promote greater wound-healing than acellular scaffolds.  相似文献   

2.
We have shown that lipopolyamines bind to the lipid A moiety of lipopolysaccharide, a constituent of Gram-negative bacterial membranes, and neutralize its toxicity in animal models of endotoxic shock. In an effort to identify non-polyamine scaffolds with similar endotoxin-recognizing features, we had observed an unusually high frequency of hits containing guanylhydrazone scaffolds in high-throughput screens. We now describe the syntheses and preliminary structure-activity relationships in a homologous series of bis-guanylhydrazone compounds decorated with hydrophobic functionalities. These first-generation compounds bind and neutralize lipopolysaccharide with a potency comparable to that of polymyxin B, a peptide antibiotic known to sequester LPS.  相似文献   

3.
In tissue engineering techniques, three-dimensional scaffolds are needed to adjust and guide cell growth and to allow tissue regeneration. The scaffold must be biocompatible, biodegradable and must benefit the interactions between cells and biomaterial. Some natural biomaterials such as fibrin provide a structure similar to the native extracellular matrix containing the cells. Fibrin was first used as a sealant based on pools of commercial fibrinogen. However, the high risk of viral transmission of these pools led to the development of techniques of viral inactivation and elimination and the use of autologous fibrins. In recent decades, fibrin has been used as a release system and three-dimensional scaffold for cell culture. Fibrin scaffolds have been widely used for the culture of different types of cells, and have found several applications in tissue engineering. The structure and development of scaffolds is a key point for cell culture because scaffolds of autologous fibrin offer an important alternative due to their low fibrinogen concentrations, which are more suitable for cell growth.  相似文献   

4.
The osteogenic potential of biomimetic tyrosine-derived polycarbonate (TyrPC) scaffolds containing either an ethyl ester or a methyl ester group combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) was assessed using the preosteoblast cell line MC3T3-E1. Each composition of TyrPC was fabricated into 3D porous scaffolds with a bimodal pore distribution of micropores <20 μm and macropores between 200 and 400 μm. Scanning electron microscopy (SEM) characterization suggested MC3T3-E1 cell attachment on the TyrPC scaffold surface. Moreover, the 3D TyrPC-containing ethyl ester side chains supported osteogenic lineage progression, alkaline phosphatase (ALP), and osteocalcin (OCN) expression as well as an increase in calcium content compared with the scaffolds containing the methyl ester group. The release profiles of rhBMP-2 from the 3D TyrPC scaffolds by 15 days suggested a biphasic rhBMP-2 release. There was no significant difference in bioactivity between rhBMP-2 releasate from the scaffolds and exogenous rhBMP-2. Lastly, the TyrPC containing rhBMP-2 promoted more ALP activity and mineralization of MC3T3-E1 cells compared with TyrPC without rhBMP-2. Consequently, the data strongly suggest that TyrPC scaffolds will provide a highly useful platform for bone tissue engineering.  相似文献   

5.
The aim of this study is to investigate the effects of heparin-functionalized chitosan scaffolds on the activity of preosteoblasts. The chitosan scaffolds having the pore size of ∼100 μm were prepared by a freeze-drying method. Two different methods for immobilization of heparin to chitosan scaffolds were successfully performed. In the first method, functionalization of the scaffolds was achieved by means of electrostatic interactions between negatively charged heparin and positively charged chitosan. The covalent immobilization of heparin to chitosan scaffolds by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDAC) and N-hydroxysuccinimide (NHS) was used as a second immobilization method. Morphology, proliferation, and differentiation of MC3T3-E1 preosteoblasts on heparin-functionalized chitosan scaffolds were investigated in vitro. The results indicate that covalently bound heparin containing chitosan scaffolds (CHC) stimulate osteoblast proliferation compared to other scaffolds, that is, unmodified chitosan scaffolds (CH), electrostatically bound heparin containing chitosan scaffolds (EHC), and CH+free heparin (CHF). SEM images also proved the stimulative effect of covalently bound heparin on the proliferation of preosteoblasts. Alkaline phosphatase (ALP) and osteocalcin (OCN) levels of cells proliferated on CHC and EHC were also higher than those for CH and CHF. In vitro studies have demonstrated that chitosan scaffolds increase viability and differentiation of MC3T3-E1 cells especially in the presence of immobilized heparin.  相似文献   

6.
PolyHIPEs show great promise as tissue engineering scaffolds due to the tremendous control of pore size and interconnectivity afforded by this technique. Highly porous, fully biodegradable scaffolds were prepared by polymerization of the continuous phase of high internal phase emulsions (HIPEs) containing the macromer poly(propylene fumarate) (PPF) and the cross-linker propylene fumarate diacrylate (PFDA). Toluene was used as a diluent to reduce the viscosity of the organic phase to enable HIPE formation. A range of polyHIPE scaffolds of different pore sizes and morphologies were generated by varying the diluent concentration (40-60 wt %), cross-linker concentration (25-75 wt %), and macromer molecular weight ( M n = 800-1000 g/mol). Although some formulations resulted in macroporous monoliths (pore diameter >500 microm), the majority of the polyHIPEs studied were rigid, microporous monoliths with average pore diameters in the range 10-300 microm. Gravimetric analysis confirmed the porosity of the microporous monoliths as 80-89% with most scaffolds above 84%. These studies demonstrate that emulsion templating can be used to generate rigid, biodegradable scaffolds with highly interconnected pores suitable for tissue engineering scaffolds.  相似文献   

7.
Osteoarthritis (OA) involves the degeneration of articular cartilage and subchondral bone. The capacity of articular cartilage to repair and regenerate is limited. A biodegradable, fibrous scaffold containing zinc oxide (ZnO) was fabricated and evaluated for osteochondral tissue engineering applications. ZnO has shown promise for a variety of biomedical applications but has had limited use in tissue engineering. Composite scaffolds consisted of ZnO nanoparticles embedded in slow degrading, polycaprolactone to allow for dissolution of zinc ions over time. Zinc has well-known insulin-mimetic properties and can be beneficial for cartilage and bone regeneration. Fibrous ZnO composite scaffolds, having varying concentrations of 1–10 wt.% ZnO, were fabricated using the electrospinning technique and evaluated for human mesenchymal stem cell (MSC) differentiation along chondrocyte and osteoblast lineages. Slow release of the zinc was observed for all ZnO composite scaffolds. MSC chondrogenic differentiation was promoted on low percentage ZnO composite scaffolds as indicated by the highest collagen type II production and expression of cartilage-specific genes, while osteogenic differentiation was promoted on high percentage ZnO composite scaffolds as indicated by the highest alkaline phosphatase activity, collagen production, and expression of bone-specific genes. This study demonstrates the feasibility of ZnO-containing composites as a potential scaffold for osteochondral tissue engineering.  相似文献   

8.
Proteins of the striatin family have been identified in all multicellular animals. They are multidomain molecules containing several protein-interacting motifs. In mammals, these proteins are principally expressed in neurons with a somato-dendritic localization and high concentration in dendritic spines. Recent reports suggest that the proteins of the striatin family are molecular scaffolds that act as links between signal transduction and vesicular trafficking.  相似文献   

9.
The current study involves fabrication and characterization of bio-composite scaffolds containing chitosan (CS), nano-hydroxyapatite (nHAp) and Cu-Zn alloy nanoparticles (nCu-Zn) by freeze drying technique. The fabricated composite scaffolds (CS/nHAp and CS/nHAp/nCu-Zn) were characterized by SEM, EDX, XRD and FT-IR studies. The addition of nCu-Zn in the CS/nHAp scaffolds significantly increased swelling, decreased degradation, increased protein adsorption, and increased antibacterial activity. The CS/nHAp/nCu-Zn scaffolds had no toxicity towards rat osteoprogenitor cells. So the developed CS/nHAp/nCu-Zn scaffolds have advantageous and potential applications over the CS-nHAp scaffolds for bone tissue engineering.  相似文献   

10.
Jet-based technologies are increasingly being explored as potential high-throughput and high-resolution methods for the manipulation of biological materials. Previously shown to be of use in generating scaffolds from biocompatible materials, we were interested to explore the possibility of using electrospinning technology for the generation of scaffolds comprised of living cells. For this, it was necessary to identify appropriate parameters under which viable threads containing living cells could be produced. Here, we describe a method of electrospinning that can be used to deposit active biological threads and scaffolds. This has been achieved by use of a coaxial needle arrangement where a concentrated living biosuspension flows through the inner needle and a medical-grade poly(dimethylsiloxane) (PDMS) medium with high viscosity (12,500 mPa s) and low electrical conductivity (10-15 S m-1) flows through the outer needle. Using this technique, we have identified the operational conditions under which the finest cell-bearing composite microthreads are formed. Collected cells that have been cultured, postelectrospinning, have been viable and show no evidence of having incurred any cellular damage during the bionanofabrication process. This study demonstrates the feasibility of using coaxial electrospinning technology for biological and biomedical applications requiring the deposition of living cells as composite microthreads for forming active biological scaffolds.  相似文献   

11.
The goal of this project was to develop 3-D biomaterial scaffolds that present cues to direct the differentiation of embryonic stem (ES) cell-derived neural progenitor cells, seeded inside the scaffolds, into mature neural phenotypes, specifically neurons and oligodendrocytes. Release studies were performed to determine the appropriate conditions for retention of neurotrophin-3 (NT-3), sonic hedgehog, and platelet-derived growth factor (PDGF) by an affinity-based delivery system incorporated into fibrin scaffolds. Embryoid bodies containing neural progenitors were formed from mouse ES cells, using a 4−/4+ retinoic acid treatment protocol, and then seeded inside fibrin scaffolds containing the drug delivery system. This delivery system was used to deliver various growth factor doses and combinations to the cells seeded inside the scaffolds. Controlled delivery of NT-3 and PDGF simultaneously increased the fraction of neural progenitors, neurons, and oligodendrocytes while decreasing the fraction of astrocytes obtained compared to control cultures seeded inside unmodified fibrin scaffolds with no growth factors present in the medium. These results demonstrate that such a strategy can be used to generate an engineered tissue for the potential treatment of spinal cord injury and could be extended to the study of differentiation in other tissues.  相似文献   

12.
Chitosan scaffolds were prepared by freeze-drying method and modified with Arg-Gly-Asp (RGD) sequence of fibronectin or epidermal growth factor (EGF) by covalent immobilization. The results obtained from FTIR-ATR, fluorescence visualization and quantitative measurements showed that biosignal molecules, RGD and EGF, were successfully immobilized on chitosan scaffolds. ATDC5 murine chondrogenic cells were seeded on both type of scaffolds, chitosan-RGD and chitosan-EGF, and cultured for 28 days in stationary conditions. According to the results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) test, considerable increase in cell proliferation was only detected on chitosan-EGF scaffolds. Biochemical analysis of the chondrocyte seeded scaffolds showed that glycosaminoglycan (GAG) and deoxyribonucleic acid (DNA) content of the scaffolds increases with time. In conclusion, EGF-modified chitosan scaffolds (containing 1.83 microg EGF/3 mg dry scaffold) have been proposed to promote chondrogenesis and to have potential for reticular cartilage regeneration.  相似文献   

13.
Local delivery of antibiotic into injured bone is a demand. In this work, different scaffolds of chitosan (C) with or without bioactive glass (G) were prepared using the freeze-drying technique in 2:1, 1:1, and 1:2 weight ratios. Chitosan scaffolds and selected formulas of chitosan to bioglass were loaded with ciprofloxacin in 5%, 10%, and 20% w/w. Scaffold morphology showed an interconnected porous structure, where the glass particles were homogeneously dispersed in the chitosan matrix. The kinetic study confirmed that the scaffold containing 1:2 weight ratio of chitosan to glass (CG12) showed optimal bioactivity with good compromise between Ca and P uptake capacities and Si release rate. Chitosan/bioactive glass scaffolds showed larger t 50 values indicating less burst drug release followed by a sustained drug release profile compared to that of chitosan scaffolds. The cell growth, migration, adhesion, and invasion were enhanced onto CG12 scaffold surfaces. Samples of CG12 scaffolds with or without 5% drug induced vascular endothelial growth factor (VEGF), while those containing 10% drug diminished VEGF level. Only CG12 induced the cell differentiation (alkaline phosphatase activity). In conclusion, CG12 containing 5% drug can be considered a biocompatible carrier which would help in the localized osteomyelitis treatment.  相似文献   

14.
Biodegradable collagen scaffolds are used clinically for oral soft tissue augmentation to support wound healing. This study sought to provide a novel ex vivo model for analyzing healing kinetics and gene expression of primary human gingival fibroblasts (hGF) within collagen scaffolds. Sponge type and gel type scaffolds with and without platelet-derived growth factor-BB (PDGF) were assessed in an hGF containing matrix. Morphology was evaluated with scanning electron microscopy, and hGF metabolic activity using MTT. We quantitated the population kinetics within the scaffolds based on cell density and distance from the scaffold border of DiI-labled hGFs over a two-week observation period. Gene expression was evaluated with gene array and qPCR. The sponge type scaffolds showed a porous morphology. Absolute cell number and distance was higher in sponge type scaffolds when compared to gel type scaffolds, in particular during the first week of observation. PDGF incorporated scaffolds increased cell numbers, distance, and formazan formation in the MTT assay. Gene expression dynamics revealed the induction of key genes associated with the generation of oral tissue. DKK1, CYR61, CTGF, TGFBR1 levels were increased and integrin ITGA2 levels were decreased in the sponge type scaffolds compared to the gel type scaffold. The results suggest that this novel model of oral wound healing provides insights into population kinetics and gene expression dynamics of biodegradable scaffolds.  相似文献   

15.
Nanofibers(NFs)have been widely used in tissue engineering such as wound healing.In this work,the antibacterial ZnO quantum dots(ZnO QDs)have been incorporated into the biocompatible poly(ε-caprolactone)/collagen(PCL/Col)fibrous scaffolds for wound healing.The as-fabricated PCL-Col/ZnO fibrous scaffolds exhibited good swelling,antibacterial activity,and biodegradation behaviors,which were beneficial for the applications as a wound dressing.Moreover,the PCL-Col/ZnO fibrous scaffolds showed excellent cytocompatibility for promoting cell proliferation.The resultant PCL-Col/ZnO fibrous scaffolds containing vascular endothelial growth factor(VEGF)also exhibited promoted wound-healing effect through promoting expression of transforming growth factor-β(TGF-β)and the vascular factor(CD31)in tissues in the early stages of wound healing.This new electrospun fibrous scaffolds with wound-healing promotion and antibacterial property should be convenient for treating wound healing.  相似文献   

16.
The skeletons of demosponges, such as Ianthella basta, are known to be a composite material containing organic constituents. Here, we show that a filigree chitin-based scaffold is an integral component of the I. basta skeleton. These chitin-based scaffolds can be isolated from the sponge skeletons using an isolation and purification technique based on treatment with alkaline solutions. Solid-state 13C NMR, Raman, and FT-IR spectroscopies, as well as chitinase digestion, reveal that the isolated material indeed consists of chitin. The morphology of the scaffolds has been determined by light and electron microscopy. It consists of cross-linked chitin fibers approximately 40–100 nm in diameter forming a micro-structured network. The overall shape of this network closely resembles the shape of the integer sponge skeleton. Solid-state 13C NMR spectroscopy was used to characterize the sponge skeleton on a molecular level. The 13C NMR signals of the chitin-based scaffolds are relatively broad, indicating a high amount of disordered chitin, possibly in the form of surface-exposed molecules. X-ray diffraction confirms that the scaffolds isolated from I. basta consist of partially disordered and loosely packed chitin with large surfaces. The spectroscopic signature of these chitin-based scaffolds is closer to that of α-chitin than β-chitin.  相似文献   

17.
As the incidence of small-diameter vascular graft (SDVG) occlusion is considerably high, a great amount of research is focused on constructing a more biocompatible graft. The absence of a biocompatible surface in the lumen of the engineered grafts that can support confluent lining with endothelial cells (ECs) can cause thrombosis and graft failure. Blood clot formation is mainly because of the lack of an integrated endothelium. The most effective approach to combat this problem would be using natural extracellular matrix constituents as a mimic of endothelial basement membrane along with applying anticoagulant agents to provide local antithrombotic effects. In this study, we fabricated aligned and random electrospun poly-L-lactic acid (PLLA) scaffolds containing acetylsalicylic acid (ASA) as the anticoagulation agent and surface coated them with amniotic membrane (AM) lysate. Vascular scaffolds were structurally and mechanically characterized and assessed for cyto- and hemocompatibility and their ability to support endothelial differentiation was examined. All the scaffolds showed appropriate tensile strength as expected for vascular grafts. Lack of cytotoxicity, cellular attachment, growth, and infiltration were proved using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and scanning electron microscopy. The blood compatibilities of different scaffolds examined by in vitro hemolysis and blood coagulation assays elucidated the excellent hemocompatibility of our novel AM-coated ASA-loaded nanofibers. Drug-loaded scaffolds showed a sustained release profile of ASA in 7 days. AM-coated electrospun PLLA fibers showed enhanced cytocompatibility for human umbilical vein ECs, making a confluent endothelial-like lining. In addition, AM lysate-coated ASA-PLLA-aligned scaffold proved to support endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells. Our results together indicated that AM lysate-coated ASA releasing scaffolds have promising potentials for development of a biocompatible SDVG.  相似文献   

18.
Biodendrimer-based hydrogel scaffolds for cartilage tissue repair   总被引:2,自引:0,他引:2  
Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well-integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We designed and synthesized a novel hydrogel scaffold for cartilage repair, based on a multivalent and water-soluble tri-block copolymer consisting of a poly(ethylene glycol) core and methacrylated poly(glycerol succinic acid) dendrimer terminal blocks. The terminal methacrylates allow mild and biocompatible photo-crosslinking with a visible light, facilitating in vivo filling of irregularly shaped defects with the dendrimer-based scaffold. The multivalent dendrimer constituents allow high crosslink densities that inhibit swelling after crosslinking while simultaneously introducing biodegradation sites. The mechanical properties and water content of the hydrogel can easily be tuned by changing the biodendrimer concentration. In vitro chondrocyte encapsulation studies demonstrate significant synthesis of neocartilaginous material, containing proteoglycans and type II collagen.  相似文献   

19.
Qiu W  Huang Y  Teng W  Cohn CM  Cappello J  Wu X 《Biomacromolecules》2010,11(12):3219-3227
Due to their improved biocompatibility and specificity over synthetic materials, protein-based biomaterials, either derived from natural sources or genetically engineered, have been widely fabricated into nanofibrous scaffolds for tissue engineering applications. However, their inferior mechanical properties often require the reinforcement of protein-based tissue scaffolds using synthetic polymers. In this study, we report the electrospinning of a completely recombinant silk-elastinlike protein-based tissue scaffold with excellent mechanical properties and biocompatibility. In particular, SELP-47K containing tandemly repeated polypeptide sequences derived from native silk and elastin was electrospun into nanofibrous scaffolds, and stabilized via chemical vapor treatment and mechanical preconditioning. When fully hydrated in 1× PBS at 37 °C, mechanically preconditioned SELP-47K scaffolds displayed elastic moduli of 3.4-13.2 MPa, ultimate tensile strengths of 5.7-13.5 MPa, deformabilities of 100-130% strain, and resilience of 80.6-86.9%, closely matching or exceeding those of protein-synthetic blend polymeric scaffolds. Additionally, SELP-47K nanofibrous scaffolds promoted cell attachment and growth, demonstrating their in vitro biocompatibility.  相似文献   

20.
In this study, a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver particles (CS/nHAp/nAg) was developed by freeze drying technique, followed by introduction of silver ions in controlled amount through reduction phenomenon by functional groups of chitosan. The scaffolds were characterized using SEM, FT-IR, XRD, swelling, and biodegradation studies. The testing of the prepared scaffolds with Gram-positive and Gram-negative bacterial strains showed antibacterial activity. The scaffold materials were also found to be non-toxic to rat osteoprogenitor cells and human osteosarcoma cell line. Thus, these results suggested that CS/nHAp/nAg bio-composite scaffolds have the potential in controlling implant associated bacterial infection during reconstructive surgery of bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号