首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.  相似文献   

2.
《Autophagy》2013,9(11):1989-2005
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.  相似文献   

3.
Treatment of rats with the cholesterol pathway inhibitor AY9944 produces an animal model of Smith-Lemli-Opitz syndrome (SLOS), an autosomal recessive disease caused by defective cholesterol synthesis. This SLOS rat model undergoes progressive and irreversible degeneration of the neural retina, with associated pathological features of the retinal pigmented epithelium (RPE). Here, we provide further insights into the mechanism involved in the RPE pathology. In the SLOS rat model, markedly increased RPE apical autofluorescence is observed, compared to untreated animals, which correlates with increased levels of A2E and other bisretinoids. Utilizing cultured human induced pluripotent stem cell (iPSC)- derived SLOS RPE cells, we found significantly elevated steady-state levels of 7-dehydrocholesterol (7DHC) and decreased cholesterol levels (key biochemical hallmarks of SLOS). Western blot analysis revealed altered levels of the macroautophagy/autophagy markers MAP1LC3B-II and SQSTM1/p62, and build-up of ubiquitinated proteins. Accumulation of immature autophagosomes was accompanied by inefficient degradation of phagocytized, exogenously supplied retinal rod outer segments (as evidenced by persistence of the C-terminal 1D4 epitope of RHO [rhodopsin]) in SLOS RPE compared to iPSC-derived normal human control. SLOS RPE cells exhibited lysosomal pH levels and CTSD activity within normal physiological limits, thus discounting the involvement of perturbed lysosomal function. Furthermore, 1D4-positive phagosomes that accumulated in the RPE in both pharmacological and genetic rodent models of SLOS failed to fuse with lysosomes. Taken together, these observations suggest that defective phagosome maturation underlies the observed RPE pathology. The potential relevance of these findings to SLOS and the requirement of cholesterol for phagosome maturation are discussed.  相似文献   

4.
The roles of human low density lipoprotein (LDL)- cholesterol and high density lipoprotein (HDL)- cholesterol on adrenal steroidogenesis were investigated using cultured human adult and fetal adrenocortical cells and the findings were then compared to those obtained with bovine adrenocortical cells. The secretion of cortisol in both human and bovine adrenocortical cells was dose-dependently increased by the administration of LDL- or HDL-cholesterol in the presence of adrenocorticotropin (ACTH). LDL-cholesterol was utilized to a greater extent than HDL-cholesterol in both human and bovine adrenal steroidogenesis in the presence of ACTH. Exogenous lipoprotein-derived cholesterol was less utilized in human adrenal steroidogenesis than in bovine adrenal steroidogenesis, compared to the endogenous cholesterol. An increase in the secretion of cortisol and dehydroepi androsterone sulfate (DHEA-S) continued for the 5-day culture period, in the presence of lipoprotein cholesterol and ACTH in both human adult and fetal adrenocortical cells. The secretion of aldosterone increased on the first day of the culture period, then gradually decreased for the 5-day culture period in human adult adrenocortical cells, but not in human fetal adrenocortical cells in the presence of lipoprotein cholesterol and ACTH. These findings demonstrate that exogenous cholesterol utilized in the biosynthesis of steroids is mainly from LDL-cholesterol in both human adult and fetal adrenals and bovine adrenal and the proportion of cholesterol synthesized de novo is significantly larger in the human adult adrenal than in the bovine adrenal.  相似文献   

5.
The differential polarized distribution of the reduced- folate transporter (RFT-1) and folate receptor alpha (FRalpha), the two proteins involved in the transport of folate, has been characterized in normal mouse retinal pigment epithelium (RPE) and in cultured human RPE cells. RPE cells mediate the vectorial transfer of nutrients from choroidal blood to neural retina. Whereas FRalpha is known to be present in many cell types of the neural retina, in situ hybridization analysis in the present study demonstrated that RFT-1 is present only in RPE. Laser-scanning confocal microscopy using antibodies specific for RFT-1 demonstrated an apical distribution of this protein in cultured human and intact mouse RPE, which contrasts with the basolateral distribution of FRalpha in these cells. The expression of RFT-1 in the RPE cell apical membrane was confirmed by functional studies with purified apical membrane vesicles from bovine RPE. These studies, done with N(5)-methyltetrahydrofolate (the predominant folate derivative in blood) and folate as substrates, have shown that RFT-1 functions in a Na(+)- and C1(-)-independent manner. The transporter is specific for folate and its analogs. A transmembrane H(+) gradient influences the transport function of this protein markedly; the transport mechanism is likely to be either folate/H(+) co-transport or folate/OH(-) exchange. Based on the differential polarization of FRalpha and RFT-1 in RPE, we suggest that these two proteins work in a concerted manner to bring about the vectorial transfer of folate across the RPE cell layer from the choroidal blood to the neural retina. This constitutes the first report of the differential polarization of the two folate transport proteins in any polarized epithelium.  相似文献   

6.
Retinal pigment epithelial (RPE) cells mediate the recognition and clearance of effete photoreceptor outer segments (POS), a process central to the maintenance of normal vision. Given the emerging importance of Toll-like receptors (TLRs) in transmembrane signaling in response to invading pathogens as well as endogenous substances, we hypothesized that TLRs are associated with RPE cell management of POS. TLR4 clusters on human RPE cells in response to human, but not bovine, POS. However, TLR4 clustering could be inhibited by saturating concentrations of an inhibitory anti-TLR4 mAb. Furthermore, human POS binding to human RPE cells elicited transmembrane metabolic and calcium signals within RPE cells, which could be blocked by saturating doses of an inhibitory anti-TLR4 mAb. However, the heterologous combination of bovine POS and human RPE did not trigger these signals. The pattern recognition receptor CD36 collected at the POS-RPE cell interface for both homologous and heterologous samples, but human TLR4 only collected at the human POS-human RPE cell interface. Kinetic experiments of human POS binding to human RPE cells revealed that CD36 arrives at the POS-RPE interface followed by TLR4 accumulation within 2 min. Metabolic and calcium signals immediately follow. Similarly, the production of reactive oxygen metabolites (ROMs) was observed for the homologous human system, but not the heterologous bovine POS-human RPE cell system. As (a) the bovine POS/human RPE combination did not elicit TLR4 accumulation, RPE signaling, or ROM release, (b) TLR4 arrives at the POS-RPE cell interface just before signaling, (c) TLR4 blockade with an inhibitory anti-TLR4 mAb inhibited TLR4 clustering, signaling, and ROM release in the human POS-human RPE system, and (d) TLR4 demonstrates similar clustering and signaling responses to POS in confluent RPE monolayers, we suggest that TLR4 of RPE cells participates in transmembrane signaling events that contribute to the management of human POS.  相似文献   

7.
8.
Summary The possible antiproliferative effect of melatonin on retinal pigment epithelial (RPE) cells in vitro was investigated. Bovine RPE cells cultured in Ham’s F12 medium supplemented with 10% fetal bovine serum had a nuclear density of 73.6 ± 6.1 nuclei/mm2 at 72 h after seeding. The nuclear density at this time-point was doubled if either 50 or 100 ng/ml human epidermal growth factors (hEGF) was added to the culture medium. When these hEGF-stimulated cells were treated with melatonin from 10 to 500 pg/ml, the proliferation was suppressed with a dose-response relationship. At 250 and 500 pg/ml melatonin, the nuclear densities of the melatonin-treated cells were similar to those of the control cells. Using mitotically active SV-40 transformed human fetal RPE cells cultured in a serum-free medium, melatonin was also shown to be antiproliferative. In the presence of 500 pg/ml melatonin, the proliferation of these cells was inhibited to 77% as compared to the control. These results were further supported by the reduced [H3]thymidine uptake in the melatonin-treated cells. We propose that melatonin, at physiologic concentrations, has an antiproliferative effect, and that cultured RPE cells stimulated to proliferate by either hEGF treatment or SV-40 transfection are responsive to melatonin. Melatonin may either inhibit mitosis in actively dividing cells or modulate hEGF action.  相似文献   

9.
Evidence was recently reported that the cysteine proteinase inhibitor, cystatin C, is highly expressed by cultured human retinal pigment epithelial (RPE) cells. As a step towards understanding possible functions of this protein associated with the RPE, the localization, targetting and trafficking of cystatin C were investigated. Constructs encoding an enhanced variant of green fluorescent protein (EGFP) fused to precursor cystatin C and to mature cystatin C were made and transfected into cultured human RPE cells. Expression of fusion proteins was monitored in vivo by fluorescence confocal microscopy. In cells transfected with precursor cystatin C-EGFP, fluorescence was initially targetted to the perinuclear zone, co-localizing with the Golgi apparatus. Transfected cells were observed at intervals over a period of up to 3 weeks, during which time fluorescent vesicles developed peripherally and basally while fluorescence continued to be detected in the Golgi region. Immunochemical analysis of cell lysates confirmed the expression of a fusion protein recognized by antibodies to both cystatin C and EGFP. Cells transfected with the construct lacking the leader peptide of precursor cystatin C presented a diffuse and weak fluorescence. Together, these results imply a leader sequence-dependent processing of cystatin C through the secretory pathway of RPE cells. This was confirmed by the detection, by Western blotting, of the chimaeric protein alongside endogenous cystatin C in the medium of transfected RPE cells.  相似文献   

10.
Age-related macular degeneration (AMD), the leading cause of blindness in the developed world, is accompanied by degeneration of the retinal pigment epithelial (RPE) cells. There is an inverse correlation between the melanin content of the eye and the incidence of AMD. Lipofuscin (LF)-accumulation in RPE cells accompanies the process of aging, and may also be related to AMD. This study was designed to evaluate the effect of melanin/melanosomes on the rate of LF formation in cultured rabbit and bovine RPE cells subjected to oxidative stress (40% normobaric O(2)) and daily supplementation with photoreceptor outer segments for 4 weeks. The LF content was measured at 0, 2, and 4 weeks in RPE cells from pigmented and albino rabbits, as well as in pigment-rich and pigment-poor bovine cells. Albino rabbit and pigment-poor bovine cells accumulated significantly higher amounts of LF than pigmented rabbit cells and pigment-rich bovine RPE cells after both 2 and 4 weeks of exposure. Autometallography of melanin-containing cells, without previous exposure to ammonium sulfide, showed a positive outcome, indicating either the occurrence of pre-existing iron-sulphur clusters or an extremely high intrinsic reducing capacity. These results suggest that melanin acts as an efficient antioxidant, perhaps by interacting with transition metals.  相似文献   

11.
The transport of ascorbate into cultured bovine retinal pigment epithelial (RPE) cells is reported. Primary or subcultured RPE cells were incubated in the presence of 10-500 microM L-[carboxyl-14C]-ascorbate for various periods of time. Accumulation of ascorbate into RPE cells followed a saturable active transport with a Km of 125 microM and a Vmax of 28 pmole/micrograms DNA/min. RPE intracellular water was calculated to be 0.8 pL/cell, and the transported cellular ascorbate concentration was 7.5 +/- 0.8 mM. Replacement of 150 mM NaCl in the incubation media with choline-Cl strongly inhibited (80 +/- 8%) ascorbate uptake into cultured RPE cells. Although the depletion of cellular ATP by 2,4-dinitrophenol and the inhibition of Na+-K+-ATPase by ouabain reduced ascorbate transport into RPE significantly, active transport of ascorbate was not entirely inhibited by these metabolic inhibitors. The ascorbate analogue, D-isoascorbate, competitively inhibited ascorbate transport into cultured RPE with a Ki of 12.5 mM. Cells grown in the presence of 5 to 50 mM alpha-D-glucose in the growth media did not differ in their ability to transport ascorbate. In contrast, the presence of alpha-D-glucose or its nonmetabolizable analogues, 3-0-methyl-glucose, alpha-methyl-glucose, and 2-deoxy-glucose, but not L-glucose or beta-D-fructose, in the incubation media inhibited ascorbate transport. myo-Inositol (10 or 20 mM) also inhibited ascorbate transport into RPE cells. The active uptake of ascorbate into cultured RPE cells was primarily coupled to the movement of sodium ion down its electrochemical gradient. A bifunctional, cotransport carrier possessing an ascorbate-binding site and a sodium-binding site may be involved in the ascorbate uptake system. The inhibition of ascorbate uptake by sugars appeared to be heterologous in nature, occurring between two distinct carrier systems, both of which were dependent on the sodium ions.  相似文献   

12.
Evidence was recently reported that the cysteine proteinase inhibitor, cystatin C, is highly expressed by cultured human retinal pigment epithelial (RPE) cells. As a step towards understanding possible functions of this protein associated with the RPE, the localization, targetting and trafficking of cystatin C were investigated. Constructs encoding an enhanced variant of green fluorescent protein (EGFP) fused to precursor cystatin C and to mature cystatin C were made and transfected into cultured human RPE cells. Expression of fusion proteins was monitored in vivo by fluorescence confocal microscopy. In cells transfected with precursor cystatin C-EGFP, fluorescence was initially targetted to the perinuclear zone, co-localizing with the Golgi apparatus. Transfected cells were observed at intervals over a period of up to 3 weeks, during which time fluorescent vesicles developed peripherally and basally while fluorescence continued to be detected in the Golgi region. Immunochemical analysis of cell lysates confirmed the expression of a fusion protein recognized by antibodies to both cystatin C and EGFP. Cells transfected with the construct lacking the leader peptide of precursor cystatin C presented a diffuse and weak fluorescence. Together, these results imply a leader sequence-dependent processing of cystatin C through the secretory pathway of RPE cells. This was confirmed by the detection, by Western blotting, of the chimaeric protein alongside endogenous cystatin C in the medium of transfected RPE cells.  相似文献   

13.
The retinal pigment epithelium (RPE) faces the photoreceptor outer segments and regulates the composition of the interstitial subretinal space. ATP enhances fluid movement from the subretinal space across the RPE. RPE cells can themselves release ATP, but the mechanisms and polarity of this release are unknown. The RPE expresses the cystic fibrosis transmembrane conductance regulator (CFTR), and CFTR is associated with ATP release in other epithelial cells. However, an increasing number of reports have suggested that the exocytotic pathway contributes to release. In the present study, we examined the involvement of CFTR and the vesicular pathway in ATP release from RPE cells. Release from cultured human ARPE-19 cells and across the apical membrane of fresh bovine RPE cells in an eyecup was studied. A cAMP cocktail to activate CFTR triggered ATP release from fresh and cultured RPE cells. Release from both RPE preparations was largely prevented by the broad-acting blocker glibenclamide and the specific thiazolidinone CFTR inhibitor CFTR-172. The block by CFTR-172 was enhanced by preincubation and prevented ATP release with 3.5 µM IC50. The rise in intracellular Ca2+ accompanying hypotonic challenge was prevented by CFTR-172. The vesicular transport inhibitor brefeldin A prevented ATP release after stimulation with both hypotonic and cAMP conditions, suggesting vesicular insertion was also involved. These results show an intimate involvement of CFTR in ATP release from RPE cells which can autostimulate receptors on the apical membrane to modify Ca2+ signaling. The requirement for both CFTR and vesicular transport pathways suggests vesicular insertion of CFTR may underlie the release of ATP. cystic fibrosis transmembrane conductance regulator; recycling endosomes; brefeldin A; autostimulation; retinal detachment  相似文献   

14.
Summary In vertebrate tissue development a given cell differentiation pathway is usually associated with a pattern of expression of a specific set of cytoskeletal proteins, including different intermediate filament (IF) and junctional proteins, which is identical in diverse species. The retinal pigment epithelium (RPE) is a layer of polar cells that have very similar morphological features and practically identical functions in different vertebrate species. However, in biochemical and immunolocalization studies of the cytoskeletal proteins of these cells we have noted remarkable interspecies differences. While chicken RPE cells contain only IFs of the vimentin type and do not possess desmosomes and desmosomal proteins RPE cells of diverse amphibian (Rana ridibunda, Xenopus laevis) and mammalian (rat, guinea pig, rabbit, cow, human) species express cytokeratins 8 and 18 either as their sole IF proteins, or together with vimentin IFs as in guinea pig and a certain subpopulation of bovine RPE cells. Plakoglobin, a plaque protein common to desmosomes and the zonula adhaerens exists in RPE cells of all species, whereas desmoplakin and desmoglein have been identified only in RPE desmosomes of frogs and cows, including bovine RPE cell cultures in which cytokeratins have disappeared and vimentin IFs are the only IFs present. These challenging findings show that neither cytokeratin IFs nor desmosomes are necessary for the establishment and function of a polar epithelial cell layer and that the same basic cellular architecture can be achieved by different programs of expression of cytoskeletal proteins. The differences in the composition of the RPE cytoskeleton further indicate that, at least in this tissue, a specific program of expression of IF and desmosomal proteins is not related to the functions of the RPE cell, which are very similar in the various species.  相似文献   

15.
16.
The esterification of all-trans retinol and the occurrence of cytosolic retinoid-binding proteins was investigated in cultured bovine retinal pigment epithelium (RPE) cells. 3H-labeled all-trans retinyl ester (mainly palmitate) was formed at an initial rate of 0.1 nmol·mg protein−1·min−1 when 3H-labeled all-trans retinol was incubated with the 100,000 g pellet obtained from a homogenate of freshly-harvested cells. No esterification could be detected under the same conditions after 14 days in culture in defined medium (DM) or in medium containing 20% fetal bovine serum (CM). No enhancement or restoration of esterifying capacity was observed when the assay mixture was supplemented with palmitoyl CoA. As determined by specific, saturable binding of 3H-labeled all-trans retinol and 3H-labeled 11-cis retinal to proteins with mol. wts 16,000 and 33,000 dalton on calibrated Bio-Sil TSK 250 size-exclusion columns, the cytosol of freshly-harvested RPE cells contained cellular retinol-binding protein (CRBP) and cellular retinal-binding protein (CRAlBP). By comparison with the quantity of 3H-labeled all-trans retinol bound under identical conditions to pure dog liver CRBP, it was estimated that fresh RPE cells contained 102 ± 3 ng CRBP·μg cytosol protein−1. In cultured and subcultured cells, CRBP was present at much lower levels (down to one-tenth of the initial amounts) and CRAlBP could not be detected. Since binding of 3H-labeled all-trans retinoic acid to a protein with molecular weight of 17,000 dalton was not observed in the cytosols of fresh or cultured cells, it was concluded that cellular retinoic acid binding protein (CRABP) was either present at very low levels or absent altogether. An unidentified peak of specific 3H-labeled all-trans-retinoic acid binding at mol. wt 61,000 dalton was prominent in subcultured cells. These results show that in RPE cells in culture the expression of differentiated phenotype with respect to retinoid utilization undergoes significant modification. It is postulated that changes in the composition of the extracellular matrix (e.g. absence of interstitial retinol-binding protein, IRBP) may be involved.  相似文献   

17.
In the eye, the retinal pigment epithelium (RPE) adheres to a complex protein matrix known as Bruch's membrane (BrM). The aim of this study was to provide enriched conditions for RPE cell culture through the production of a BrM-like matrix. Our hypothesis was that a human RPE cell line would deposit an extracellular matrix (ECM) resembling BrM. The composition and structure of ECM deposited by ARPE19 cells (ARPE19-ECM) was characterized. To produce ARPE19-ECM, ARPE19 cells were cultured in the presence dextran sulphate. ARPE19-ECM was decellularized using deoxycholate and characterized by immunostaining and western blot analysis. Primary human RPE and induced pluripotent stem cells were seeded onto ARPE19-ECM or geltrex coated surfaces and examined by microscopy or RT-PCR. Culture of ARPE19 cells with dextran sulphate promoted nuclear localization of SOX2, formation of tight junctions and deposition of ECM. ARPE19 cells deposited ECM proteins found in the inner layers of BrM, including fibronectin, vitronectin, collagens IV and V as well as laminin-alpha-5, but not those found in the middle elastic layer (elastin) or the outer layers (collagen VI). ARPE19-ECM promoted pigmentation in human RPE and pluripotent stem cell cultures. Expression of RPE65 was significantly increased on ARPE19-ECM compared with geltrex in differentiating pluripotent stem cell cultures. ARPE19 cells deposit ECM with a composition and structure similar to BrM in the retina. Molecular cues present in ARPE19-ECM promote the acquisition and maintenance of the RPE phenotype. Together, these results demonstrate a simple method for generating a BrM-like surface for enriched RPE cell cultures.  相似文献   

18.
The ferrous ions released from haemoglobin and storage-transferrin ions cause oxidative stress in the eyes. We observed the phagocytotic process of the photoreceptor outer segment discs peroxidized by ferrous ions in the retinal pigment epithelial (RPE) cells in vitro, and investigated how the ferrous ions influenced RPE in vitro and the photoreceptor outer segment discs. We obtained isolated photoreceptor outer segment discs using sucrose gradient of specific gravity after homogenizing porcine retinas. After bovine RPE cells were cultured with isolated photoreceptor outer segment discs containing FeCl2 for 5 and 24 h, we incubated the specimens with rhodamine phalloidin, antimouse alpha-tubulin antibody and antimouse Ig G (FITC and rhodamine labelled). We observed the specimens by a laser scanning microscopy, and made the ultrathin sections with or without 2% uranyl acetate and 2% lead acetate for examination by transmission electron microscopy. Actin filaments and microtubules of specialized cells such as RPE cells were actively involved in phagocytosis of the photoreceptor outer segment discs. Microtubules were damaged during the phagocytotic process of the photoreceptor outer segment discs peroxidized by ferrous ions. The peroxidation increased the granular and aggregated autofluorescence of the photoreceptor outer segment discs. The membranes of the disc and the phagosomes, and lysosomes in RPE cells were damaged by ferrous ions and had fine particles with high electron density staining without uranium acetate and lead citrate. The cytoskeletons such as actin filaments and microtubules, and the membranes of the phagosomes and the lysosomes in RPE cells in vitro were damaged during the phagocytotic process of the photoreceptor outer segment discs peroxidized by ferrous ions.  相似文献   

19.
Antibodies specific for heme oxygenase-1 (HO-1) were produced in rabbits, using the multiple antigen peptide (MAP) technique, and were employed to investigate the ability of transforming growth factor-β1 (TGF-β1) to induce the HO-1 protein in cultured human retinal pigment epithelial (RPE) cells. Western blot analyses showed that the cytokine induced HO-1 in these cells in a time- and dose-dependent manner. TGF-β1 also increased the mRNA for HO-1 in treated cells prior to the increase in HO-1 protein. The induction was effectively blocked by a neutralizing antibody preparation against TGF-β1. When tested under similar conditions, other growth factors such as basic fibroblast growth factor-I, plateletderived growth factor, insulin-like growth factor, transforming growth factor-α, and epidermal growth factor did not show appreciable induction of HO-1. Lipopolysaccharide, tumor necrosis factor-α, and interferon-γ were also not inducers, although TGF-β2 effectively induced HO-1. Heavy metal ions and thiol reagents were also highly potent inducers of HO-1 in human RPE cells. The induction of HO-1 by TGF-β1 was also observed in bovine choroid fibroblasts, but not in HELA, HEL or bovine corneal fibroblasts. Our results demonstrate for the first time that HO-1 can be induced by an important cytokine, TGF-β1, causing an increase in the expression of both HO-1 message and protein in specific neuroepithelial and fibroblast cells. © 1994 wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    20.
    BACKGROUND: The techniques to isolate and purify retinal pigment epithelial (RPE) cells from small piece of autologous tissues are extremely difficult, and it is important to develop an efficient cell culture technique for RPE cells. The purpose of this study was to investigate the effect of 3T3-J2 cells and conditioned medium from 3T3-J2 cells on the proliferation of cultured RPE cells. METHODS: RPE cells from pigmented rabbits and a human RPE-derived cell line, ARPE-19, were used. First, the effects of co-culturing RPE cells with 3T3-J2 cells on the growth of the cells were analyzed. Second, the effects of the conditioned medium from 3T3-J2 cells on the proliferation of both types of cells were investigated. And third, the effects of the conditioned medium on RPE cell culture from a surgically removed choroidal neovascular (CNV) membrane were investigated. RESULTS: The 3T3-J2 cells increased the proliferation of both rabbit RPE cells and ARPE-19 cells. The number of rabbit RPE cells cultured in a mixture of the conditioned medium from 3T3-J2 cells was significantly higher than that in the reported optimal condition, and a similar tendency was observed for ARPE-19 cells. The results from enzyme-linked immunosorbent assay showed the presence of PDGF-AB, VEGF and IGF-I in the conditioned medium. The conditioned medium also promoted selective growth of human RPE cells from CNV. DISCUSSION: The results from this study present the conditions for efficient and selective culture of primary RPE cells.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号