首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barley stripe mosaic virus-induced gene silencing in a monocot plant   总被引:35,自引:0,他引:35  
RNA silencing of endogenous plant genes can be achieved by virus-mediated, transient expression of homologous gene fragments. This powerful, reverse genetic approach, known as virus-induced gene silencing (VIGS), has been demonstrated only in dicot plant species, where it has become an important tool for functional genomics. Barley stripe mosaic virus (BSMV) is a tripartite, positive-sense RNA virus that infects many agriculturally important monocot species including barley, oats, wheat and maize. To demonstrate VIGS in a monocot host, we modified BSMV to express untranslatable foreign inserts downstream of the gammab gene, in either sense or antisense orientations. Phytoene desaturase (PDS) is required for synthesizing carotenoids, compounds that protect chlorophyll from photo-bleaching. A partial PDS cDNA amplified from barley was 90, 88 and 74% identical to PDS cDNAs from rice, maize and Nicotiana benthamiana, respectively. Barley infected with BSMV expressing barley, rice or maize PDS fragments became photo-bleached and accumulated phytoene (the substrate for PDS) in a manner similar to plants treated with the chemical inhibitor of PDS, norflurazon. In contrast, barley infected with wild-type BSMV, or BSMV expressing either N. benthamiana PDS or antisense green fluorescent protein (GFP), did not photo-bleach or accumulate phytoene. Thus BSMV silencing of the endogenous PDS was homology-dependent. Deletion of the coat protein enhanced the ability of BSMV to silence PDS. This is the first demonstration of VIGS in a monocot, and suggests that BSMV can be used for functional genomics and studies of RNA-silencing mechanisms in monocot plant species.  相似文献   

2.
Plant virus‐based gene‐silencing vectors have been extensively and successfully used to elucidate functional genomics in plants. However, only limited virus‐induced gene‐silencing (VIGS) vectors can be used in both monocot and dicot plants. Here, we established a dual gene‐silencing vector system based on Bamboo mosaic virus (BaMV) and its satellite RNA (satBaMV). Both BaMV and satBaMV vectors could effectively silence endogenous genes in Nicotiana benthamiana and Brachypodium distachyon. The satBaMV vector could also silence the green fluorescent protein (GFP) transgene in GFP transgenic N. benthamiana. GFP transgenic plants co‐agro‐inoculated with BaMV and satBaMV vectors carrying sulphur and GFP genes, respectively, could simultaneously silence both genes. Moreover, the silenced plants could still survive with the silencing of genes essential for plant development such as heat‐shock protein 90 (Hsp90) and Hsp70. In addition, the satBaMV‐ but not BaMV‐based vector could enhance gene‐silencing efficiency in newly emerging leaves of N. benthamiana deficient in RNA‐dependant RNA polymerase 6. The dual gene‐silencing vector system of BaMV and satBaMV provides a novel tool for comparative functional studies in monocot and dicot plants.  相似文献   

3.
Since the advent of the postgenomic era, efforts have focused on the development of rapid strategies for annotating plant genes of unknown function. Given its simplicity and rapidity, virus-induced gene silencing (VIGS) has become one of the preeminent approaches for functional analyses. However, several problems remain intrinsic to the use of such a strategy in the study of both metabolic and developmental processes. The most prominent of these is the commonly observed phenomenon of "sectoring" the tissue regions that are not effectively targeted by VIGS. To better discriminate these sectors, an effective marker system displaying minimal secondary effects is a prerequisite. Utilizing a VIGS system based on the tobacco rattle virus vector, we here studied the effect of silencing the endogenous phytoene desaturase gene (pds) and the expression and subsequent silencing of the exogenous green fluorescence protein (gfp) on the metabolism of Arabidopsis (Arabidopsis thaliana) leaves and tomato (Solanum lycopersicum) fruits. In leaves, we observed dramatic effects on primary carbon and pigment metabolism associated with the photobleached phenotype following the silencing of the endogenous pds gene. However, relatively few pleiotropic effects on carbon metabolism were observed in tomato fruits when pds expression was inhibited. VIGS coupled to gfp constitutive expression revealed no significant metabolic alterations after triggering of silencing in Arabidopsis leaves and a mild effect in mature green tomato fruits. By contrast, a wider impact on metabolism was observed in ripe fruits. Silencing experiments with an endogenous target gene of interest clearly demonstrated the feasibility of cosilencing in this system; however, carefully constructed control experiments are a prerequisite to prevent erroneous interpretation.  相似文献   

4.
5.
6.
7.
Efficient virus-induced gene silencing in Arabidopsis   总被引:2,自引:0,他引:2       下载免费PDF全文
Virus-induced gene silencing (VIGS) is a plant RNA-silencing technique that uses viral vectors carrying a fragment of a gene of interest to generate double-stranded RNA, which initiates the silencing of the target gene. Several viral vectors have been developed for VIGS and they have been successfully used in reverse genetics studies of a variety of processes occurring in plants. This approach has not been widely adopted for the model dicotyledonous species Arabidopsis (Arabidopsis thaliana), possibly because, until now, there has been no easy protocol for effective VIGS in this species. Here, we show that a widely used tobacco rattle virus-based VIGS vector can be used for silencing genes in Arabidopsis ecotype Columbia-0. The protocol involves agroinfiltration of VIGS vectors carrying fragments of genes of interest into seedlings at the two- to three-leaf stage and requires minimal modification of existing protocols for VIGS with tobacco rattle virus vectors in other species like Nicotiana benthamiana and tomato (Lycopersicon esculentum). The method described here gives efficient silencing in Arabidopsis ecotype Columbia-0. We show that VIGS can be used to silence genes involved in general metabolism and defense and it is also effective at knocking down expression of highly expressed transgenes. A marker system to monitor the progress and efficiency of VIGS is also described.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Virus-induced gene silencing (VIGS) is a versatile and attractive approach for functional gene characterization in plants. Although several VIGS vectors for maize (Zea mays) have been previously developed, their utilities are limited due to low viral infection efficiency, insert instability, short maintenance of silencing, inadequate inoculation method, or abnormal requirement of growth temperature. Here, we established a Cucumber mosaic virus (CMV)-based VIGS system for efficient maize gene silencing that overcomes many limitations of VIGS currently available for maize. Using two distinct strains, CMV-ZMBJ and CMV-Fny, we generated a pseudorecombinant-chimeric (Pr) CMV. Pr CMV showed high infection efficacy but mild viral symptoms in maize. We then constructed Pr CMV-based vectors for VIGS, dubbed Pr CMV VIGS. Pr CMV VIGS is simply performed by mechanical inoculation of young maize leaves with saps of Pr CMV-infected Nicotiana benthamiana under normal growth conditions. Indeed, suppression of isopentenyl/dimethylallyl diphosphate synthase (ZmIspH) expression by Pr CMV VIGS resulted in non-inoculated leaf bleaching as early as 5 d post-inoculation (dpi) and exhibited constant and efficient systemic silencing over the whole maize growth period up to 105 dpi. Furthermore, utilizing a ligation-independent cloning (LIC) strategy, we developed a modified Pr CMV-LIC VIGS vector, allowing easy gene cloning for high-throughput silencing in maize. Thus, our Pr CMV VIGS system provides a much-improved toolbox to facilitate efficient and long-duration gene silencing for large-scale functional genomics in maize, and our pseudorecombination-chimera combination strategy provides an approach to construct efficient VIGS systems in plants.

A pseudorecombinant-chimeric Cucumber mosaic virus-based virus-induced gene silencing system rapidly and efficiently triggers persistent gene silencing in maize.  相似文献   

16.
Virus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various cultivated soybean lines that lack anthocyanin pigmentation is induced by natural degradation of chalcone synthase ( CHS ) mRNA. When soybean plants with brown seed coats were infected with a virus that contains the CHS gene sequence, the colour of the seed coats changed to yellow, which indicates that the naturally occurring RNA silencing is reproduced by VIGS. In addition, CHS VIGS consequently led to a decrease in isoflavone content in seeds. VIGS was also tested on the putative flavonoid 3'-hydroxylase ( F3'H ) gene in the pathway. This experiment resulted in a decrease in the content of quercetin relative to kaempferol in the upper leaves after viral infection, which suggests that the putative gene actually encodes the F3'H protein. In both experiments, a marked decrease in the target mRNA and accumulation of short interfering RNAs were detected, indicating that sequence-specific mRNA degradation was induced. The present report is a successful demonstration of the application of VIGS for genes involved in flavonoid biosynthesis in plants; the CMV-based VIGS system provides an efficient tool for functional analysis of soybean genes.  相似文献   

17.
18.
Yamagishi N  Yoshikawa N 《Uirusu》2010,60(2):155-162
Virus-induced gene silencing (VIGS) is a technology that exploits an RNA-mediated antivirus defense mechanism in plants and has been shown to have great potential in plant reverse genetics. When the virus vector carries sequences of plant genes, virus infection triggers VIGS that results in the degradation of endogenous mRNAs homologous to the plant genes. The system is well established in Nicotiana benthamiana and several reliable VIGS vectors have been developed for other plant species including important agricultural crops. Here, we describe the use of VIGS technology to determine gene function and plant virus vectors for induction of VIGS in plants.  相似文献   

19.
20.
Gene silencing from plant DNA carried by a Geminivirus   总被引:25,自引:0,他引:25  
The geminivirus tomato golden mosaic virus (TGMV) replicates in nuclei and expresses genes from high copy number DNA episomes. The authors used TGMV as a vector to determine whether episomal DNA can cause silencing of homologous, chromosomal genes. Two markers were used to asses silencing: (1) the sulfur allele (su) of magnesium chelatase, an enzyme required for chlorophyll formation; and (2) the firefly luciferase gene (luc). Various portions of both marker genes were inserted into TGMV in place of the coat protein open-reading frame and the constructs were introduced into intact plants using particle bombardment. When TGMV vectors carrying fragments of su (TGMV::su) were introduced into leaves of wild type Nicotiana benthamiana, circular, yellow spots with an area of several hundred cells formed after 3-5 days. Systemic movement of TGMV::su subsequently produced varigated leaf and stem tissue. Fragments that caused silencing included a 786 bp 5' fragment of the 1392 bp su cDNA in sense and anti-sense orientation, and a 403 bp 3' fragment. TGMV::su-induced silencing was propogated through tissue culture, along with the viral episome, but was not retained through meiosis. Systemic downregulation of a constitutively expresse luciferase transgene in plants was achieved following infection with TGMV vectors carrying a 623 bp portion of luc in sense or anti-sense orientation. These results establish that homologous DNA sequences localized in nuclear episomes can modulate the expression of active chromosomal genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号