首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effect of extracellular annexin I on regulating insulin secretion in MIN6N8a (an insulin secreting cell line) cells. The properties of annexin I receptor in MIN6N8a cells were also determined. Annexin I stimulated insulin release in MIN6N8a cells, regardless of the presence or absence of extracellular Ca(2+). Confocal microscopy revealed that annexin I bound to the surface of MIN6N8a cells. In addition, FACs analysis showed that annexin I bound to the surface of MIN6N8a cells in a dose-dependent manner. However, the annexin I-stimulated insulin secretion and the annexin I binding were abolished in MIN6N8a cells treated with proteases. Annexin I receptors were regenerated time-dependently. Furthermore, annexin I-stimulated insulin secretion was inhibited by cycloheximide but not by actinomycin D. These results showed that annexin I binds to the surface receptor in order to regulate the stimulation of insulin release in MIN6N8a cells.  相似文献   

2.
3.
Phospholipase D (PLD) has been strongly implicated in the regulation of Golgi trafficking as well as endocytosis and exocytosis. Our aim was to investigate the role of PLD in regulating the biphasic exocytosis of insulin from pancreatic beta-cells that is essential for mammalian glucose homeostasis. We observed that PLD activity in MIN6 pancreatic beta-cells is closely coupled to secretion. Cellular PLD activity was increased in response to a variety of secretagogues including the nutrient glucose and the cholinergic receptor agonist carbamoylcholine. Conversely, pharmacological or hormonal inhibition of stimulated secretion reduced PLD activity. Most importantly, blockade of PLD-catalyzed phosphatidic acid formation using butan-1-ol inhibited insulin secretion in both MIN6 cells and isolated pancreatic islets. It was further established that PLD activity was required for both the first and the second phase of glucose-stimulated insulin release, suggesting a role in the very distal steps of exocytosis, beyond granule recruitment into a readily releasable pool. Visualization of granules using green fluorescent protein-phogrin confirmed a requirement for PLD prior to granule fusion with the plasma membrane. PLD1 was shown to be the predominant isoform in MIN6 cells, and it was located at least partially on insulin granules. Overexpression of wild-type or a dominant negative catalytically inactive mutant of PLD1 augmented or inhibited secretagogue-stimulated secretion, respectively. The results suggest that phosphatidic acid formation on the granule membrane by PLD1 is essential for the regulated secretion of insulin from pancreatic beta-cells.  相似文献   

4.
Brain-selective kinase 2 (BRSK2) has been shown to play an essential role in neuronal polarization. In the present study, we show that BRSK2 is also abundantly expressed in pancreatic islets and MIN6 β-cell line. Yeast two-hybrid screening, GST fusion protein pull-down, and co-immunoprecipitation assays reveal that BRSK2 interacts with CDK-related protein kinase PCTAIRE1, a kinase involved in neurite outgrowth and neurotransmitter release. In MIN6 cells, BRSK2 co-localizes with PCTAIRE1 in the cytoplasm and phosphorylates one of its serine residues, Ser-12. Phosphorylation of PCTAIRE1 by BRSK2 reduces glucose-stimulated insulin secretion (GSIS) in MIN6 cells. Conversely, knockdown of BRSK2 by siRNA increases serum insulin levels in mice. Our results reveal a novel function of BRSK2 in the regulation of GSIS in β-cells via a PCTAIRE1-dependent mechanism and suggest that BRSK2 is an attractive target for developing novel diabetic drugs.  相似文献   

5.
Cell-cell contacts and interactions between pancreatic β-cells and/or other cell populations within islets are essential for cell survival, insulin secretion, and functional synchronization. Three-dimensional (3D) culture systems supply the ideal microenvironment for islet-like cluster formation and functional maintenance. However, the underlying mechanisms remain unclear. In this study, mouse insulinoma 6 (MIN6) cells were cultured in a rotating 3D culture system to form islet-like aggregates. Glucose-stimulated insulin secretion (GSIS) and the RhoA/ROCK pathway were investigated. In the 3D-cultured MIN6 cells, more endocrine-specific genes were up-regulated, and GSIS was increased to a greater extent than in cells grown in monolayers. RhoA/ROCK inactivation led to F-actin remodeling in the MIN6 cell aggregates and greater insulin exocytosis. The gap junction protein, connexin 36 (Cx36), was up-regulated in MIN6 cell aggregates and RhoA/ROCK-inactivated monolayer cells. GSIS dramatically decreased when Cx36 was knocked down by short interfering RNA and could not be reversed by RhoA/ROCK inactivation. Thus, the RhoA/ROCK signaling pathway is involved in insulin release through the up-regulation of Cx36 expression in 3D-cultured MIN6 cells.  相似文献   

6.
Glutamate dehydrogenase (GDH) catalyzes reversible oxidative deamination of l-glutamate to alpha-ketoglutarate. Enzyme activity is regulated by several allosteric effectors. Recognition of a new form of hyperinsulinemic hypoglycemia, hyperinsulinism/hyperammonemia (HI/HA) syndrome, which is caused by gain-of-function mutations in GDH, highlighted the importance of GDH in glucose homeostasis. GDH266C is a constitutively activated mutant enzyme we identified in a patient with HI/HA syndrome. By overexpressing GDH266C in MIN6 mouse insulinoma cells, we previously demonstrated unregulated elevation of GDH activity to render the cells responsive to glutamine in insulin secretion. Interestingly, at low glucose concentrations, basal insulin secretion was exaggerated in such cells. Herein, to clarify the role of GDH in the regulation of insulin secretion, we studied cellular glutamate metabolism using MIN6 cells overexpressing GDH266C (MIN6-GDH266C). Glutamine-stimulated insulin secretion was associated with increased glutamine oxidation and decreased intracellular glutamate content. Similarly, at 5 mmol/l glucose without glutamine, glutamine oxidation also increased, and glutamate content decreased with exaggerated insulin secretion. Glucose oxidation was not altered. Insulin secretion profiles from GDH266C-overexpressing isolated rat pancreatic islets were similar to those from MIN6-GDH266C, suggesting observation in MIN6 cells to be relevant in native beta-cells. These results demonstrate that, upon activation, GDH oxidizes glutamate to alpha-ketoglutarate, thereby stimulating insulin secretion by providing the TCA cycle with a substrate. No evidence was obtained supporting the hypothesis that activated GDH produced glutamate, a recently proposed second messenger of insulin secretion, by the reverse reaction, to stimulate insulin secretion.  相似文献   

7.
Low levels of intracellular antioxidant enzyme activities as well as glutathione (GSH) concentrations have been described in pancreatic beta cells. We examined the effects of intracellular GSH depletion on insulin secretion and the role of intracellular GSH in signal transduction in beta cell line, MIN6 cells. Anti-gamma-glutamylcysteine synthetase (gamma-GCS) heavy subunit ribozyme was stably transfected to MIN6 cells to reduce intracellular GSH concentration. In the presence of 10 mM glucose, ribozyme-transfected cells (RTC) increased insulin secretion from 0.58 microg/10(6) cells/h in control cells (CC) to 1.48 microg/10(6) cells/h. This was associated with increased intracellular Ca(2+) concentration in RTC, detected by fluo-3 staining. Our results demonstrated that intracellular GSH concentration might influence insulin secretion by MIN6 cells, and suggest that enhanced insulin secretion by beta cells conditioned by chronic depletion of GSH is mediated by increased intracellular Ca(2+) concentration.  相似文献   

8.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) regulates several cellular functions; however, its physiological role in pancreatic beta cell functions remains to be determined. In the present study, we investigated the synergistic effect of PPAR-gamma and its agonist, pioglitazone, on proinsulin biosynthesis and insulin release in a glucose-responsible insulinoma cell line, MIN6 cells. Expression of PPAR-gamma in MIN6 cells was not detectable by RT-PCR and immunoblot analysis. When PPAR-gamma-1 was overexpressed adenovirally in MIN6 cells, glucose-stimulated proinsulin biosynthesis and insulin release were inhibited. Pioglitazone treatment alone had no effects on these parameters of beta cell function in control MIN6 cells, although pioglitazone synergistically augmented the inhibitory effect of PPAR-gamma on proinsulin biosynthesis and insulin release under the condition of PPAR-gamma overexpression. Our results demonstrate that PPAR-gamma plays a negative role in pancreatic beta cells.  相似文献   

9.
Glucose stimulates insulin secretion from pancreatic beta cells by inducing the recruitment and fusion of insulin vesicles to the plasma membrane. However, little is currently known about the mechanism of the initial docking or tethering of insulin vesicles prior to fusion. Here, we examined the role of the SEC6-SEC8 (exocyst) complex, implicated in trafficking of secretory vesicles to fusion sites in the plasma membrane in yeast and in regulating glucose-stimulated insulin secretion from pancreatic MIN6 beta cells. We show first that SEC6 is concentrated on insulin-positive vesicles, whereas SEC5 and SEC8 are largely confined to the cytoplasm and the plasma membrane, respectively. Overexpression of truncated, dominant-negative SEC8 or SEC10 mutants decreased the number of vesicles at the plasma membrane, whereas expression of truncated SEC6 or SEC8 inhibited overall insulin secretion. When single exocytotic events were imaged by total internal reflection fluorescence microscopy, the fluorescence of the insulin surrogate, neuropeptide Y-monomeric red fluorescent protein brightened, diffused, and then vanished with kinetics that were unaffected by overexpression of truncated SEC8 or SEC10. Together, these data suggest that the exocyst complex serves to selectively regulate the docking of insulin-containing vesicles at sites of release close to the plasma membrane.  相似文献   

10.
We have developed a method of video rate bioluminescence imaging to investigate protein secretion from a single mammalian cell and analyzed the localization, secretory frequency, and quantification of secreted protein. By detecting the luminescence signals from the Gaussia luciferase (GLase) reaction using a high-speed electron-multiplying charge-coupled device (EM-CCD) camera, video rate imaging was performed with a time resolution within 500 ms/image over 30 min in living cells. As a model study, we applied the method to visualize the glucose-stimulated insulin secretion from clustered pancreatic MIN6 β cells using the fused protein of GLase with preproinsulin. High-quality video images clearly showed that the glucose-stimulated insulin secretion from the clustered MIN6 β cells oscillated within a period of a few minutes over 10 min. In addition, the glibenclamide-induced insulin secretion from the clustered MIN6 β cells was visualized, suggesting that bioluminescence video rate imaging is a useful method for validating drug action in living cells.  相似文献   

11.
The insulin receptor (IR) and its signaling appear to be essential for insulin secretion from pancreatic beta-cells. However, much less is known about the role of the IR in alpha-cells. To assess the role of the IR in glucagon and insulin secretion, we engineered adeno-viruses for high efficiency small interference RNA (siRNA)-IR expression in isolated mouse pancreatic islets and lentiviruses for siRNA-IR expression in pancreatic alpha- and beta-cell lines (alpha-TC6 and MIN6) with specific, long term stable IR knockdown. Western blot analysis showed that these strategies resulted in 60-80% reduction of IR protein in islets and alpha- and beta-cell lines. Cell growth was reduced by 35-50% in alpha-TC and MIN6 cells stably expressing siRNA-IR, respectively. Importantly, glucagon secretion, in response to glucose (25 to 2.8 mm), was completely abolished in islets expressing siRNA-IR, whereas secretion increased 1.7-fold in islets expressing control siRNA. In contrast, there was no difference in glucose-stimulated insulin secretion when comparing siRNA-IR and siRNA control, with both groups showing a 1.7-fold increase. Islet glucagon and insulin content were also unaffected by IR knockdown. To further explore the role of the IR, siRNA-IR was stably expressed in pancreatic cell lines, which dramatically suppressed glucose-regulated glucagon secretion in alpha-TC6 cells (3.4-fold) but did not affect GSIS in MIN6 cells. Defects in siRNA-IR-expressing alpha-cells were associated with an alteration in the activity of Akt and p70S6K where insulin-induced phosphorylation of protein kinase B/AKt was greatly reduced while p70S6K activation was enhanced, suggesting that the related pathways play important roles in alpha cell function. This study provides direct evidence that appropriate expression of the IR in alpha-cells is required for glucose-dependent glucagon secretion.  相似文献   

12.
Group X secretory phospholipase A2 (GX sPLA2) potently hydrolyzes membrane phospholipids to release arachidonic acid (AA). While AA is an activator of glucose-stimulated insulin secretion (GSIS), its metabolite prostaglandin E2 (PGE2) is a known inhibitor. In this study, we determined that GX sPLA2 is expressed in insulin-producing cells of mouse pancreatic islets and investigated its role in beta cell function. GSIS was measured in vivo in wild-type (WT) and GX sPLA2-deficient (GX KO) mice and ex vivo using pancreatic islets isolated from WT and GX KO mice. GSIS was also assessed in vitro using mouse MIN6 pancreatic beta cells with or without GX sPLA2 overexpression or exogenous addition. GSIS was significantly higher in islets isolated from GX KO mice compared with islets from WT mice. Conversely, GSIS was lower in MIN6 cells overexpressing GX sPLA2 (MIN6-GX) compared with control (MIN6-C) cells. PGE2 production was significantly higher in MIN6-GX cells compared with MIN6-C cells and this was associated with significantly reduced cellular cAMP. The effect of GX sPLA2 on GSIS was abolished when cells were treated with NS398 (a COX-2 inhibitor) or L-798,106 (a PGE2-EP3 receptor antagonist). Consistent with enhanced beta cell function, GX KO mice showed significantly increased plasma insulin levels following glucose challenge and were protected from age-related reductions in GSIS and glucose tolerance compared with WT mice. We conclude that GX sPLA2 plays a previously unrecognized role in negatively regulating pancreatic insulin secretion by augmenting COX-2-dependent PGE2 production.  相似文献   

13.
Hong SH  Won JH  Yoo SA  Auh CK  Park YM 《FEBS letters》2002,532(1-2):17-20
This study investigates the effect of extracellular annexin I (Anx I) on regulating insulin secretion in isolated rat pancreatic islets. Results show that Anx I stimulates insulin release in pancreatic islets regardless of the presence or absence of extracellular Ca2+. In particular, confocal microscopy shows that Anx I binds to the surface of islet cells in the absence of extracellular Ca2+. However, insulin secretion through Anx I significantly decreases in trypsin-treated islets. Likewise, there is minimal binding of Anx I to the surface of trypsin-treated islets. Anti-Anx I polyclonal antibody also inhibits the stimulating effect of Anx I on insulin secretion. These results indicate that Anx I is capable of binding to the cell surface receptor, in order to regulate the stimulation of insulin release in rat pancreatic islets.  相似文献   

14.
The pathogenic role of anti-annexin V antibodies remains unclear. Anti-annexin V antibodies are frequently associated with higher incidences of intrauterine fetal loss, preeclampsia, and arterial and venous thrombosis. The present study investigated the in vitro ability of anti-annexin V antibody to bind human trophoblast cells, to affect trophoblast gonadotropin secretion and invasiveness, and to induce placental apoptosis. Cytotrophoblast cells were dispersed in Ringer bicarbonate buffer containing trypsin and DNase I, filtered, and layered over a Percoll gradient in Hanks balanced salt solution. In the case of monoclonal anti-annexin V antibody, the highest binding was found when the cells displayed the greatest amount of syncytium formation. Anti-annexin V antibody, but not its negative control, induced trophoblast apoptosis and significantly reduced trophoblast gonadotropin secretion. These findings suggest that recognition by anti-annexin V antibody of adhered annexin V on trophoblast cell structures might represent a potential pathogenic mechanism by which these antibodies can cause defective placentation.  相似文献   

15.
CD38 is a transmembrane glycoprotein expressed in multiple cell types, including pancreatic β cells. It can serve as an enzyme that catalyzes the metabolism of two different Ca(2+)-mobilizing compounds, cyclic adenosine diphosphoribose (cADPR) and nicotinic acid adenine dinucleotide phosphate. One of these metabolites, cADPR, is known to be involved in glucose-induced insulin secretion from pancreatic β cells. Although the essential role of CD38 for endogenous cADPR synthesis has been established, the relationship between the proposed extracellular enzymatic activity of CD38 and the intracellular Ca(2+) modulation caused by the intracellular cADPR accumulation has not yet been fully explained. For a better understanding of the role of CD38 in the insulin secretion machinery, analysis of the intracellular localization of this molecule in pancreatic β cells is essential. In an attempt to provide a method to probe the N-terminal and C-terminal of CD38 separately, we generated an insulin-secreting MIN6 murine pancreatic β cell line expressing a human CD38 bearing an N-terminal FLAG epitope tag. We found a weak but consistent expression of the FLAG epitope outside of the cells, indicating the presence of a small amount of CD38 with cytoplasmic enzymatic activity. MIN6 cells transfected with human CD38 exhibited increased glucose-induced insulin release. In addition, anti-FLAG cross-linking further enhanced the insulin release, suggesting that the N-terminal of CD38 expressed on the cell surface functions as a receptor for an unknown ligand and triggers positive signals for insulin secretion.  相似文献   

16.
Although intracellular Ca(2+) in pancreatic beta-cells is the principal signal for insulin secretion, the effect of chronic elevation of the intracellular Ca(2+) concentration ([Ca(2+)](i)) on insulin secretion is poorly understood. We recently established two pancreatic beta-cell MIN6 cell lines that are glucose-responsive (MIN6-m9) and glucose-unresponsive (MIN6-m14). In the present study we have determined the cause of the glucose unresponsiveness in MIN6-m14. Initially, elevated [Ca(2+)](i) was observed in MIN6-m14, but normalization of the [Ca(2+)](i) by nifedipine, a Ca(2+) channel blocker, markedly improved the intracellular Ca(2+) response to glucose and the glucose-induced insulin secretion. The expression of subunits of ATP-sensitive K(+) channels and voltage-dependent Ca(2+) channels were increased at both mRNA and protein levels in MIN6-m14 treated with nifedipine. As a consequence, the functional expression of these channels at the cell surface, both of which are decreased in MIN6-m14 without nifedipine treatment, were increased significantly. Contrariwise, Bay K8644, a Ca(2+) channel agonist, caused severe impairment of glucose-induced insulin secretion in glucose-responsive MIN6-m9 due to decreased expression of the channel subunits. Chronically elevated [Ca(2+)](i), therefore, is responsible for the glucose unresponsiveness of MIN6-m14. The present study also suggests normalization of [Ca(2+)](i) in pancreatic beta-cells as a therapeutic strategy in treatment of impaired insulin secretion.  相似文献   

17.
18.
19.
Insulin secretion from pancreatic beta-cells occurs by sequential cellular processes, including glucose metabolism, electrical activity, Ca2+ entry, and regulated exocytosis. Abnormalities in any of these functions can impair insulin secretion. In the present study, we demonstrate that inhibition of proteasome activity severely reduces insulin secretion in the mouse pancreatic beta-cell line MIN6-m9. Although no significant effects on glucose metabolism including ATP production were found in the presence of proteasome inhibitors, both glucose- and KCl-induced Ca2+ entry were drastically reduced. As Ca2+-ionophore-induced insulin secretion was unaffected by proteasome inhibition, a defect in Ca2+ entry through voltage-dependent calcium channels (VDCCs) is the likely cause of the impaired insulin secretion. We found that the pore-forming alpha-subunit of VDCCs undergoes ubiquitination, which does not decrease but slightly increases expression of the alpha-subunit protein at the plasma membrane. However, electrophysiological analysis revealed that treatment with proteasome inhibitors results in a severe reduction in VDCC activity in MIN6-m9 cells, indicating that VDCC function is suppressed by proteasome inhibition. Furthermore, insulin secretion in isolated mouse pancreatic islets was also decreased by proteasome inhibition. These results demonstrate that the ubiquitin-proteasome system plays a critical role in insulin secretion by maintaining normal function of VDCCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号