首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
3.
We measured hepatic cholesterol 7 alpha-hydroxylase activity, mass, and catalytic efficiency (activity/unit mass) in bile fistula rats infused intraduodenally with taurocholate and its 7 beta-hydroxy epimer, tauroursocholate, with or without mevalonolactone to supply newly synthesized cholesterol. Enzyme activity was measured by an isotope incorporation assay and enzyme mass by densitometric scanning of immunoblots using rabbit anti-rat liver cholesterol 7 alpha-hydroxylase antisera. Cholesterol 7 alpha-hydroxylase activity increased 6-fold, enzyme mass 34%, and catalytic efficiency 5-fold after interruption of the enterohepatic circulation for 48 h. When taurocholate was infused to the bile acid-depleted animals at a rate equivalent to the hepatic bile acid flux (27 mumol/100-g rat/h), cholesterol 7 alpha-hydroxylase activity and enzyme mass declined 60 and 61%, respectively. Tauroursocholate did not significantly decrease cholesterol 7 alpha-hydroxylase activity, mass and catalytic efficiency. The administration of mevalonolactone, which is converted to cholesterol, modestly increased cholesterol 7 alpha-hydroxylase activity and enzyme mass in the bile acid-depleted rats. However, when taurocholate was infused together with mevalonolactone, cholesterol 7 alpha-hydroxylase activity and catalytic efficiency were markedly depressed while enzyme mass did not change as compared with bile acid-depleted rats. These results show that (a) hepatic bile acid depletion increases bile acid synthesis mainly by activating cholesterol 7 alpha-hydroxylase with only a small rise in enzyme mass, (b) replacement with taurocholate for 24 h decreases both cholesterol 7 alpha-hydroxylase activity and mass proportionally, (c) when cholesterol is available (mevalonolactone supplementation), the infusion of taurocholate results in the formation of a catalytically less active cholesterol 7 alpha-hydroxylase, and (d) tauroursocholate, the 7 beta-hydroxy epimer of taurocholate, does not inhibit cholesterol 7 alpha-hydroxylase. Thus, bile acid synthesis is modulated by the catalytic efficiency and mass of cholesterol 7 alpha-hydroxylase. The enterohepatic flux of 7 alpha-hydroxylated bile acids and the formation of hepatic cholesterol apparently control cholesterol 7 alpha-hydroxylase by different mechanisms.  相似文献   

4.
Specific activities of the hepatic microsomal enzymes 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase and cholesterol 7alpha-hydroxylase were studied in rats fed sterols and bile acids. The administration of bile acids (taurocholate, taurodeoxycholate, taurochenodeoxycholate) at a level of 1% of the diet for 1 wk reduced the activity of HMG CoA reductase. Taurocholate and taurodeoxycholate, but not taurochenodeoxycholate, inhibited cholesterol 7alpha-hydroxylase. Dietary sitosterol produced increases in the specific activity of HMG CoA reductase (3.6-fold) and cholesterol 7alpha-hydroxylase (1.4-fold), and biliary cholesterol concentrations in this group more than doubled. Compared with controls fed the stock diet, the simultaneous administration of sitosterol and taurochenodeoxycholate resulted in a 60% decrease of HMG CoA reductase activity and no change in cholesterol 7alpha-hydroxylase activity or biliary cholesterol concentration. Rats fed sitosterol plus taurocholate had nearly normal HMG CoA reductase activity, but cholesterol 7alpha-hydroxylase was inhibited and biliary cholesterol remained high. Bile acid secretion rates and biliary bile acid composition were similar in controls and sterol-fed animals. In all groups receiving bile acids, biliary secretion of bile acids was nearly doubled and bile acid composition was shifted in the direction of the administered bile acid. It is concluded that the composition of the bile acid pool influences the hepatic concentrations of the rate-controlling enzymes of bile acid synthesis.  相似文献   

5.
6.
Two cholesterol 7 alpha-hydroxylase isozymes were purified from liver microsomes of cholestyramine-treated female rats by using anion exchange high performance liquid chromatography. These two cytochrome P-450 isozymes were similar in electrophoretic mobility, immunocross-reactivity, and Vmax but differed in Km for cholesterol, turnover number, and charges. Antibody against the major isozyme was raised in rabbit. This antibody specifically inhibited microsomal cholesterol 7 alpha-hydroxylase activity. Immunoblot of microsomal polypeptides indicated that microsomal cholesterol 7 alpha-hydroxylase enzyme levels were increased in parallel with cholesterol 7 alpha-hydroxylase activity upon the treatment of rats with diet supplemented with cholestyramine. Both cholesterol 7 alpha-hydroxylase activity and enzyme levels were drastically reduced immediately after the removal of cholestyramine from the diet. Cholesterol 7 alpha-hydroxylase activity was also detected in the microsomes of kidney, heart, and lung in about 7-27% of the level found in the liver. 3-Methylcholanthrene treatment induced cholesterol 7 alpha-hydroxylase activity and enzyme level. In contrast, pregnenolone-16 alpha-carbonitrile or dexamethasone treatment greatly depressed enzyme and activity in rats. Cholesterol 7 alpha-hydroxylase enzyme level was 2-3-fold higher in liver microsomes of rats maintained under the reversed light cycle than under the normal light cycle. In genetically obese Zucker rats, cholesterol 7 alpha-hydroxylase activity and enzyme level did not respond to the change in the light cycle, however, were induced to the same levels as in the lean rats by cholestyramine treatment. This study provided the first direct evidence that the bile acid feedback regulation and circadian rhythm of microsomal cholesterol 7 alpha-hydroxylase activity involved the induction of cholesterol 7 alpha-hydroxylase enzyme level.  相似文献   

7.
8.
We investigated the effect of ileal bile acid transport on the regulation of classic and alternative bile acid synthesis in cholesterol-fed rats and rabbits. Bile acid pool sizes, fecal bile acid outputs (synthesis rates), and the activities of cholesterol 7alpha-hydroxylase (classic bile acid synthesis) and cholesterol 27-hydroxylase (alternative bile acid synthesis) were related to ileal bile acid transporter expression (ileal apical sodium-dependent bile acid transporter, ASBT). Plasma cholesterol levels rose 2.1-times in rats (98 +/- 19 mg/dl) and 31-times (986 +/- 188 mg/dl) in rabbits. The bile acid pool size remained constant (55 +/- 17 mg vs. 61 +/- 18 mg) in rats but doubled (254 +/- 46 to 533 +/- 53 mg) in rabbits. ASBT protein expression did not change in rats but rose 31% (P < 0.05) in rabbits. Fecal bile acid outputs that reflected bile acid synthesis increased 2- and 2.4-times (P < 0.05) in cholesterol-fed rats and rabbits, respectively. Cholesterol 7alpha-hydroxylase activity rose 33% (24 +/- 2.4 vs. 18 +/- 1.6 pmol/mg/min, P < 0.01) and mRNA levels increased 50% (P < 0.01) in rats but decreased 68% and 79%, respectively, in cholesterol-fed rabbits. Cholesterol 27-hydroxylase activity remained unchanged in rats but rose 62% (P < 0.05) in rabbits. Classic bile acid synthesis (cholesterol 7alpha-hydroxylase) was inhibited in rabbits because an enlarged bile acid pool developed from enhanced ileal bile acid transport. In contrast, in rats, cholesterol 7alpha-hydroxylase was stimulated but the bile acid pool did not enlarge because ASBT did not change. Therefore, although bile acid synthesis was increased via different pathways in rats and rabbits, enhanced ileal bile acid transport was critical for enlarging the bile acid pool size that exerted feedback regulation on cholesterol 7alpha-hydroxylase in rabbits.  相似文献   

9.
Maximal bile acid secretory rates and expression of bile acid transporters in liver and ileum are increased in lactation, possibly to facilitate increased enterohepatic recirculation of bile acids. We determined changes in the size and composition of the bile acid pool and key enzymes of the bile acid synthetic pathway [cholesterol 7alpha-hydroxylase (Cyp7a1), sterol 27-hydroxylase (Cyp27a1), and sterol 12alpha-hydroxylase (Cyp8b1)] in lactating rats relative to female virgin controls. The bile acid pool increased 1.9 to 2.5-fold [postpartum (PP) days 10, 14, and 19-23], compared with controls. A 1.5-fold increase in cholic acids and a 14 to 20% decrease in muricholic acids in lactation significantly increased the hydrophobicity index. In contrast, the hepatic concentration of bile acids and small heterodimer partner mRNA were unchanged in lactation. A 2.8-fold increase in Cyp7a1 mRNA expression at 16 h (10 h of light) demonstrated a shift in the diurnal rhythm at day 10 PP; Cyp7a1 protein expression and cholesterol 7alpha-hydroxylase activity were significantly increased at this time and remained elevated at day 14 PP but decreased to control levels by day 21 PP. There was an overall decrease in Cyp27a1 mRNA expression and a 20% decrease in Cyp27a1 protein expression, but there was no change in Cyp8b1 mRNA or protein expression at day 10 PP. The increase in Cyp7a1 expression PP provides a mechanism for the increase in the bile acid pool.  相似文献   

10.
Monospecific antibody against purified rat liver cholesterol 7 alpha-hydroxylase cytochrome P-450 was used to screen a lambda gt11 cDNA library constructed from immuno-enriched polysomal RNA of cholestyramine-treated female rat liver. Two types of cDNA clones differing in the length of the 3'-untranslated region were identified, and DNA sequences were determined. The full length clone contains 3561 base pairs plus a long poly(A) tail. The amino acid sequence deduced from the open reading frame revealed a unique P-450 protein containing 503 amino acid residues which belonged to a new gene family designated family VII or CYP7. Southern blot hybridization experiments indicated that the minimal size of P-450 VII gene was 11 kilobase pairs (kb), and there was probably only one gene in this new family. Northern blot hybridization using specific cDNA probes revealed at least two major mRNA species of about 4.0 kb and 2.1 kb, respectively. These two mRNA species may be derived from the use of different polyadenylation signals and reverse-transcribed to two types of cDNA clones. Cholesterol 7 alpha-hydroxylase mRNAs were induced 2- to 3-fold in rat liver by cholestyramine treatment. The mRNA level was rapidly reduced upon the removal of the inducer. Similarly, cholesterol feeding induced enzyme activity, protein, and mRNA levels in the rat by 2-fold, suggesting that cholesterol is an important regulator of cholesterol 7 alpha-hydroxylase in the liver. On the other hand, dexamethasone and pregnenolone-16 alpha-carbonitrile drastically reduced the activity, protein, and mRNA levels. These experiments suggest that the induction of cholesterol 7 alpha-hydroxylase activity by cholestyramine or cholesterol and inhibition of cholesterol 7 alpha-hydroxylase activity by bile acid feedback are results of the rapid turnover of cholesterol 7 alpha-hydroxylase enzyme and mRNA levels.  相似文献   

11.
The effects of sulfonate analogs of cholic (C), chenodeoxycholic (CDC), and ursodeoxycholic acid (UDC) and three 7-alkylated CDCs--7-methyl-, 7-ethyl-, and 7-propyl-CDCs--on taurocholate absorption from rat terminal ileum in situ and on cholesterol 7alpha-hydroxylase activity in primary culture of the rat liver were investigated. The sulfonate analogs of two dihydroxy bile acids CDC and UDC, but not C, significantly decreased the absorption of taurocholate. Taurine conjugates of 7-alkylated CDC slightly decreased the taurocholate absorption, and tauro-7-propyl-CDC significantly suppressed the absorption. Although the sulfonate analogs of C and CDC reduced cholesterol 7alpha-hydroxylase activity by 40% and 60% compared to control, UDC-sulfonate analog did not affect enzymatic activity. These results were consistent with those of the lead compounds, C, CDC, and UDC. The introduction of methyl group at C-7 position of CDC attenuated the reduction in cholesterol 7alpha-hydroxylase activity by CDC. However, elongation of the alkyl group resulted in an inhibitory effect. The present study revealed the following: 1) bile acid sulfonates act on cholesterol and bile acid metabolism in a similar manner as taurine conjugated bile acids; and 2) the biologic properties of CDC could be altered by the introduction of alkyl group at C-7 position.  相似文献   

12.
Cholesterol 7 alpha-hydroxylase activity was measured in livers from ovariectomized baboons fed a high cholesterol high saturated fat diet and maintained in four groups: untreated controls, estrogen (100 micrograms/g per week), progesterone (3 mg/kg per day) and estrogen + progesterone. Estrogen treatment alone increased hepatic 7 alpha-hydroxylase activity by 2.7-fold, whereas progesterone treatment alone did not influence hepatic 7 alpha-hydroxylase activity. The increase in 7 alpha-hydroxylase activity in estrogen + progesterone group was similar to that in the estrogen group.  相似文献   

13.
Cholesterol 7 alpha-hydroxylase activity was completely inhibited by incubation with alkaline phosphatase in a reconstituted enzyme system containing a cytochrome P-450, NADPH-cytochrome P-450 reductase and phospholipid. On the other hand, cAMP-dependent protein kinase stimulated cholesterol 7 alpha-hydroxylase activity by 2.5-fold. The modulation of cholesterol 7 alpha-hydroxylase activity was dependent on the amount of phosphatase or kinase added. The phosphatase inhibited enzyme activity was partially reversed by the treatment with protein kinase. These experiments indicate that the reconstituted cholesterol 7 alpha-hydroxylase activity is reversibly regulated by phosphorylation/dephosphorylation mechanism.  相似文献   

14.
To study the effect of cholecystectomy on the regulation of classic and alternative bile acid syntheses, gallbladder-intact (n = 20) and cholecystectomized (n = 20) New Zealand White rabbits were fed either chow or chow with 2% cholesterol (3 g/day). After 10 days, bile fistulas were constructed in half of each rabbit group to recover and measure the bile acid pool and biliary bile acid flux. After cholesterol feeding, the bile acid pool size increased from 268 +/- 55 to 444 +/- 77 mg (P < 0.01) with a 2-fold rise in the biliary bile acid flux in intact rabbits but did not expand the bile acid pool (270 +/- 77 vs. 276 +/- 62 mg), nor did the biliary bile acid flux increase in cholecystectomized rabbits. Ileal apical sodium-dependent bile acid transporter protein increased 46% from 93 +/- 6 to 136 +/- 23 units/mg (P < 0.01) in the intact rabbits but did not change in cholecystectomized rabbits (104 +/- 14 vs. 99 +/- 19 units/mg) after cholesterol feeding. Cholesterol 7alpha-hydroxylase activity was inhibited 59% (P < 0.001) while cholesterol 27-hydroxylase activity rose 83% (P < 0.05) after cholesterol feeding in the intact rabbits but neither enzyme activity changed significantly in cholesterol-fed cholecystectomized rabbits. Fecal bile acid outputs reflecting bile acid synthesis increased significantly in the intact but not in the cholecystectomized rabbits fed cholesterol.Removal of the gallbladder prevented expansion of the bile acid pool after cholesterol feeding as seen in intact rabbits because ileal bile acid transport did not increase. As a result, cholesterol 7alpha-hydroxylase was not inhibited.  相似文献   

15.
Sterol balance measurements using isotopic and chromatographic techniques were carried out in rats fed diets containing beta-sitosterol (0.8%) and cholesterol (1.2%). The activities of the rate-limiting enzymes of cholesterol synthesis (beta-hydroxy-beta-methylglutaryl-CoA reductase, EC 1.1.1.34) and bile acid synthesis (cholesterol 7 alpha-hydroxylase) were determined in the same animals. Cholesterol feeding increased cholesterol absorption from 1.2 to 70 mg/day. The increased absorption was compensated for by inhibition of hepatic cholesterol synthesis, enhanced conversion of cholesterol to bile acids (from 13.7 to 27.3 mg/day) and a slight increase in the excretion of endogenous neutral steroids (from 7.7 to 11.2 mg/day). Despite the adaptation there was accumulation of cholesterol in the liver (from 2.2 to 9.2 mg/g). Beta-Sitosterol feeding inhibited cholesterol absorption (calculated absorption was zero). In these rats there was enhanced cholesterol synthesis (from 20.0 to 28.8 mg/day, but no change in the rates of bile acid formation. Measurements of the activities of the rate-limiting enzymes showed fair correlation with cholesterol-bile acid balance. In cholesterol fed animals, beta-hydroxy-beta-methylglutaryl-CoA reductase was inhibited 80% and cholesterol 7 alpha-hydroxylase was enhanced 61%. In beta-sitosterol-fed animals, the reductase was increased 2-fold and cholesterol 7 alpha-hydroxylase was not significantly different from controls.  相似文献   

16.
In the chronic bile fistula rat, the administration of a bolus dose of mevinolinic acid, an inhibitor of HMG-CoA reductase, was followed by rapid down-regulation of cholesterol 7 alpha-hydroxylase activity and a decrease in bile acid synthesis. These observations suggested that either newly synthesized cholesterol or some other metabolite of mevalonate may be involved in the regulation of bile acid synthesis. In order to distinguish between these two alternatives, we carried out experiments in which cholesterol synthesis was blocked by AY9944, a compound that inhibits the conversion of 7-dehydrocholesterol to cholesterol, a last step in the cholesterol biosynthesis pathway. Rats underwent biliary diversion for 72 h at which time they were given intravenously either a bolus dose of AY9944 (1 mg/kg) or control vehicle. At 0 (pre-treatment control), 0.5, 1.5, and 3 h post bolus, livers were harvested and specific activities of cholesterol 7 alpha-hydroxylase were determined. At 1.5, 3, and 6 h post bolus, AY9944 inhibited bile acid synthesis by 19 +/- 6%, 40 +/- 4%, and 41 +/- 6%, respectively, as compared to pretreatment baseline. Cholesterol 7 alpha-hydroxylase activity determined at 0.5, 1.5, and 3 h was decreased by 44 +/- 6%, 44 +/- 2%, and 36 +/- 2%, respectively, as compared to the control value. In in vitro experiments using microsomes from livers of control bile fistula rats, the addition of AY9944 (up to 100 microM) failed to inhibit cholesterol 7 alpha-hydroxylase activity. The results of this study demonstrate that, in the chronic bile fistula rat, acute inhibition of cholesterol synthesis at either early or late steps leads to a rapid down-regulation of cholesterol 7 alpha-hydroxylase activity and decrease in bile acid synthesis.  相似文献   

17.
Cholesterol 7 alpha-hydroxylase, the cytochrome P-450-dependent and rate-controlling enzyme of bile acid synthesis, was purified from rat and human liver microsomes. The purified fractions were assayed in a reconstituted system containing [4-14C]cholesterol, and cholesterol 7 alpha-hydroxylase activities in these fractions increased 500-600-fold relative to whole microsomes. Polyacrylamide gel electrophoresis of rat microsomes followed by immunoblotting with polyclonal rabbit antisera raised against purified cholesterol 7 alpha-hydroxylases revealed two peaks at molecular masses of 47,000 and 49,000 daltons for both rat and human fractions. Increasing amounts of rabbit anti-rat and anti-human antibodies progressively inhibited rat microsomal cholesterol 7 alpha-hydroxylase activity up to 80%. In contrast, monospecific antibodies raised against other purified cytochrome P-450 enzymes (P-450f, P-450g, and P-450j) did not inhibit rat or human cholesterol 7 alpha-hydroxylase activity. Immunoblots of rat microsomes with the rabbit anti-rat cholesterol 7 alpha-hydroxylase antibody demonstrated that the antibody reacted quantitatively with the rat microsomal enzyme. Microsomes from cholesterol-fed rats showed increased cholesterol 7 alpha-hydroxylase mass, whereas treatment with pravastatin, an inhibitor of hydroxy-methylglutaryl-coenzyme A reductase, reduced enzyme mass. Microsomes from starved rats contained slightly less cholesterol 7 alpha-hydroxylase protein than chow-fed control rats. These results indicate a similarity in molecular mass, structure, and antigenicity between rat and human cholesterol 7 alpha-hydroxylases; demonstrate the production of inhibiting anti-cholesterol 7 alpha-hydroxylase antibodies that can be used to measure the change in cholesterol 7 alpha-hydroxylase enzyme mass under various conditions; and emphasize the unique structure of cholesterol 7 alpha-hydroxylase with respect to other cytochrome P-450-dependent hydroxylases.  相似文献   

18.
Biochemical site of regulation of bile acid biosynthesis in the rat   总被引:15,自引:0,他引:15  
The production of bile salts by rat liver is regulated by a feedback mechanism, but it is not known which enzyme controls endogenous bile acid synthesis. In order to demonstrate the biochemical site of this control mechanism, bile fistula rats were infused intravenously with (14)C-labeled bile acid precursors, and bile acid biosynthesis was inhibited as required by intraduodenal infusion of sodium taurocholate. The infusion of taurocholate (11-14 mg/100 g of rat per hr) inhibited the incorporation of acetate-1-(14)C, mevalonolactone-2-(14)C, and cholesterol-4-(14)C into bile acids by approximately 90%. In contrast, the incorporation of 7alpha-hydroxycholesterol-4-(14)C into bile acids was reduced by less than 10% during taurocholate infusion. These results indicate that the regulation of bile acid biosynthesis is exerted via cholesterol 7alpha-hydroxylase provided that hepatic cholesterol synthesis is adequate.  相似文献   

19.
Cholesterol 7 alpha-hydroxylase (P-450 Ch7 alpha) catalyzes the first and rate-limiting step in the hepatic conversion of cholesterol to bile acids. P-450 Ch7 alpha activity in rat liver is regulated at three independent levels: (a) feedback inhibition by bile acids (long term regulation); (b) midterm regulation through the diurnal cycle; (c) short term modulation by hormones and dietary factors. P-450 Ch7 alpha was purified to apparent homogeneity and in active form (turnover number = 10-15 min-1 P-450(-1)) from cholestyramine-fed female rats, and rabbit anti-P-450 Ch7 alpha polyclonal antibodies were then prepared. Liver microsomes were isolated from rats fed normal diet or diet containing the bile acid sequestrant cholestyramine and were then killed at either the apex (midnight) or nadir (noon) of the diurnal rhythm of P-450 Ch7 alpha activity. Direct comparison of microsomal P-450 Ch7 alpha enzyme activity levels with P-450 Ch7 alpha protein (Western blotting) and mRNA levels (Northern and slot blots) revealed that the 2.5-3-fold induction of P-450 Ch7 alpha activity with cholestyramine feeding can be fully accounted for by an increase in P-450 Ch7 alpha protein and mRNA. Turnover numbers of 7-9 nmol of 7 alpha-hydroxycholesterol/min/nmol of microsomal P-450 Ch7 alpha were observed for both induced and uninduced animals. Similarly, the postmidnight decrease in enzyme activity could be generally accounted for by a decrease in P-450 Ch7 alpha protein and mRNA, suggesting that these species have relatively short half-lives. The short term regulation of P-450 Ch7 alpha was examined following treatment with the cholesterol precursor mevalonic acid. A 2.5-fold increase in hepatic microsomal P-450 Ch7 alpha activity occurred within 150 min and was accompanied by a significant elevation of P-450 Ch7 alpha mRNA (up to 3-6-fold increase). These findings establish that hepatic cholesterol 7 alpha-hydroxylase activity is regulated in response to long term, midterm, and short term control factors primarily at a pretranslational level and that this regulation is of greater importance than proposed mechanisms based on allosteric effects of bile acids on P-450 Ch7 alpha protein, changes in cholesterol availability, or reversible phosphorylation of a putative P-450 Ch7 alpha phosphoprotein.  相似文献   

20.
The effect of individual bile acids on bile acid synthesis was studied in primary hepatocyte cultures. Relative rates of bile acid synthesis were measured as the conversion of lipoprotein [4-14C]cholesterol into 4-14C-labeled bile acids. Additions to the culture media of cholate, taurocholate, glycocholate, chenodeoxycholate, taurochenodeoxycholate, glycochenodeoxycholate, deoxycholate, and taurodeoxycholate (10-200 microM) did not inhibit bile acid synthesis. The addition of cholate (100 microM) to the medium raised the intracellular level of cholate 10-fold, documenting effective uptake of added bile acid by cultured hepatocytes. The addition of 200 microM taurocholate to cultured hepatocytes prelabeled with [4-14C]cholesterol did not result in inhibition of bile acid synthesis. Taurocholate (10-200 microM) also failed to inhibit bile acid synthesis in suspensions of freshly isolated hepatocytes after 2, 4, and 6 h of incubation. Surprisingly, the addition of taurocholate and taurochenodeoxycholate (10-200 microM) stimulated taurocholate synthesis from [2-14C]mevalonate-labeled cholesterol (p less than 0.05). Neither taurocholate nor taurochenodeoxycholate directly inhibited cholesterol 7 alpha-hydroxylase activity in the microsomes prepared from cholestyramine-fed rats. By contrast, 7-ketocholesterol and 20 alpha-hydroxycholesterol strongly inhibited cholesterol 7 alpha-hydroxylase activity at low concentrations (10 microM). In conclusion, these data strongly suggest that bile acids, at the level of the hepatocyte, do not directly inhibit bile acid synthesis from exogenous or endogenous cholesterol even at concentrations 3-6-fold higher than those found in rat portal blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号