首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Browsing ruminants have access to different biomass, depending on how high they can reach. Foliage consisting of leaves and green pods from Acacia senegal, Pterocarpus lucens and Guiera senegalensis, was collected according to height above ground accessible to either sheep (0.90 m), goats (1.65 m) or cattle (1.50 m). There was a significant variation in the chemical composition of the biomass between species. The crude protein (CP) content was 114, 157 and 217 g/kg dry matter (DM) and the neutral detergent fiber (aNDF) content 604, 534 and 412 g/kg DM for G. senegalensis, P. lucens and A. senegal, respectively. There was no significant variation in chemical composition according to the height accessible by cattle, sheep or goats. The voluntary intake was studied using eight goats per diet. The six diets consisted of the three browse leaves and two pods (A. senegal and P. lucens) and a control. The leaves were fed combined with hay of Schoenefeldia gracilis (maximum 30%) and the control was pure hay. Apparent digestibilities of the same diets, with the exception of G. senegalensis, were measured using five goats per diet. All browse fodders used in the feeding and digestibility trials were high in CP (105–170 g/kg DM) and lignin (164–234 g/kg DM except A. senegal leaves) and low in fiber (322–590 g/kg DM of NDF) compared to the hay (31 g/kg DM of CP and 755 g/kg DM of NDF). The highest intake was of the P. lucens diet (864 g) and the lowest of the G. senegalensis diet (397 g). The intake of pods from A. senegal was higher (1033 g) than from P. lucens pods (691 g). The apparent digestibility of OM and CP in the browse leaves was 0.63 and 0.57 and 0.63 and 0.64 for A. senegal and P. lucens, respectively, higher than for the hay, which showed higher digestibility of NDF. A. senegal pods had higher digestibility for all nutrients than P. lucens pods. Based on the high CP content and the intake and digestibility characteristics, P. lucens leaves and A. senegal leaves and pods can be recommended as protein supplements to low quality diets.  相似文献   

2.
Two nitrogen balance experiments in a 4 × 4 Latin square design were conducted to compare leaves of Grewia oppositifolia and Ziziphus mauritiana containing condensed tannins (CT) 0.08 g and 34.7 g per kg DM, respectively as supplement on feed intake, nutrients digestibility and nitrogen (N) retention in adult wethers and to examine the benefits of adding urea to Z. mauritiana leaves containing higher level of CT on N utilization in the animals. In experiment 1, the basal diet of oat hay was fed to sheep either un-supplemented or supplemented with 320 g dried leaves of Z. mauritiana or 320 g dried leaves of G. oppositifolia or 160 g dried leaves each of Z. mauritiana and G. oppositifolia. In vivo dry matter (DM) digestibility was not different among the four diets while N digestibility remained significantly lower (P<0.05) in Z. mauritiana supplemented diets. Daily intake of oat hay reduced (P<0.05) and that of total diet DM increased (P<0.001) with feeding of the leave supplements. Mean N retention on control diet was 4.39 g/d and increased to 7.51 g/d with inclusion of G. oppositifolia leaves but did not change with the other two supplements. In experiment 2, a basal diet of sorghum hay was fed ad libitum without any supplement (control diet) and the other three diets were supplemented with 320 g dried leaves of Z. mauritiana with no urea, 5 g urea/d or 10 g urea/d. Daily intake (g/d) of sorghum hay or total DM intake did not respond to inclusion of urea in the diets. Supplementation of Z. mauritiana with or without urea did not affect digestibility of DM, organic matter and acid detergent fiber. Nitrogen retention increased (P<0.05) from 0.57 g/d on control diet to 3.72 g/d with supplementation of Z. mauritiana leaves. Addition of urea 5 g/d did not further increase the N retention (4.78 g/d) but was significantly increased to 7.16 g/d in response to 10 g urea/d in the diet. It was concluded that response to urea feeding in the presence of tannin rich Z. mauritiana leaves was dose-dependant and that feeding 10 g urea/d increased the capacity of sheep to consume more feed and retain more N in the body.  相似文献   

3.
The objective was to determine the relative effects of a specific increase in grass silage sucrose concentration, or a specific supplement of a starch-based concentrate, on rumen fermentation and nutrient supply to the omasum in beef cattle. Four ruminally cannulated Holstein–Friesian steers were fed grass silage only (G), G plus 3 kg concentrates/day (GC), G plus 90 g sucrose/kg dry matter (DM) (GS) and G plus 90 g sucrose/kg DM plus 3 kg concentrates/day (GCS) in a 4 × 4 Latin Square design experiment. Omasal flow was estimated using Co-EDTA, Yb-acetate and indigestible neutral detergent fibre (INDF) as digesta flow markers and purine bases as microbial markers. Concentrate supplementation reduced (P < 0.01) silage and increased (P < 0.001) total DM intake whereas sucrose had no effect. There was a sucrose × concentrate interaction (P < 0.05) for rumen pH whereby addition of sucrose to grass silage alone decreased pH and to grass silage plus concentrate had no effect. Rumen ammonia N (P < 0.01), total volatile fatty acid (VFA) concentration (P < 0.05) and the molar proportions of valerate (P < 0.05) and butyrate (P < 0.001) increased with concentrate supplementation whereas, sucrose supplementation had no effect on rumen fermentation parameters. Organic matter (OM) intake, omasal OM flow, the quantities of OM apparently (OMAD) and truly digested (OMTD) in the rumen (P < 0.001) and total tract OM digestibility (P < 0.01) increased, and apparent and true ruminal OM digestibility decreased (P < 0.05) with concentrate supplementation. Supplementation with concentrate decreased (P < 0.05) ruminal neutral detergent fibre (aNDFom) digestibility and increased (P < 0.05) aNDFom omasal flow. There was a tendency for addition of sucrose to increase (P < 0.1) ruminal OMAD and OMTD, while there was no effect of sucrose addition on intake or digestion of aNDFom. Concentrate supplementation increased (P < 0.001) N intake, flows of N, non-ammonia N (NAN), microbial N (MN) (P < 0.05) and non-ammonia non-microbial N (NANMN) (P < 0.01) and apparent total tract digestibility of N (P < 0.01), whereas sucrose reduced (P < 0.05) N intake and apparent ruminal N digestibility. There was no effect of concentrate or sucrose on N use efficiency or efficiency of microbial protein synthesis. Concentrate supplementation increased (P < 0.001) plasma β-hydroxybutyrate levels. In comparison to supplementing unwilted, well preserved grass silage of moderate digestibility with 3 kg starch-based concentrate per day, the limited response to the rate of sucrose supplementation employed suggests that increasing the water-soluble carbohydrate (WSC) concentration of grass silage through agronomic and/or ensiling practices will have relatively little effect on intake, rumen digestion or efficiency of microbial N synthesis.  相似文献   

4.
This study was carried out to evaluate intake, digestibility, ruminal fermentation, nitrogen (N) retention and ruminal microbial protein synthesis in lambs fed dwarf elephant grass (Pennisetum purpureum Schum. cv. Mott) hay or hay supplemented with urea and 0, 5, 10 or 15 g/kg of live weight (LW) of cracked corn grain. Ten lambs (mean LW of 28 ± 0.9 kg), housed in metabolic cages, were used in a double 5 × 5 Latin Square experiment. Except fibre intake and digestibility, which was higher, the intake and digestibility of the others feed components, as well as ruminal microbial protein synthesis and N retention were lower in non-supplemented lambs. Corn supplementation increased total dry matter (DM) (P<0.05), organic matter (OM), non-structural carbohydrate (NSC) and energy intake (P<0.01) but decreased total neutral detergent fibre (aNDFom) (P<0.01) intake, as well as OM and aNDFom intake from the hay (P<0.01). Apparent DM, OM and energy digestibility, as well as OM true digestibility (OMTD) increased (P<0.01), and aNDFom digestibility decreased linearly (P<0.01) as corn supplementation increased. Total N intake was not influenced but, apparent and true N digestibility, as well as urinary N excretion decreased (P<0.01), and ruminal microbial N entering the small intestine increased linearly (P<0.01) as corn supplementation increased. However, the efficiency of ruminal microbial protein synthesis was similar for all treatments. Mean ruminal pH values and ammonia N concentrations decreased linearly (P<0.01) with level of corn supplementation. Ammonia N and amino acid, as well as peptide concentrations in ruminal fluid were quadratically related (P<0.01) with the time after feeding. Corn supplementation had a linear additive effect on total dry matter and digestible energy intake, as well as on N retention, but a linear negative effect on hay intake and on fibre digestibility. However, decreased forage digestibility by animals was probably neither related to lower ruminal pH, which values were always higher than 7.0, nor related to ruminal sugar concentrations, which were similar for all treatments.  相似文献   

5.
To evaluate the potential of Commelina benghalensis as a forage for ruminants, effects of plant maturity on chemical composition, rumen degradability as well as its increased dietary inclusion level on intake, digestibility and N balance in sheep fed Sorghum almum were investigated with forage obtained from the wild, re-established and harvested at 6, 10 and 14 weeks of growth. Composite herbage samples were analyzed for dry matter (DM), chemical components, total extractable phenolics (TEP) and amino acid content. In sacco rumen degradability measurements used six individually confined wethers (8 ± 0.5 months of age; 21 ± 2.6 kg live-weight (LW)) fitted with rumen cannulae and fed a ration of 3:1 fresh S. almum and Medicago sativa hay (about 1:2 on a DM basis). In sacco bags containing 5 g each of dry herbage were inserted into the rumen and withdrawn sequentially after 0, 12, 24, 36 and 48 h. Metabolizable energy (ME) was estimated from 24 h in vitro gas production. In the digestibility study, 12 wethers fitted with rumen canula were housed in metabolic crates and allotted to four treatment diets (i. e., D0, D10, D20 and D30) constituted from fresh S. almum and pre-wilted C. benghalensis in a randomized complete block design. The control diet (D0) was 3 kg fresh S. almum (≈535.5 g DM/wether/d about 30 g/kg LW), whereas D10, D20 and D30 were D0 +300, 600 or 900 g of wilted C. benghalensis (≈34, 68 or about 102 g DM/wether/d), respectively. The study lasted for 21 d. Dry matter, fibre and TEP content increased (P<0.001) with maturity of the forage, whereas those of CP and EE decreased (P<0.0001) over the same period. Amino acids (AA) also declined with maturity (P<0.05). Rumen degradability of DM and OM were unaffected, but DM intake increased linearly (P<0.0001) at a decreasing rate (Q: P<0.05) and DM digestibility (DMD) and N intake increased linearly (P<0.01 and P<0.0001, respectively) as level of C. benghalensis in the diet increased. Results indicate that advancing maturity affected chemical composition, but not rumen degradability, of C. benghalensis and also demonstrated that inclusion of C. benghalensis in S. almum diet improved intake, digestibility and N intake, suggesting its potential use as a feed supplement.  相似文献   

6.
This experiment studied effects of a mixture of exogenous enzymes (ZADO®) from anaerobic bacteria on ruminal fermentation, feed intake, digestibility, as well as milk production and composition in cows fed total mixed rations (TMRs; 0.7 corn silage and 0.3 of a concentrate mixture). Twenty lactating multiparous Brown Swiss cows (500 ± 12.4 kg live weight) were randomly assigned into two experimental groups of 10 immediately after calving and fed a TMR with or without (CTRL) addition of 40 g/cow/d of enzymes for 12 weeks. Addition of enzymes increased (P<0.05) rumen microbial N synthesis. Intake of dry matter (DM) and organic matter (OM) was positively influenced (P<0.05) by supplementation, and digestibility of all nutrients was higher (P<0.05) in the total tract of supplemented cows, although the magnitude of the improvement varied among nutrients, with the highest improvement in aNDFom and ADFom (418–584 and 401–532 g/kg respectively; P<0.05) than the other nutrients. Supplementation of enzymes also increased (P<0.05) rumen ammonia N and total short chain fatty acid (SCFA) concentrations, and individual SCFA proportions were also altered with an increase in acetate (61.0–64.8 mol/100 mol; P=0.05) before feeding, and acetate and propionate increased 3 h post-feeding (60.0–64.0 and 18.3–20.8 mol/100 mol respectively; P<0.05). Milk and milk protein production was higher (12.8–15.7 and 0.45–0.57 kg/d respectively; P<0.05) for cows fed the ZADO® supplemented diet. This exogenous enzyme product, supplemented daily to the TMR of cows in early lactation, increased milk production due to positive effects on nutrient intake and digestibility, extent of ruminal fermentation and microbial protein synthesis.  相似文献   

7.
The aim of this study was to evaluate effects of partial replacement of neutral detergent soluble fibre (NDSF) for starch in diets varying in particle size (PS) of alfalfa hay on chewing activities, ruminal fermentation, nutrient digestibility and performance in mid-lactation dairy cows. Eight multiparous Holstein cows (146 ± 6.0 d in milk; 36.7 ± 2.57 kg milk/d) were used in a replicated 4 × 4 Latin square design with four 21 d periods with the last 7 d for data collection. The experiment was a 2 × 2 factorial arrangement with 2 levels of NDSF (low = 85 g/kg or high = 130 g/kg diet dry matter) each combined with 2 PS (short = 20 mm or long = 40 mm) of alfalfa hay. Results show that forage PS alone, or in combination with NDSF inclusion, had no effect on dry matter (DM) intake. Although total chewing, eating and ruminating times were not affected by treatments, eating time per kg of neutral detergent fibre (NDF) ingested was higher in long versus short alfalfa hay-based diets (P<0.05). Feeding long forage PS increased sorting of the diet against particles >19 mm, and in favor of those <8 mm (P<0.05). Feeding diets high in NDSF lowered DM intake (P<0.05), but increased apparent digestibility of all nutrients including NDF (P<0.05) independent of forage PS. Ruminal pH and concentrations of total volatile fatty acids were unaffected by dietary treatments, however the proportion of butyrate was higher in ruminal fluid of cows fed high NDSF diets (P<0.05). Changes in milk composition included lower milk crude protein content in high NDSF diets and higher lactose content for short hay-based diets (P<0.05). That milk yield and milk energy output were similar in low versus high NDSF diets suggests that high NDSF-fed cows had higher energy efficiency due to lower DM intake. Results suggest that, independent of forage PS, NDSF sources can be successfully included to partly replace starchy grains in diets exceeding minimum fibre recommendations.  相似文献   

8.
Interactions among nutrients and secondary compounds in plants can influence the kinds and amounts of different forages herbivores ingest, but little is known about how the sequence of plant ingestion may influence these interactions. The physiological pathways and rates of nutrient and secondary compound metabolism in the body influence food intake by herbivores. On this basis, we predicted the sequence in which foods that vary in nutrients and secondary compounds are ingested would influence food intake and preference. In a 2 × 2 factorial experiment, we evaluated the relationship between the sequence of presenting two foods, one with terpenes and the other with tannins, and the time when lambs ate a nutritious food (alfalfa–barley), either before or after eating foods with tannins and terpenes. When alfalfa–barley was fed prior to the terpenes, intake of the terpene-containing food was lower than when alfalfa–barley was fed after terpenes (P < 0.05). The sequence when alfalfa–barley was fed did not influence intake of the tannin-containing food (P > 0.10). Lambs ate more total foods with terpenes + tannins when fed tannins → terpenes → alfalfa/barley than when fed alfalfa/barley → tannins → terpenes (P < 0.10). During preference tests, when lambs were offered all three foods simultaneously, lambs previously conditioned with the sequence tannins → terpenes → alfalfa–barley preferred alfalfa–barley > terpenes > tannins (P < 0.05), whereas lambs in other treatments preferred alfalfa–barley > tannins > terpenes (P < 0.05). During preference tests when lambs were fed only foods with secondary compounds, lambs previously conditioned with the sequence tannins → terpenes → alfalfa–barley showed equal preference for foods with tannins and terpenes, whereas lambs in other treatments preferred food with tannins > terpenes (P < 0.05–0.10). All of these results are consistent with the hypothesis that the sequence in which foods are consumed affects both food intake and preference. Understanding the importance of sequencing when herbivores consume foods that vary in nutrients and secondary compounds may help managers create new grazing strategies that include sequential foraging patterns to optimize food intake and more evenly use all plant species in a community, a practice used by herders in France.  相似文献   

9.
Effects of supplementing tree foliage mixtures on voluntary intake, apparent digestibility and N balance was evaluated using Pelibuey sheep fed low quality diets. Five treatments were examined in a 5 × 5 Latin square design, which consisted of a basal diet of grass (Sorghum halepense) hay supplemented with Brosimum alicastrum (B) and Lysiloma latisiliquum (L) at the following rates (g DM/kg diet): B264, L0; B198, L66; B132, L132; B66, L198 and B0, L264. Additionally, an in situ degradability evaluation was completed with two ruminally cannulated cows. Neutral detergent fibre (NDF), acid detergent insoluble N (ADIN), lignin(sa) and total phenols (TP) were higher (P<0.01) in L. latisiliquum versus B. alicastrum. Daily intake (g/kg LW0.75/day) of DM (from 98 to 73) and OM (from 88 to 66) decreased quadratically (P<0.01), whereas CP (from 8.0 to 5.6) and ME (from 7.7 to 5.2, MJ/sheep/day) reduced linearly (P<0.01), as L. latisiliquum increased in the diet. Apparent digestibility of DM (from 0.486 to 0.445), OM (from 0.511 to 0.458) and CP (from 0.417 to 0.198) decreased linearly (P<0.01) and was associated with a low ruminal in situ CP degradability of L. latisiliquum. The decrease in N intake and digestibility induced lower (P<0.01) N retention (from 2.7 to 0.1 g/sheep/day). Although the incremental substitution of B. alicastrum with L. latisiliquum negatively affected intake, rumen degradation, digestibility and N balance, results indicate that this foliage mixture, but with no more than 132 g DM/kg diet of L. latisiliquum, could be used as a supplementation strategy to sheep fed low quality forage without negative effects on voluntary intake.  相似文献   

10.
This experiment aimed to quantify the relative intake, digestibility, rumen fermentation, performance and carcass characteristics of beef cattle fed diets based on good quality whole-crop wheat and barley silages, each harvested at two cutting heights, and to rank these relative to good quality maize silage and an ad libitum concentrates-based diet. Ninety beef steers, initial live-weight 438 ± 31.0 kg, were allocated to one of the following dietary treatments in a randomised complete block design: maize silage (MS), whole-crop wheat harvested at a normal cutting height (WCW) (stubble height 0.12 m) or an elevated cutting height (HCW) (stubble height 0.29 m), whole-crop barley harvested at a normal cutting height (WCB) (stubble height 0.13 m) or an elevated cutting height (HCB) (stubble height 0.30 m), each being supplemented with 3 kg concentrates/head/day, and ad libitum concentrates (ALC) supplemented with 5 kg grass silage/head/day for the duration of the 160-day study. Mean dry matter (DM) of the maize silage, whole-crop wheat, head-cut wheat, whole-crop barley and head-cut barley was 301, 488, 520, 491 and 499 g/kg, respectively. There were no differences in total DM intake among treatments, or in rumen fermentation characteristics (except ammonia), or in DM digestibility among the forage-based treatments. Neutral detergent fibre digestibility was lower (P<0.05) for whole-crop wheat than head-cut barley, and starch digestibility was lower (P<0.05) for whole-crop barley and head-cut barley than maize silage. Steers fed ALC had a higher carcass gain (P<0.001) and carcass weight (P<0.05) than all other treatments, but there were no differences between any of the forage-based treatments. Steers fed MS had a better feed conversion efficiency (FCE) than those on WCW or WCB (P<0.05) but were similar to HCW and HCB. The FCE was better for ALC versus any of the other treatments, particularly compared to WCW or WCB (P<0.001). Subcutaneous fat from steers fed ALC was more yellow (P<0.01) than that from steers fed the other treatments. Neither intake nor performance were altered by raising the cutting height of cereals or by replacing whole-crop wheat by barley. However, head-cut cereals numerically favoured DM intake, carcass gain and feed conversion efficiency values nearer to that of maize than whole-crop cereal silages. Ad libitum concentrates supported superior levels of growth by steers compared to all other treatments.  相似文献   

11.
In some lower rainfall regions of the world (300–750 mm), common vetch (Vicia sativa L., hereafter referred to as vetch) has been shown to have yields competitive with alternate crops and provide high-quality hay for ruminant diets, but there are few studies of vetch performance as a livestock feed, or of vetch varietal differences in livestock feeding value. This study evaluated vetch varietal differences in hay nutritive value, ruminal fermentation properties, nutrient digestibility, nitrogen retention and animal performance in fattening lambs consuming a diet comprising 20% vetch. Fifty male Hu lambs with an initial BW of 17.7 ± 0.27 kg and 2–3 months of age were assigned randomly into five groups of 10 lambs, and each allocated one of five dietary treatments for 67 days (10 days of adaptation and a 57 day experimental period). All diets contained 30% maize stover, 50% concentrate, and with a different forage source (on an as-fed basis): 20% alfalfa hay (Control), 20% vetch 333A (C333A) hay, 20% vetch Lanjian No. 1 (CLJ1) hay, 20% vetch Lanjian No. 2 (CLJ2) hay, or 20% vetch Lanjian No. 3 (CLJ3) hay. Hay CLJ3 had greater contents of ash, CP, ether extract, in vitro organic matter digestibility and metabolizable energy, and lower cell wall contents (P < 0.05) than those of C333A and CLJ1 hays, but similar to the CLJ2 hay (P > 0.05). Compared to the Control diet, the CLJ2 and CLJ3 diets resulted in greater (P < 0.05) final BW, average daily gain, total tract apparent digestibility of CP and NDF, and nitrogen balance, both when expressed as g/day and relative to nitrogen intake, while animal performance when fed diets with C333A or CLJ1 diet did not differ (P > 0.05) from the Control diet. No differences (P > 0.05) were observed between dietary treatments with respect to average daily feed intake, ruminal pH, total volatile fatty acid contents and molar proportions of acetate, butyrate, valerate, isobutyrate, and isovalerate, or total tract apparent digestibility of DM, organic matter, and ADF. The feed efficiency of tested feeds ranked CLJ3 = CLJ2 > CLJ1 > Control with C333A intermediate between CLJ1 and Control. In summary, considering hay quality, nutrient digestibility and animal weight gain, performance as a ruminant feed of hays from recently released vetch cultivars Lanjian No. 2 and Lanjian No. 3 was superior to the older cultivar C333A and the alfalfa control.  相似文献   

12.
A study was conducted to evaluate soybean hulls (SH) as a replacement of tifton bermudagrass hay (TH) in diets of goats containing high levels of spineless cactus. Ten mature bucks (five ruminally fistulated) were used in a 5 × 5 Latin square experiment with 21-day periods. Soybean hulls replaced 0, 250, 500, 750 and 1000 g/kg of TH in the experimental diets. All diets contained 600 g/kg spineless cactus (dry matter basis). Intakes of dry matter (DM), organic matter (OM) and non-fiber carbohydrates and chewing activities decreased linearly (P < 0.01) as the level SH in the diet increased. In vivo digestibility of DM, OM and neutral detergent fiber increased linearly (P < 0.01) as the level of SH in the diet increased. Addition of SH linearly increased (P < 0.05) N retention without affecting microbial N supply (g/kg of digestible OM intake) to the small intestine. Ruminal pH and NH3-N decreased linearly (P < 0.05) while total volatile fatty acid (VFA) concentration increased linearly (P < 0.05) as proportion of SH in diets increased. It was concluded that inclusion of SH in cactus-based diets had a negative impact on intake and chewing activities but improved total tract nutrient utilization by goats. Replacing TH with SH resulted in a concentrate type ruminal fermentation (i.e., low ruminal pH and high VFA concentration).  相似文献   

13.
《Small Ruminant Research》2000,35(3):225-233
In Exp. 1, 20 ewes of mixed breeding were fed grass hay : straw mixtures, assigned to one of four supplemental treatments and evaluated during six collection periods. Supplemental treatments were control (no supplement), and low, medium, and high levels (5.2%, 22.1%, and 41.3% of DM, respectively) of undegraded intake protein (UIP). Supplements were formulated to be similar in degraded intake protein (DIP; 21%). Digestibilities of DM, OM, and CP were increased (P < 0.10) with protein supplementation and in medium and high compared with low UIP supplemented ewes. Digestibility of CP also was increased (P < 0.10) in ewes on high compared with medium treatments. Serum insulin was not influenced (P > 0.10) by UIP treatment, except in collection period four. In contrast, serum glucose and growth hormone were not influenced (P > 0.10) by UIP treatment. In Exp. 2, four wether lambs fed the same treatments as in Exp. 1, were used in two 4 × 4 Latin squares trials. In trial 1 lambs received a grass hay diet (6.7% CP) and in trial 2 lambs were fed 40 : 60 blend (6.6% CP) of grass hay and spring wheat straw. In both trials, N intake, urinary N, N digestion, apparent N absorption, and N retention were increased (P < 0.10) with protein supplementation. In addition, in trial 1, urinary N, N digestion, and apparent N absorption were increased (P < 0.10) in medium and high compared with low UIP and also in high compared with medium UIP treatments. In trial 2 of Exp. 2, total feed intake (g/kg BW), digestibility of DM and OM, BW, and fecal N were increased (P < 0.10) with protein supplementation. Organic matter digestion, BW, N intake, and N retention were increased by medium and high compared with low UIP. Fecal N, BW, N intake, and N retention were increased (P < 0.10) in high compared with medium UIP. These data indicate that increasing levels of UIP supplementation increases DM, OM, and CP (N) digestibility, serum urea N concentration, and N retention in sheep fed low quality forage.  相似文献   

14.
In this study, two total mixed rations (TMR, based on dry ingredients) consisting (per kg dry matter (DM)) of 300 or 400 g finely chopped hay mixture of grass and alfalfa (H30 versus H40) were compared concerning their effects on dry matter intake (DMI), ruminal fermentation patterns and chewing activity of early-weaned (8 weeks milk-fed) calves. Ten ruminally cannulated male German Holstein calves were randomly assigned to two dietary treatments (n = 5) and observed from an age of 8–15 weeks. One group received the H30 (11.3 MJ metabolizable energy (ME)/kg DM) and the other the H40 (10.7 MJ ME/kg DM) TMR. All calves received grass hay (9.0 MJ ME/kg DM) separately. Water, TMR and hay were offered ad libitum twice daily (08:00 and 16:00 h). Rumen fluid was collected via cannula at an age of 9, 11, 13 and 15 weeks, twice weekly just prior to as well as 1, 3, 5 and 7 h after morning feeding. Chewing activity was recorded by a special head collar. As the calves aged DMI increased rapidly congruent with the recommended range for weaned calves. Because of the differing energy supply, calves receiving the H30 TMR were heavier than calves receiving the H40 TMR (139 kg versus 123 kg, P=0.007). During the trial ruminal pH of all calves were within the target range (6.2 ± 0.5), indicating physiological ruminal fermentation patterns. Daily mean ruminal pH was uninfluenced by treatment, however at an age of 13 and 15 weeks H30 showed a higher short chain fatty acid (SCFA) level than H40 (P=0.098; P=0.036). At an age of 15 weeks H30 showed a critical decrease in ruminal pH (3 h after feeding: 5.7) corresponding to a higher ruminal SCFA concentration (148.2 mmol/L, P=0.007). Chewing activity was well developed at an early age due to an increasing DMI after weaning. At an age of 15 weeks chewing activity (per day: 613–743 min total chewing; 358–418 min rumination) was similar to that of adult cows. In summary, feeding a dry TMR consisting per kg DM of 300–400 g hay to early-weaned calves can be recommended for a successful calf rearing up to an age of 15 weeks.  相似文献   

15.
Thirty-six 2.5-year-old wether Inner Mongolian White Cashmere Goats (IMWG) (BW = 42.7 ± 3.44 kg) were used to determine the effects of dietary copper (Cu) concentration on growth performance, nutrient digestibility and fiber characteristics during the cashmere slow-growing period. Wethers were stratified by weight and randomly assigned to four dietary treatments, which included a control diet containing 5.60 mg Cu/kg DM, the control diet supplied, respectively, with 10, 20 and 30 mg Cu/kg DM (total dietary Cu level of 5.60, 15.6, 25.6 and 35.6 mg/kg DM). The experiment lasted 50 days including a 10-day preliminary trial and 10-day metabolism trial. Average daily feed intake (ADFI) did not differ among treatment groups (P > 0.05), except that the supplement providing 30 mg Cu/kg DM decreased average daily gain and gain efficiency (P < 0.05). Copper supplementation had no influence on digestibility of DM, CP and ADF (P > 0.05), however, NDF digestibility of the treatment group supplemented with 30 mg Cu/kg DM was lower compared with that of other groups (P < 0.05). Length and growth rate of cashmere fiber were higher in the treatment group supplemented with 20 mg Cu/kg DM compared with other groups (P < 0.05), but cashmere diameter was not affected by Cu supplementation (P > 0.05). In conclusion, supplementation of Cu at the levels of 10, 20 and 30 mg/kg DM to the basal diet containing 5.60 mg Cu/kg DM had no influence on ADFI or nutrient digestibility of DM, CP and ADF in cashmere goats, while 30 mg Cu/kg DM supplementation had a negative effect on growth performance and NDF digestibility. However, 20 mg Cu/kg DM supplementation of the basal diet enhanced cashmere growth. Hence, the appropriate supplemental level during the cashmere slow-growing period is deemed to be 20 mg Cu/kg DM (total dietary Cu level of 25.6 mg/kg DM).  相似文献   

16.
《Small Ruminant Research》2008,76(2-3):217-225
Data regarding the influence of maturity within the vegetative stage of tropical grasses on forage quality are limited and conflicting. The change in chemical composition of rice grass (Echinochloa sp.) hay harvested at 32, 46, 72 and 90 days of regrowth, and its effect on intake, digestibility, ruminal fermentation, rumen microbial protein synthesis (Experiment 1) and splanchnic oxygen uptake (Experiment 2) by lambs was evaluated. Except intake of indigestible neutral detergent fibre (NDF) which was similar for all treatments, intake of all hay components and the apparent digestibility of dry matter, organic matter (OM), NDF, N, as well as OM and N true digestibility, N retention and rumen microbial protein synthesis decreased linearly (P < 0.05) with increased regrowth age. Rumen fluid pH, ammonia N and peptide concentrations were similar for all treatments while sugars and amino acid concentrations decreased linearly with increased regrowth age of rice grass (P < 0.05). Passage rate of particles through reticulum-rumen (PRrr) was quadratically related (P < 0.05) to regrowth age. The highest PRrr and, consequently, the lowest retention time in the reticulum-rumen were obtained at 72 days of regrowth. There was a quadratic effect (P < 0.05) on net portal-drained viscera (PDV) flux of oxygen and heat production, while OM intake, portal blood flow and heat production as proportion of digestible energy (DE) intake were not affected by the increased regrowth age of rice grass. The highest means of oxygen uptake and heat production by PDV tissues were in 72 days treatment. In the whole splanchnic metabolism assay neither hay intake nor blood flow, oxygen uptake or heat production were affected by forage regrowth age. In conclusion, the nutritive value of rice grass hay decreased as regrowth age increased from 32 to 90 days due to decrease both OM intake and digestibility.  相似文献   

17.
The brown midrib (BMR) gene has been reported to reduce the lignin concentration in plants, which contributed to increased fiber digestion in ruminants. Three studies were completed to compare the digestibility of a BMR mutant of sudangrass (sorghum bicolor subsp. Drummondii) versus a non-BMR (‘Piper’) variety when included in diets fed to sheep (Study 1), to complete a rumen in vitro assessment of sheep and lactating cow diets (Study 2), and to compare digestibility when included in the diet fed to lactating dairy cows (Study 3). Four wether sheep were used in a 2 × 2 Latin square experiment (Study 1) with total fecal collection to determine total tract apparent digestibility of pelleted Piper (P) and BMR (P-BMR) sudangrass hays. Forage pellets consisted of either P-BMR or P hay with added urea to meet the maintenance crude protein (CP) requirement of the sheep. Digestibility of organic matter (OM; P<0.01), dry matter (DM; P<0.01), acid detergent fiber (ADF; P<0.05), and neutral detergent fiber (aNDFom; P<0.07) was higher for P-BMR than P sudangrass. In vitro rumen digestibility of aNDFom using cattle rumen fluid was higher at 24 (P<0.01), 48 (P<0.01) and 72 h (P<0.01) of fermentation for P-BMR versus P (Study 2). Four lactating Holstein dairy cows (251 ± 30 days in milk) and fitted with ruminal and duodenal cannulae were used in a 4 × 4 Latin square experiment. Total mixed rations (TMR) contained 180 g/kg DM shredded sudangrass hay and 180 g/kg sliced alfalfa hay, but the proportion of P to P-BMR sudangrass varied as 100:0, 66:34, 34:66, or 0:100. Yields of milk and milk protein were highest at the 66:34 level (Quadratic: P=0.06 and 0.07, respectively), but composition of milk fat, protein and lactose, as well as DM intake, did not differ (Study 3), probably because forestomach and total tract apparent digestion of aNDFom and OM did not differ due to sudangrass source.  相似文献   

18.
A study was carried out to estimate the nutritive value of four indigenous multi-purpose tree (MPT) species (Enterolobium cyclocarpum, Treculia africana, Gliricidia sepium and Millettia griffoniana) by the evaluation of their seasonal chemical composition, in vitro fermentation and in sacco dry matter (DM) degradation. The main objective of the study was to assess the potential of these indigenous MPT in supplementing the feed of ruminant animals during the dry season when grasses are scarce and their quality generally fall short of animal requirements. Leaf samples were randomly collected from the trees for estimation of DM, crude protein (CP), ether extract (EE), ash, neutral detergent fibre (NDFom), acid detergent fibre (ADFom), lignin (sa), in vitro fermentation and in sacco DM degradation. Samples were collected three times to represent seasonal variations as follows: November: early dry; February: mid-dry and April: late dry seasons. All samples had high CP (160–199 g/kg DM) and moderate fibre concentrations (NDFom, 380–580 g/kg DM; ADFom, 290–400 g/kg DM and lignin (sa), 75–107 g/kg DM). T. africana recorded the highest (180–199 g/kg DM) (P<0.001) CP content throughout the seasons. The values obtained for the in vitro fermentation characteristics and in sacco DM degradation of these indigenous MPT indicated the presence of potentially degradable nutrients in the MPT. Data from this study showed that E. cyclocarpum, T. africana, G. sepium and M. griffoniana have potentials that could be harnessed as feed supplements for ruminant animal production in Nigeria during the dry season.  相似文献   

19.
For grazing animals an important determinant of animal performance is the rate of nutrient intake (RNI) which depends on diet quality and instantaneous intake rate (IIR). In turn, diet quality and IIR are the outcome of the interaction between the morphology and behaviour of the animal and the structure of the sward. Using artificial microswards of Panicum maximum we evaluated the effect of four levels of the tensile resistance of stems in tropical swards on the grazing behaviour of cattle of two age classes (1- and 3-year-old steers) faced with a stem barrier either in a vertical (experiment 1, E1) or horizontal plane (experiment 2, E2). The animals did not select against low tensile resistance stems (LTRS) but did avoid high tensile resistance stems (HTRS) which resulted in a significant difference (P < 0.001) between diet DM (dry matter) digestibility and forage DM digestibility in swards with HTRS. IIR decreased (P < 0.001) on average 62% in E1 and 67% in E2 as stem tensile resistance increased, 144% and 177% in E1 and E2, respectively. This led to a reduction (P < 0.001) in digestible DM IIR in both young and mature cattle respectively of 56% and 68% in E1, and 45% and 79% in E2, as stem tensile resistance increased. The decline in IIR was due to an increase in time per bite and a reduction in bite dimensions that were the result of different mechanisms in the two experiments: when leaves were taller than the stems (E1) the decrease in bite area was associated with an asymptotic increase (P < 0.001) in bite force in mature animals, and a maintenance (P = 0.456) of bite force in young animals, suggesting that maximum bite force regulated bite area in E1. This was not the case in E2 because both bite area and bite force decreased (P < 0.05) with the increase in stem tensile resistance suggesting that the animals were not able to gather enough plant material with the tongue in order for bite force to regulate bite area. We conclude that bite force and tongue force regulate selectivity and bite dimensions, which are the ultimate determinants of the RNI; IIR is the primary determinant of the RNI with diet quality being of lesser importance; and HTRS act as deterrents to achieving maximum IIR in tropical swards, particularly in mature cattle.  相似文献   

20.
Forty-eight Pelibuey × Katahdin (38.8 ± 0.67 kg) crossbred male lambs were used in a 32-day feeding trial (four pens per treatment in a randomized complete block design), to evaluate the influence of zilpaterol (β2-agonist) supplementation level on growth performance and carcass characteristics. Lambs were fed a dry-rolled corn-based finishing diet (3.04 Mcal/kg of ME) supplemented with 0, 0.15, 0.20, or 0.25 mg/kg of live weight d−1 zilpaterol (as zilpaterol chlorhydrate, Zilmax®, Intervet México, México City). DM intake averaged 1.099 ± 0.042 kg/d and was not affected (P = 0.40) by treatments. Compared with control lambs, zilpaterol supplementation increased gain efficiency (15.8%, P < 0.03), apparent energy retention per unit DMI (10.9%, P = 0.03), and tended to increased daily gain (16%, P < 0.07) and total gain (17.7%, P < 0.08). Zilpaterol supplementation did not affect (P = 0.20) carcass weight, longissimus muscle area (LM), or fat thickness, but increased (2.3%, P = 0.04) carcass dressing percentage and reduced (36%, P < 0.01) kidney-pelvic fat. Increasing level of zilpaterol supplementation increased total weight gain (linear component, P < 0.05), gain:feed (linear component, P < 0.01), and dressing percentage (linear component, P < 0.02), and decreased (linear component, P < 0.01) kidney-pelvic fat. We conclude that zilpaterol supplementation enhances growth performance and dressing percentage in lambs in a manner comparable to that of cattle (greater muscle accretion, reduced body fat). Responses to zilpaterol was optimal when supplemented at 0.20 mg of zilpaterol/kg of live weight d−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号