首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Wnt signals have been shown to be involved in multiple steps of vertebrate neural patterning, yet the relative contributions of individual Wnts to the process of brain regionalization is poorly understood. Wnt1 has been shown in the mouse to be required for the formation of the midbrain and the anterior hindbrain, but this function of wnt1 has not been explored in other model systems. Further, wnt1 is part of a Wnt cluster conserved in all vertebrates comprising wnt1 and wnt10b, yet the function of wnt10b during embryogenesis has not been explored. Here, we report that in zebrafish wnt10b is expressed in a pattern overlapping extensively with that of wnt1. We have generated a deficiency allele for these closely linked loci and performed morpholino antisense oligo knockdown to show that wnt1 and wnt10b provide partially redundant functions in the formation of the midbrain-hindbrain boundary (MHB). When both loci are deleted, the expression of pax2.1, en2, and her5 is lost in the ventral portion of the MHB beginning at the 8-somite stage. However, wnt1 and wnt10b are not required for the maintenance of fgf8, en3, wnt8b, or wnt3a expression. Embryos homozygous for the wnt1-wnt10b deficiency display a mild MHB phenotype, but are sensitized to reductions in either Pax2.1 or Fgf8; that is, in combination with mutant alleles of either of these loci, the morphological MHB is lost. Thus, wnt1 and wnt10b are required to maintain threshold levels of Pax2.1 and Fgf8 at the MHB.  相似文献   

2.
3.
The formation of localised signalling centres is essential for patterning of a number of tissues during development. Previous work has revealed that a distinct population of boundary cells forms at the interface of segments in the vertebrate hindbrain, but the role of these cells is not known. We have investigated the function of the Wnt1 signalling molecule that is expressed by boundary and roof plate cells in the zebrafish hindbrain. Knockdown of wnt1 or of tcf3b, a mediator of Wnt signalling, leads to ectopic expression of boundary cell markers, rfng and foxb1.2, in non-boundary regions of the hindbrain. Ectopic boundary marker expression also occurs following knockdown of rfng, a modulator of Notch signalling required for wnt1 expression at hindbrain boundaries. We show that the boundary and roof plate expression of wnt1 each contribute to upregulation of proneural and delta gene expression and neurogenesis in non-boundary regions, which in turn blocks ectopic boundary marker expression. Boundary cells therefore play a key role in the regulation of cell differentiation in the zebrafish hindbrain. The network of genes underlying the regulation of neurogenesis and lateral inhibition of boundary cell formation by Wnt1 has a striking similarity to mechanisms at the dorsoventral boundary in the Drosophila wing imaginal disc.  相似文献   

4.
5.
6.
7.
8.
原钙黏附蛋白18b(Protocadherin18b,Pcdh18b)属于钙黏附蛋白家族成员.为了研究pcdh18b基因抑制对斑马鱼神经系统发育的影响,针对pcdh18b的翻译起始位点设计一个吗啡啉修饰的反义寡核苷酸抑制其表达,在斑马鱼受精卵一到二细胞期注射并且验证其有效性.注射后用原位杂交和吖啶橙染色检测神经系统的表型和标志基因的表达.pcdh18b下调使神经前体细胞的标志基因neurog1、神经元标志基因elavl3和神经胶质细胞标志基因gfap的表达均出现下调,中后脑边界的标志基因pax2a和wnt1表达减弱并出现神经管分叉现象,同时与后脑分节相关的基因krox20表达减少.吖啶橙染色显示pcdh18b下调后斑马鱼中脑、后脑及中后脑边界细胞凋亡增多.这些结果表明pcdh18b抑制导致了斑马鱼神经系统发育的异常.  相似文献   

9.
10.
11.
12.
Polycystic kidney disease (PKD) is one of the most common causes of end-stage kidney disease, a devastating disease for which there is no cure. The molecular mechanisms leading to cyst formation in PKD remain somewhat unclear, but many genes are thought to be involved. Wnt5a is a non-canonical glycoprotein that regulates a wide range of developmental processes. Wnt5a works through the planar cell polarity (PCP) pathway that regulates oriented cell division during renal tubular cell elongation. Defects of the PCP pathway have been found to cause kidney cyst formation. Our paper describes a method for developing a zebrafish cystic kidney disease model by knockdown of the wnt5a gene with wnt5a antisense morpholino (MO) oligonucleotides. Tg(wt1b:GFP) transgenic zebrafish were used to visualize kidney structure and kidney cysts following wnt5a knockdown. Two distinct antisense MOs (AUG - and splice-site) were used and both resulted in curly tail down phenotype and cyst formation after wnt5a knockdown. Injection of mouse Wnt5a mRNA, resistant to the MOs due to a difference in primary base pair structure, rescued the abnormal phenotype, demonstrating that the phenotype was not due to “off-target” effects of the morpholino. This work supports the validity of using a zebrafish model to study wnt5a function in the kidney.  相似文献   

13.
The cerebellar structures of teleosts are markedly different from those of other vertebrates. The cerebellum continues rostrally into the midbrain ventricle, forming the valvula cerebelli, only in ray-finned fishes among vertebrates. To analyze the ontogenetic processes that underlie this morphological difference, we examined the early development of the cerebellar regions, including the isthmus (mid/hindbrain boundary, MHB), of the medaka (Oryzias latipes), by histology and in-situ hybridization using two gene (wnt1 and fgf8) probes. Isthmic wnt1 was expressed stably in the caudalmost mesencephalic region in the neural tube at all developmental stages examined, defining molecularly the caudal limit of the mesencephalon. The wnt1-positive mesencephalic cells became located rostrally to the isthmic constriction at Iwamatsu's stages 25-26. Isthmic fgf8 expression changed dynamically and became restricted to the rostralmost metencephalic region at stage 24. The rostralmost part (prospective valvula cerebelli) of the fgf8-positive rostral metencephalon protruded rostrally into the midbrain ventricle, bypassing the isthmic constriction, at stages 25-26. Thus, the isthmic constriction shifted caudally with respect to the molecularly defined MHB at stages 25-26. Paired cerebellar primordia were formed from the alar plates of the fgf8-positive rostral metencephalon and the fgf8-negative caudal metencephalon in the medaka neural tube. Our results show that cerebellar development differs between teleosts and murines: both the rostral and caudal metencephalic alar plates develop into the cerebellum in medaka, whereas in the murines only the caudal metencephalic alar plate develops into the cerebellum, and the rostral plate is reduced to a thin membrane.  相似文献   

14.
Here we show that XsalF, a frog homolog of the Drosophila homeotic selector spalt, plays an essential role for the forebrain/midbrain determination in Xenopus. XsalF overexpression expands the domain of forebrain/midbrain genes and suppresses midbrain/hindbrain boundary (MHB) markers and anterior hindbrain genes. Loss-of-function studies show that XsalF is essential for the expression of the forebrain/midbrain genes and for the repression of the caudal genes. Interestingly, XsalF functions by antagonizing canonical Wnt signaling, which promotes caudalization of neural tissues. XsalF is required for anterior-specific expressions of GSK3beta and Tcf3, genes encoding antagonistic effectors of Wnt signaling. Loss-of-function phenotypes of GSK3beta and Tcf3 mimic those of XsalF while injections of GSK3beta and Tcf3 rescue loss-of-function phenotypes of XsalF. These findings suggest that the forebrain/midbrain-specific gene XsalF negatively controls cellular responsiveness to posteriorizing Wnt signals by regulating region-specific GSK3beta and Tcf3 expression.  相似文献   

15.
The zic1 gene is an activator of Wnt signaling   总被引:1,自引:0,他引:1  
The zic1 gene plays an important role in early patterning of the Xenopus neurectoderm. While Zic1 does not act as a neural inducer, it synergizes with the neural inducing factor Noggin to activate expression of posterior neural genes, including the midbrain/hindbrain boundary marker engrailed-2. Since the Drosophila homologue of zic1, odd-paired (opa), regulates expression of the wingless and engrailed genes and since Wnt proteins posteriorize neural tissue in Xenopus, we asked whether Xenopus Zic1 acted through the Wnt pathway. Using Wnt signaling inhibitors, we demonstrate that an active Wnt pathway is required for activation of en-2 expression by zic1. Consistent with this result, Zic1 induces expression of several wnt genes, including wnt1, wnt4 and wnt8b. wnt1 gene expression activates expression of engrailed in various organisms, including Xenopus, as demonstrated here. Together, our data suggest that zic1 is an upstream regulator of several wnt genes and that the regulatory relationships between opa, wingless and engrailed seen in Drosophila are also present in vertebrates.  相似文献   

16.
The dorsal ectoderm of the vertebrate gastrula was proposed by Nieuwkoop to be specified towards an anterior neural fate by an activation signal, with its subsequent regionalization along the anteroposterior (AP) axis regulated by a graded transforming activity, leading to a properly patterned forebrain, midbrain, hindbrain and spinal cord. The activation phase involves inhibition of BMP signals by dorsal antagonists, but the later caudalization process is much more poorly characterized. Explant and overexpression studies in chick, Xenopus, mouse and zebrafish implicate lateral/paraxial mesoderm in supplying the transforming influence, which is largely speculated to be a Wnt family member. We have analyzed the requirement for the specific ventrolaterally expressed Wnt8 ligand in the posteriorization of neural tissue in zebrafish wild-type and Nodal-deficient embryos (Antivin overexpressing or cyclops;squint double mutants), which show extensive AP brain patterning in the absence of dorsal mesoderm. In different genetic situations that vary the extent of mesodermal precursor formation, the presence of lateral wnt8-expressing cells correlates with the establishment of AP brain pattern. Cell tracing experiments show that the neuroectoderm of Nodal-deficient embryos undergoes a rapid anterior-to-posterior transformation in vivo during a short period at the end of the gastrula stage. Moreover, in both wild-type and Nodal-deficient embryos, inactivation of Wnt8 function by morpholino (MO(wnt8)) translational interference dose-dependently abrogates formation of spinal cord and posterior brain fates, without blocking ventrolateral mesoderm formation. MO(wnt8) also suppresses the forebrain deficiency in bozozok mutants, in which inactivation of a homeobox gene causes ectopic wnt8 expression. In addition, the bozozok forebrain reduction is suppressed in bozozok;squint;cyclops triple mutants, and is associated with reduced wnt8 expression, as seen in cyclops;squint mutants. Hence, whereas boz and Nodal signaling largely cooperate in gastrula organizer formation, they have opposing roles in regulating wnt8 expression and forebrain specification. Our findings provide strong support for a model of neural transformation in which a planar gastrula-stage Wnt8 signal, promoted by Nodal signaling and dorsally limited by Bozozok, acts on anterior neuroectoderm from the lateral mesoderm to produce the AP regional patterning of the CNS.  相似文献   

17.
18.
Wnt/beta-catenin signaling regulates many aspects of early vertebrate development, including patterning of the mesoderm and neurectoderm during gastrulation. In zebrafish, Wnt signaling overcomes basal repression in the prospective caudal neurectoderm by Tcf homologs that act as inhibitors of Wnt target genes. The vertebrate homolog of Drosophila nemo, nemo-like kinase (Nlk), can phosphorylate Tcf/Lef proteins and inhibit the DNA-binding ability of beta-catenin/Tcf complexes, thereby blocking activation of Wnt targets. By contrast, mutations in a C. elegans homolog show that Nlk is required to activate Wnt targets that are constitutively repressed by Tcf. We show that overexpressed zebrafish nlk, in concert with wnt8, can downregulate two tcf3 homologs, tcf3a and tcf3b, that repress Wnt targets during neurectodermal patterning. Inhibition of nlk using morpholino oligos reveals essential roles in regulating ventrolateral mesoderm formation in conjunction with wnt8, and in patterning of the midbrain, possibly functioning with wnt8b. In both instances, nlk appears to function as a positive regulator of Wnt signaling. Additionally, nlk strongly enhances convergent/extension phenotypes associated with wnt11/silberblick, suggesting a role in modulating cell movements as well as cell fate.  相似文献   

19.
Convergent extension (CE) cell movements during gastrulation mediate extension of the anterior-posterior body axis of vertebrate embryos. Non-canonical Wnt5 and Wnt11 signalling is essential for normal CE movements in vertebrate gastrulation. Here, we show that morpholino (MO)-mediated double knock-down of the Fyn and Yes tyrosine kinases in zebrafish embryos impaired normal CE cell movements, resembling the silberblick and pipetail mutants, caused by mutations in wnt11 and wnt5, respectively. Co-injection of Fyn/Yes- and Wnt11- or Wnt5-MO was synergistic, but wnt11 or wnt5 RNA did not rescue the Fyn/Yes knockdown or vice versa. Remarkably, active RhoA rescued the Fyn/Yes knockdown as well as the Wnt11 knockdown, indicating that Fyn/Yes and Wnt11 signalling converged on RhoA. Our results show that Fyn and Yes act together with non-canonical Wnt signalling via RhoA in CE cell movements during gastrulation.  相似文献   

20.
Wnt signaling plays crucial roles in neural development. We previously identified Neucrin, a neural-specific secreted antagonist of canonical Wnt/β-catenin signaling, in humans and mice. Neucrin has one cysteine-rich domain, in which the positions of 10 cysteine residues are similar to those in the second cysteine-rich domain of Dickkopfs, secreted Wnt antagonists. Here, we have identified zebrafish neucrin to understand its roles in vivo. Zebrafish Neucrin also has one cysteine-rich domain, which is significantly similar to that of mouse Neucrin. Zebrafish neucrin was also predominantly expressed in developing neural tissues. To examine roles of neucrin in neural development, we analyzed neucrin knockdown embryos. Neural development in zebrafish embryos was impaired by the knockdown of neucrin. The knockdown of neucrin caused increased expression of the Wnt/β-catenin target genes. In contrast, overexpression of neucrin reduced the expression of the Wnt/β-catenin target genes. The knockdown of neucrin affected specification of dorsal region in the midbrain and hindbrain. The knockdown of neucrin also suppressed neuronal differentiation and caused increased cell proliferation and apoptosis in developing neural tissues. Neucrin is a unique secreted Wnt antagonist that is predominantly expressed in developing neural tissues and plays roles in neural development in zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号