首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Akiyama  T Inada  Y Nakamura    K Ito 《Journal of bacteriology》1990,172(6):2888-2893
SecY is an Escherichia coli integral membrane protein required for efficient translocation of other proteins across the cytoplasmic membrane; it is embedded in this membrane by the 10 transmembrane segments. Among several SecY-alkaline phosphatase (PhoA) fusion proteins that we constructed previously, SecY-PhoA fusion 3-3, in which PhoA is fused to the third periplasmic region of SecY just after the fifth transmembrane segment, was found to be subject to rapid proteolytic processing in vivo. Both the SecY and PhoA products of this cleavage have been identified immunologically. In contrast, cleavage of SecY-PhoA 3-3 was barely observed in a lep mutant with a temperature-sensitive leader peptidase. The full-length fusion protein accumulated in this mutant was cleaved in vitro by the purified leader peptidase. A sequence Ala-202-Ile-Ala located near the proposed interface between transmembrane segment 5 and periplasmic domain 3 of SecY was found to be responsible for the recognition and cleavage by the leader peptidase, since a mutated fusion protein with Phe-Ile-Phe at this position was no longer cleaved even in the wild-type cells. These results indicate that SecY contains a potential leader peptidase cleavage site that undergoes cleavage if the PhoA sequence is attached carboxy terminally. Thus, transmembrane segment 5 of SecY can fulfill both of the two important functions of the signal peptide, translocation and cleavage, although the latter function is cryptic in the normal SecY protein.  相似文献   

2.
The M13 phage procoat protein requires both its signal sequence and its membrane anchor sequence in the mature part of the protein for membrane insertion. Translocation of its short acidic periplasmic loop is stimulated by the proton motive force (pmf) and does not require the Sec components. We now find that the pmf becomes increasingly important for the translocation of negatively charged residues within procoat when the hydrophobicity of the signal or membrane anchor is incrementally reduced. In contrast, we find that the pmf inhibits translocation of the periplasmic loop when it contains one or two positively charged residues. This inhibitory effect of the pmf is stronger when the hydrophobicity of the inserting procoat protein is compromised. No pmf effect is observed for translocation of an uncharged periplasmic loop even when the hydrophobicity is reduced. We also show that the Delta Psi component of the pmf is necessary and sufficient for insertion of representative constructs and that the translocation effects of charged residues are primarily due to the DeltaPsi component of the pmf and not the pH component.  相似文献   

3.
4.
Precursor proteolysis is a crucial mechanism for regulating protein structure and function. Signal peptidase (SP) is an enzyme with a well defined role in cleaving N-terminal signal sequences but no demonstrated function in the proteolysis of cellular precursor proteins. We provide evidence that SP mediates intraprotein cleavage of IgSF1, a large cellular Ig domain protein that is processed into two separate Ig domain proteins. In addition, our results suggest the involvement of signal peptide peptidase (SPP), an intramembrane protease, which acts on substrates that have been previously cleaved by SP. We show that IgSF1 is processed through sequential proteolysis by SP and SPP. Cleavage is directed by an internal signal sequence and generates two separate Ig domain proteins from a polytopic precursor. Our findings suggest that SP and SPP function are not restricted to N-terminal signal sequence cleavage but also contribute to the processing of cellular transmembrane proteins.  相似文献   

5.
The polar, COOH-terminal c-region of signal peptides has been considered to be most important for influencing the efficiency and fidelity of signal peptidase cleavage while the hydrophobic core or h-region appears indispensable for initiating translocation. To identify structural features of residues flanking the c-region that influence the fidelity and efficiency of signal peptidase cleavage as well as co-translational translocation, we introduced six amino acid substitutions into the COOH terminus of the hydrophobic core and seven substitutions at the NH2 terminus of the mature region (the +1 position) of a model eukaryotic preprotein-human pre(delta pro)apoA-II. This preprotein contains several potential sites for signal peptidase cleavage. The functional consequences of these mutations were assayed using an in vitro co-translational translocation/processing system and by post-translational cleavage with purified, detergent-solubilized, hen oviduct signal peptidase. The efficiency of translocation could be correlated with the hydrophobic character of the residue introduced at the COOH terminus of the h-region. Some h/c boundary mutants underwent co-translational translocation across the microsomal membrane with only minimal cleavage yet they were cleaved post-translationally by hen oviduct signal peptidase more efficiently than other mutants which exhibited a high degree of coupling of co-translational translocation and cleavage. These data suggest that features at the COOH terminus of the h-domain can influence "presentation" of the cleavage site to signal peptidase. The +1 residue substitutions had minor effects on the extent of co-translational translocation and processing. However, these +1, as well as h/c boundary mutations, had dramatic effects on the site of cleavage chosen by signal peptidase, indicating that residues flanking the c-region of this prototypic eukaryotic signal peptide can affect the fidelity of its proteolytic processing. The site(s) selected by canine microsomal and purified hen oviduct signal peptidase were very similar, suggesting that "intrinsic" structural features of this prepeptide can influence the selectivity of eukaryotic signal peptidase cleavage, independent of the microsomal membrane and associated translocation apparatus.  相似文献   

6.
The rate of energy-dependent transfer of pro-OmpA across Escherichia coli inner membrane vesicles in vitro was found to be a function of the ATP concentration. At concentrations above 0.1 mM ATP, the addition of a transmembrane electrochemical potential (proton motive force or pmf) increased the rate of pro-OmpA translocation. Additional experiments demonstrated that the overall reaction proceeded by at least two distinct energy-requiring steps. The first step required only ATP, was nearly unaffected by the pmf, and resulted in the insertion of the amino-terminal domain of pro-OmpA across the membrane. The insertion exposed the signal sequence cleavage site to the periplasmic side of the membrane, as measured by the appearance of a mature length translocation intermediate. However, this intermediate was partially exposed to the cytoplasmic side of the membrane. In a second energy-dependent step, either ATP or the pmf was sufficient to complete the translocation of mature length OmpA across the membrane.  相似文献   

7.
The leader peptidase of Escherichia coli cleaves a 23-residue leader sequence from M13 procoat to yield mature coat protein in virus-infected cells. We have reconstituted pure leader peptidase into vesicles of E. coli lipids and found that these liposomes are active in the conversion of procoat to coat. Trypsin removes all but 10% of the leader peptidase, yet the vesicles retain nearly full capacity to convert procoat to coat, suggesting that only procoat which inserts across the liposomal membrane is a substrate for leader peptidase. This is confirmed by the finding that over 70% of the coat protein produced by these liposomes spans the membrane. The rate at which leader peptidase inside protease-treated liposomes cleaves externally added procoat is comparable to the rate of procoat cleavage by the same amount of leader peptidase in detergent micelles. Thus, procoat can rapidly integrate across a liposomal membrane and be cleaved to coat protein. These findings confirm the central part of the membrane trigger hypothesis that certain proteins (such as procoat) can cross a bilayer without the aid of a proteinaceous pore or transport system.  相似文献   

8.
Plasma membrane vesicles were reconstituted by freezing and thawing of purified plasma membrane fraction from the yeast Metschnikowia reukaufii and phosphatidylcholine (type II-S from Sigma). The reconstituted plasma membrane vesicles generated a proton gradient (acidic inside) upon addition of ATP in presence of alkali cations. delta pH generation was most efficient when K+ was present both outside and inside the plasma membrane vesicles. Both ATPase activity and proton translocation in plasma membrane vesicles were inhibited by orthovanadate (50% inhibition at 100 microM). Plasma membrane vesicles reconstituted without added phosphatidylcholine generated in addition to delta pH, also an electrical potential difference delta psi (inside positive). Delta psi generation exhibited no K+ specificity. 50 microM dicyclohexylcarbodiimide inhibited completely delta psi generation whereas the K+-channel blocker quinine (5 microM) caused an 8-fold increase of delta psi. The proton gradient was much less affected by the agents. Taking into account the K+-dependent stimulation of the plasma membrane ATPase of M. reukaufii, these results further support the conclusion that the ATPase operates as a partially electrogenic H+/K+ exchanger, as was also suggested for other yeast plasma membrane ATPases.  相似文献   

9.
The residues occupying the -3 and -1 positions relative to the cleavage site of secretory precursor proteins are usually amino acids with small, neutral side chains that are thought to constitute the recognition site for the processing enzyme, signal peptidase. No restrictions have been established for residues positioned +1 to the cleavage site, although there have been several indications that mutant precursor proteins with a proline at +1 cannot be processed by Escherichia coli signal peptidase I (also called leader peptidase). A maltose-binding protein (MBP) species with proline at +1, designated MBP27-P, was translocated efficiently but not processed when expressed in E. coli cells. Unexpectedly, induced expression of MBP27-P was found to have an adverse effect on the processing kinetics of five different nonlipoprotein precursors analyzed, but not precursor Lpp (the major outer membrane lipoprotein) processed by a different enzyme, signal peptidase II. Cell growth also was inhibited following induction of MBP27-P synthesis. Substitutions in the MBP27-P signal peptide that blocked MBP translocation across the cytoplasmic membrane and, hence, access to the processing enzyme or that altered the signal peptidase I recognition site at position -1 restored both normal growth and processing of other precursors. Since overproduction of signal peptidase I also restored normal growth and processing to cells expressing unaltered MBP27-P, it was concluded that precursor MBP27-P interferes with the activity of the processing enzyme, probably by competing as a noncleavable substrate for the enzyme's active site. Thus, although signal peptidase I, like many other proteases, is unable to cleave an X-Pro bond, a proline at +1 does not prevent the enzyme from recognizing the normal processing site. When the RBP signal peptide was substituted for the MBP signal peptide of MBP27-P, the resultant hybrid protein was processed somewhat inefficiently at an alternate cleavage site and elicited a much reduced effect on cell growth and signal peptidase I activity. Although the MBP signal peptide also has an alternate cleavage site, the different properties of the RBP and MBP signal peptides with regard to the substitution of proline at +1 may be related to their respective secondary structures in the processing site region.  相似文献   

10.
Leader peptidase, an integral transmembrane protein of Escherichia coli, requires two apolar topogenic elements for its membrane assembly: a 'hydrophobic helper' and an internal signal. The highly basic cytoplasmic region between these domains is a translocation poison sequence, which we have shown blocks the function of a preceding signal sequence. We have used oligonucleotide-directed mutagenesis to remove positively charged residues within this polar domain to determine if it is the basic character in this region that has the negative effect on translocation. Our results show that mutations that remove two or more of the positively charged residues within the polar region no longer block membrane assembly of leader peptidase. In addition, when the translocation poison domain (residues 30-52) is replaced with six lysine residues, the preceding apolar domain cannot function as an export signal, whereas it can with six glutamic acids. Thus, positively charged residues within membrane proteins may have a major role in determining the function of hydrophobic domains in membrane assembly.  相似文献   

11.
Leader peptidase of Escherichia coli, a protein of 323 residues, has three hydrophobic domains. The first, residues 1-22, is the most apolar and is followed by a polar region (23-61) which faces the cytoplasm. The second hydrophobic domain (residues 62-76) spans the membrane. The third hydrophobic domain, which has a minimal apolar character, and the polar, carboxyl-terminal two-thirds of the protein are exposed to the periplasm. Deletion of either the amino terminus (residues 4-50) or the third hydrophobic region (residues 83-98) has almost no effect on the rate of leader peptidase membrane assembly, while the second hydrophobic domain is essential for insertion (Dalbey, R., and Wickner, W. (1987) Science 235, 783-787). To further define the roles of these domains, we have replaced the normal, cleaved leader sequence of pro-OmpA and M13 procoat with regions containing either the first or second apolar domain of leader peptidase. The second apolar domain supports the translocation of OmpA or coat protein across the plasma membrane, establishing its identity as an internal, uncleaved signal sequence. In addition to this sequence, we now find that leader peptidase needs either the amino-terminal domain or the third hydrophobic domain to permit its rapid membrane assembly. These results show that, although a signal sequence is necessary for rapid membrane assembly of leader peptidase, it is not sufficient.  相似文献   

12.
The observed levels of Delta G(ATP) in chloroplasts, as well as the activation behavior of the CF(1)CF(0)-ATP synthase, suggest a minimum transthylakoid proton motive force (pmf) equivalent to a Delta pH of approximately 2.5 units. If, as is commonly believed, all transthylakoid pmf is stored as Delta pH, this would indicate a lumen pH of less than approximately 5. In contrast, we have presented evidence that the pH of the thylakoid lumen does not drop below pH approximately 5.8 [Kramer, D. M., Sacksteder, C. A., and Cruz, J. A. (1999) Photosynth. Res. 60, 151-163], leading us to propose that Delta psi can contribute to steady-state pmf. In this work, it is demonstrated, through assays on isolated thylakoids and computer simulations, that thylakoids can store a substantial fraction of pmf as Delta psi, provided that the activities of ions permeable to the thylakoid membrane in the chloroplast stromal compartment are relatively low and the buffering capacity (beta) for protons of the lumen is relatively high. Measurements of the light-induced electrochromic shift (ECS) confirm the ionic strength behavior of steady-state Delta psi in isolated, partially uncoupled thylakoids. Measurements of the ECS in intact plants illuminated for 65 s were consistent with low concentrations of permeable ions and approximately 50% storage of pmf as Delta psi. We propose that the plant cell, possibly at the level of the inner chloroplast envelope, can control the parsing of pmf into Delta psi and Delta pH by regulating the ionic strength and balance of the chloroplast. In addition, this work demonstrates that, under certain conditions, the kinetics of the light-induced ECS can be used to estimate the fractions of pmf stored as Delta psi and Delta pH both in vitro and in vivo.  相似文献   

13.
L M Shen  J I Lee  S Y Cheng  H Jutte  A Kuhn  R E Dalbey 《Biochemistry》1991,30(51):11775-11781
Leader peptidase cleaves the leader sequence from the amino terminus of newly made membrane and secreted proteins after they have translocated across the membrane. Analysis of a large number of leader sequences has shown that there is a characteristic pattern of small apolar residues at -1 and -3 (with respect to the cleavage site) and a helix-breaking residue adjacent to the central apolar core in the region -4 to -6. The conserved sequence pattern of small amino acids at -1 and -3 around the cleavage site most likely represents the substrate specificity of leader peptidase. We have tested this by generating 60 different mutations in the +1 to -6 domain of the M13 procoat protein. These mutants were analyzed for in vivo and in vitro processing, as well as for protein insertion into the cytoplasmic membrane. We find that in vivo leader peptidase was able to process procoat with an alanine, a serine, a glycine, or a proline residue at -1 and with a serine, a glycine, a threonine, a valine, or a leucine residue at -3. All other alterations at these sites were not processed, in accordance with predictions based on the conserved features of leader peptides. Except for proline and threonine at +1, all other residues at this position were processed by leader peptidase. None of the mutations at -2, -4, or -5 of procoat (apart from proline at -4) completely abolished leader peptidase cleavage in vivo although there were large effects on the kinetics of processing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The 20-amino acid signal peptide of human pre (delta pro)apolipoprotein A-II contains the tripartite domain structure typical of eukaryotic prepeptides, i.e. a positively charged NH2-terminal (n) region, a hydrophobic core (h) region, and a COOH-terminal polar domain (c region). This signal sequence has multiple potential sites for cotranslational processing making it an attractive model for assessing the consequences of systematic structural alterations on the site selected for signal peptidase cleavage. We previously analyzed 40 mutant derivatives of this model preprotein using an in vitro translation/canine microsome processing assay. The results showed that the position of the boundary between the h and c regions and properties of the -1 residue are critical in defining the site of cotranslational cleavage. To investigate whether structural features in the NH2-terminal region of signal peptides play a role in cleavage specificity, we have now inserted various amino acids between the positively charged n region (NH2-Met-Lys) and the h region of a "parental" pre(delta pro)apoA-II mutant that has roughly equal cleavage between Gly18 decreases and Gly20 decreases. Movement of the n/h boundary toward the NH2 terminus results in a dramatic shift in cleavage to Gly18 decreases. Replacement of the Lys2 residue with hydrophilic, negatively charged residues preserves the original sites of cleavage. Replacement with a hydrophobic residue causes cleavage to shift "upstream." Simultaneous alteration of the position of n/h and h/c boundaries has an additive effect on the site of signal peptidase cleavage. None of these mutations produced a marked decrease in the efficiency of in vitro cotranslational translocation or cleavage. However, in sequence contexts having poor signal function, introduction of hydrophobic residues between the n and h regions markedly improved the efficiency of translocation/processing. We conclude that the position of the n/h boundary as well as positioning of the h/c boundary affects the site of cleavage chosen by signal peptidase.  相似文献   

15.
Leader peptidase, an integral transmembrane protein of Escherichia coli, is synthesized without a cleavable amino-terminal leader peptide. Of the five domains that participate in the membrane assembly of this protein, one is an internal "signal" region. We have used oligonucleotide-directed mutagenesis to examine the properties of the internal signal that are crucial for leader peptidase assembly. For this purpose, the net charge at the amino terminus of the internal signal was changed from +2 to +1 and -1 and, at the carboxyl terminus of the signal, from 0 to -1 or +1. These mutations had no effect on the membrane assembly of leader peptidase, suggesting that the charges have little role in the signal function. The apolar core of this signal was disrupted by substitution of basic amino acids for apolar residues. Substitution of an arginyl residue at position 70, or two arginyl residues at position 67 and 69, prevented membrane assembly. However, substitution of an arginyl residue at position 66 or either arginyl or lysyl residue at position 68 was without effect. Thus, while the apolar character of the internal signal is important, the precise position of a charged residue determines its effect on assembly.  相似文献   

16.
Non-typable Haemophilus influenzae is a common cause of human disease and initiates infection by colonizing the upper respiratory tract. The non-typable H. influenzae HMW1 and HMW2 adhesins mediate attachment to human epithelial cells, an essential step in the process of colonization. HMW1 and HMW2 have an unusual N-terminus and undergo cleavage of a 441-amino-acid N-terminal fragment during the course of their maturation. Following translocation across the outer membrane, they remain loosely associated with the bacterial surface, except for a small amount that is released extracellularly. In the present study, we localized the signal sequence to the first 68 amino acids, which are characterized by a highly charged region from amino acids 1-48, followed by a more typical signal peptide with a predicted leader peptidase cleavage site after the amino acid at position 68. Additional experiments established that the SecA ATPase and the SecE translocase are essential for normal export and demonstrated that maturation involves cleavage first between residues 68 and 69, via leader peptidase, and next between residues 441 and 442. Site-directed mutagenesis revealed that HMW1 processing, secretion and extracellular release are dependent on amino acids in the region between residues 150 and 166 and suggested that this region interacts with the HMW1B outer membrane translocator. Deletion of the C-terminal end of HMW1 resulted in augmented extracellular release and elimination of HMW1-mediated adherence, arguing that the C-terminus may serve to tether the adhesin to the bacterial surface. These observations suggest that the HMW proteins are secreted by a variant form of the general secretory pathway and provide insight into the mechanisms of secretion of a growing family of Gram-negative bacterial exoproteins.  相似文献   

17.
Many secreted and membrane proteins have amino-terminal leader peptides which are essential for their insertion across the membrane bilayer. These precursor proteins, whether from prokaryotic or eukaryotic sources, can be processed to their mature forms in vitro by bacterial leader peptidase. While different leader peptides have shared features, they do not share a unique sequence at the cleavage site. To examine the requirements for substrate recognition by leader peptidase, we have truncated M13 procoat, a membrane protein precursor, from both the amino- and carboxy-terminal ends with specific proteases or chemical cleavage agents. The fragments isolated from these reactions were assayed as substrates for leader peptidase. A 16 amino acid residue peptide which spans the leader peptidase cleavage site is accurately cleaved. Neither the basic amino-terminal region nor most of the hydrophobic central region of the leader peptide are essential for accurate cleavage.  相似文献   

18.
19.
20.
The translocation into Escherichia coli cytoplasmic membrane vesicles of a protein containing an uncleavable signal peptide was studied. The signal peptide cleavage site of the ompF-lpp chimeric protein, a model secretory protein, was changed from Ala-Ala to Phe-Pro through oligonucleotide-directed site-specific mutagenesis of the ompF-lpp gene on a plasmid. The mutant protein was no longer processed by the signal peptidase. When proteinase K treatment was adopted as a probe for protein translocation into inverted membrane vesicles, the mutant protein exhibited rapid and almost complete translocation, most likely due to the lack of premature cleavage of the signal peptide before the translocation. This result also indicates that cleavage of the signal peptide is not required for translocation of the mature domain of the protein. The establishment of an efficient system made it possible to perform precise and quantitative analysis of the translocation process. The translocation was time-dependent, vesicle-dependent, and required ATP and NADH. Translocation into membrane vesicles was also observed with the uncleavable precursor protein purified by means of immunoaffinity chromatography, although the efficiency was appreciably low. The translocation required only ATP and NADH. Addition of the cytosolic fraction did not enhance the translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号