首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density‐dependent habitat selection has been used to predict and explain patterns of abundance of species between habitats. Thermal quality, a density‐independent component of habitat suitability, is often the most important factor for habitat selection in ectotherms which comprise the vast majority of animal species. Ectotherms may reach high densities such that individual fitness is reduced in a habitat due to increased competition for finite resources. Therefore, density and thermal quality may present conflicting information about which habitat will provide the highest fitness reward and ectotherm habitat selection may be density‐independent. Using ornate tree lizards Urosaurus ornatus at 10 sites each straddling two adjacent habitats (wash and upland), we tested the hypothesis that habitat selection is density‐dependent even when thermal quality differs between habitats. We first tested that fitness proxies decline with density in each habitat, indicating density‐dependent effects on habitat suitability. We also confirmed that the two habitats vary in suitability (quantified by food abundance and thermal quality). Next, we tested the predictions that habitat selection depends on density with isodar analyses and that fitness proxies are equal in the two habitats within a site. We found that monthly survival rates decreased with density, and that the wash habitat had more prey and higher thermal quality than the upland habitat. Lizards preferred the habitat with more food and higher thermal quality, lizard densities in the two habitats were positively correlated, and fitness proxies of lizards did not differ between habitats. These patterns are consistent with density‐dependent habitat selection, despite differences in thermal quality between habitats. We expect that density‐dependent habitat selection is widespread in terrestrial ectotherms when densities are high and temperatures are close to their optimal performance range. In areas where thermal quality is low, however, we expect that depletable resources, such as food, become less limiting because assimilating resources is more difficult.  相似文献   

2.
Genetic divergence between populations is shaped by a combination of drift, migration, and selection, yielding patterns of isolation‐by‐distance (IBD) and isolation‐by‐environment (IBE). Unfortunately, IBD and IBE may be confounded when comparing divergence across habitat boundaries. For instance, parapatric lake and stream threespine stickleback (Gasterosteus aculeatus) may have diverged due to selection against migrants (IBE), or mere spatial separation (IBD). To quantitatively partition the strength of IBE and IBD, we used recently developed population genetic software (BEDASSLE) to analyze partial genomic data from three lake‐stream clines on Vancouver Island. We find support for IBD within each of three outlet streams (unlike prior studies of lake‐stream stickleback). In addition, we find evidence for IBE (controlling for geographic distance): the genetic effect of habitat is equivalent to geographic separation of ~1.9 km of IBD. Remarkably, of our three lake‐stream pairs, IBE is strongest where migration between habitats is easiest. Such microgeographic genetic divergence would require exceptionally strong divergent selection, which multiple experiments have failed to detect. Instead, we propose that nonrandom dispersal (e.g., habitat choice) contributes to IBE. Supporting this conclusion, we show that the few migrants between habitats are a nonrandom subset of the phenotype distribution of the source population.  相似文献   

3.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake.  相似文献   

4.
The ideal free distribution assumes that habitat selection is without cost and predicts that fitness should be equal in different habitats. If habitat selection has a cost, then individuals should only move to another habitat when potential fitness in the new habitat exceeds that in the source habitat by an amount greater than the cost of habitat selection. We used isodar techniques to assess the cost of habitat selection. In an experimental landscape, we monitored density, movement, and reproductive success of adult female prairie voles, Microtus ochrogaster, in adjacent paired habitats with low and high cover. We tested the following hypotheses: (1) adult female prairie voles exhibited density-dependent habitat selection; (2) the cost of habitat selection was density-independent. Habitat quality based on population density and fitness of adult females was higher in high cover habitats. Net movement was from low cover to high cover habitats. The results indicated that adult female prairie voles exhibited density-dependent habitat selection. Furthermore, there was a significant cost of habitat selection, and the cost was density-independent.  相似文献   

5.
Understanding the mechanisms that shape density‐dependent processes and population dynamics is often essential for species conservation. Two key mechanisms of density‐dependent reductions in reproductive performance are a limited access to foraging habitats (the habitat heterogeneity hypothesis) and territorial aggression towards conspecifics (the interference competition hypothesis) at high population densities. Disentangling the relative importance of these mechanisms within populations below their carrying capacity is important for the evaluation of the success of conservation measures. However, relatively few studies have attempted to quantify the relative importance of both mechanisms for the reproductive performance of a population. Many raptor populations are ideal model systems to investigate density‐dependent effects because they are currently recovering from human‐induced reductions during the last decades. Using a 14‐year dataset, we combined analyses of individual reproductive performance with a mechanistic population model to investigate early signs of density‐dependent regulation in a population of White‐tailed Eagles Haliaeetus albicilla in north‐east Germany. We found a negative effect of the number of neighbouring breeding pairs and a positive effect of water surface area (as a proxy for the availability of favourable foraging habitat) on breeding success and on the average number of nestlings. The mean nearest neighbour distance between breeding pairs has decreased, and the mean distance of nests to the nearest water body has increased over the last 14 years. Moreover, the population model indicates that even though the population is still growing, carrying capacity could be reached at about 500–950 territorial pairs. These results suggest that the selection of nesting sites is determined by a trade‐off between the distance to favourable foraging habitat and the distance to neighbouring breeding pairs. To avoid increasing competition with conspecifics, due to continued population growth, breeding pairs seem to select increasingly suboptimal habitats. Therefore, our results suggest that the habitat heterogeneity and interference competition hypotheses are not necessarily mutually exclusive as mechanisms of density‐dependent population regulation, but can determine the reproductive performance of a raptor population simultaneously. Thus, a future decline in breeding success does not necessarily reflect a decrease in habitat quality but may rather be a consequence of density‐dependent mechanisms. This information may be useful for the interpretation of population trends and for the development of appropriate management strategies for recovering raptor populations.  相似文献   

6.
1. Despite the great interest in characterising fish reproductive habitat, the relationship between the selection of a given spawning site and individual fitness has not been experimentally tested. 2. In this study, we used an in situ experimental approach to determine (i) the relative contribution of substrate characteristics as well as hydrological and physicochemical variables to small‐scale redd site selection by brook charr, Salvelinus fontinalis (Mitchill) and (ii) if hatching and emergence success, used as a surrogate of fitness, are improved in selected compared to non‐selected sites in both lake and stream habitats. 3. Our results show that upwelling groundwater flow was always significantly higher in selected than in non‐selected sites in both lake and stream habitats. We found no significant difference in the mean geometric substrate diameter and no consistent differences in substrate composition between selected and non‐selected sites. Oxygen concentration was higher (significantly so in three of four comparisons) and conductivity tended to be lower in selected than in non‐selected sites, while temperature showed no significant or consistent variations. We found a significant positive relationship between the selection of a given spawning habitat and hatching and emergence success in these systems. 4. These results show that the main cue that brook charr use to select their spawning sites is upwelling groundwater in lake and stream habitats, and that active selection of these sites increases individual fitness. This suggests that natural selection acted on the same cues in lentic and lotic environments; this could have been highly adaptive in a species that used both habitats as colonisation routes after the last glaciation.  相似文献   

7.
The conservation and understanding of biodiversity requires development and testing of models that illustrate how climate change and other anthropogenic effects alter habitat and its selection at different spatial scales. Models of fitness along a habitat gradient illustrate the connection between fine‐scale variation in fitness and the selection of habitat as discontinuous patches in the landscape. According to these models, climate change can increase fitness values of static habitats, shift the fitness value of habitat patches along underlying gradients of habitat quality, or alter both fitness and habitat quality. It should be possible to differentiate amongst these scenarios by associating differences in the abundance and distribution of species with metrics of habitat that document the gradient while controlling for changes in density at larger scales of analysis. Comparisons of habitat selection by two species of lemmings, over an interval of 15 years, are consistent with the theory. The pattern of habitat selection at the scale of wet versus dry tundra habitats changed through time. The change in habitat selection was reflected by different, but nevertheless density‐dependent, patterns of association with the structure and composition of habitat. Abundant collared lemmings abandoned stations where altered habitat characteristics caused a shift to new locations along the wet‐to‐dry gradient. The confirmation of scale‐dependent theory provides new insights into how one might begin to forecast future habitat selection under different scenarios of climate and habitat change.  相似文献   

8.
We used isodars to analyse habitat‐dependent population regulation by long‐nosed bandicoots Perameles nasuta during an irruption and subsequent population crash in three habitats (heath, woodland and forest) at Booderee National Park, south‐eastern Australia. Specifically, we aimed to see whether patterns of habitat‐dependent population regulation matched a priori estimates of quantitative and qualitative differences between habitats. We also tested if habitat preference changed between the increasing and decreasing phase of the irruption as predicted by the reciprocating dispersal theory. Quantitative differences in habitat quality were indexed by the relative abundance of the main food of long‐nosed bandicoots (terrestrial invertebrates), while qualitative differences were indexed by the availability of refuge from predation (vegetation understorey density). One index of fitness, body weight, was highest in forest, and lowest in heath, suggesting an ideal despotic model of habitat selection. Over the entire course of the irruption, there was density‐dependent habitat selection with forest and woodland both quantitatively superior to heath. This reflected the overall abundance of invertebrates with highest abundance in woodland and forest and less in heath. Isodar analysis also revealed that although forest was quantitatively better than heath and equivalent to woodland it was qualitatively poorer than either habitat. Heath had a higher density of understorey than woodland and woodland having a higher density of understorey than forest giving crossover population regulation. When the increasing and declining phase of the irruption were analysed separately, no habitat was quantitatively superior to any other during either phase. The lack of switching in preference between habitats from the increasing to the declining phase of the irruption and the virtual absence of any dispersal by adults, does not support the reciprocating dispersal hypothesis.  相似文献   

9.
10.
Habitat configuration is expected to have a major influence on genetic exchange and evolutionary divergence among populations. Aquatic organisms occur in two fundamentally different habitat types, the sea and freshwater lakes, making them excellent models to study the contrasting effects of continuity vs. isolation on genetic divergence. We compared the divergence in post-glacial populations of a cosmopolitan aquatic plant, the pondweed Potamogeton pectinatus that simultaneously occurs in freshwater lakes and coastal marine sites. Relative levels of gene flow were inferred in 12 lake and 14 Baltic Sea populations in northern Germany using nine highly polymorphic microsatellite markers developed for P. pectinatus. We found highly significant isolation-by-distance in both habitat types (P < 0.001). Genetic differentiation increased approximately 2.5-times faster among freshwater populations compared with those from the Baltic Sea. As different levels of genetic drift or population history cannot explain these differences, higher population connectivity in the sea relative to freshwater populations is the most likely source of contrasting evolutionary divergence. These findings are consistent with the notion that freshwater angiosperms are more conducive to allopatric speciation than their life-history counterparts in the sea, the relative species poor seagrasses. Surprisingly, population pairs from different habitat types revealed almost maximal genetic divergence expected for complete reproductive isolation, regardless of their respective geographical distance. Hence, the barrier to gene flow between lake and sea habitat types cannot be due to dispersal limitation. We may thus have identified a case of rapid incipient speciation in post-glacial populations of a widespread aquatic plant.  相似文献   

11.
Understanding dispersal and habitat selection behaviours is central to many problems in ecology, evolution and conservation. One factor often hypothesized to influence habitat selection by dispersers is the natal environment experienced by juveniles. Nonetheless, evidence for the effect of natal environment on dispersing, wild vertebrates remains limited. Using 18 years of nesting and mark–resight data across an entire North American geographical range of an endangered bird, the snail kite (Rostrhamus sociabilis), we tested for natal effects on breeding-site selection by dispersers and its consequences for reproductive success and population structure. Dispersing snail kites were more likely to nest in wetlands of the same habitat type (lacustrine or palustrine) as their natal wetland, independent of dispersal distance, but this preference declined with age and if individuals were born during droughts. Importantly, dispersing kites that bred in natal-like habitats had lower nest success and productivity than kites that did not. These behaviours help explain recently described population connectivity and spatial structure across their geographical range and reveal that assortative breeding is occurring, where birds are more likely to breed with individuals born in the same wetland type as their natal habitat. Natal environments can thus have long-term and large-scale effects on populations in nature, even in highly mobile animals.  相似文献   

12.
Summary According to density-dependent habitat selection theory, reproductive success should decline with increased density. Fitness should be similar between habitats if habitat selection follows an ideal free distribution; fitness should be dissimilar between habitats if habitat selection is modified by territorial behavior. I tested these assumptions by examining a variety of fitness estimates obtained from white-footed mice living in nest boxes in forest, forest edge and fencerow habitats in southwestern Ontario. As expected, mean litter size declined with increased population density. Litter sizes, adult longevity and the proportion of adult animals in breeding condition were not significantly different among the three habitats. The success at recruiting at least one offspring to the adult population and the number of recruits per litter were much greater in the forest than in either of the other two habitats. Fitness was thus unequal among habitats and the results confirm both assumptions of density-dependent habitat selection theory for territorial white-footed mice.  相似文献   

13.
Wing polymorphism in insects provides a good model system for investigating evolutionary dynamics and population divergence in dispersal‐enhancing traits. This study investigates the contribution of divergent selection, trade‐offs, behaviour and spatial sorting to the evolutionary dynamics of wing polymorphism in the pygmy grasshopper Tetrix subulata (Tetrigidae: Orthoptera). We use data for > 2800 wild‐caught individuals from 13 populations and demonstrate that the incidence of the long‐winged (macropterous) morph is higher and changes faster between years in disturbed habitats characterized by succession than in stable habitats. Common garden and mother‐offspring resemblance studies indicate that variation among populations and families is genetically determined and not influenced to any important degree by developmental plasticity in response to maternal condition, rearing density or individual growth rate. Performance trials show that only the macropterous morph is capable of flight and that propensity to fly differs according to environment. Mark–recapture data reveal no difference in the distance moved between free‐ranging long‐ and short‐winged individuals. There is no consistent difference across populations and years in number of hatchlings produced by long‐ and shorter‐winged females. Our findings suggest that the variable frequency of the long‐winged morph among and within pygmy grasshopper populations may reflect evolutionary modifications driven by spatial sorting due to phenotype‐ and habitat type–dependent emigration and immigration.  相似文献   

14.
Contrary to assumptions of habitat selection theory, field studies frequently detect ‘ecological traps’, where animals prefer habitats conferring lower fitness than available alternatives. Evidence for traps includes cases where birds prefer breeding habitats associated with relatively high nest predation rates despite the importance of nest survival to avian fitness. Because birds select breeding habitat at multiple spatial scales, the processes underlying traps for birds are likely scale‐dependent. We studied a potential ecological trap for a population of yellow warblers Dendroica petechia while paying specific attention to spatial scale. We quantified nest microhabitat preference by comparing nest‐ versus random‐site microhabitat structure and related preferred microhabitat features with nest survival. Over a nine‐year study period and three study sites, we found a consistently negative relationship between preferred microhabitat patches and nest survival rates. Data from experimental nests described a similar relationship, corroborating the apparent positive relationship between preferred microhabitat and nest predation. As do other songbirds, yellow warblers select breeding habitat in at least two steps at two spatial scales; (1) they select territories at a coarser spatial scale and (2) nest microhabitats at a finer scale from within individual territories. By comparing nest versus random sites within territories, we showed that maladaptive nest microhabitat preferences arose during within‐territory nest site selection (step 2). Furthermore, nest predation rates varied at a fine enough scale to provide individual yellow warblers with lower‐predation alternatives to preferred microhabitats. Given these results, tradeoffs between nest survival and other fitness components are unlikely since fitness components other than nest survival are probably more relevant to territory‐scale habitat selection. Instead, exchanges of individuals among populations facing different predation regimes, the recent proliferation of the parasitic brown‐headed cowbird Molothrus ater, and/or anthropogenic changes to riparian vegetation structure are more likely explanations.  相似文献   

15.
Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance – the distance between the two required habitats – affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.  相似文献   

16.
An individual's choice of habitat should optimize amongst conflicting demands in a way that maximizes its fitness. Habitat selection by one species will often be influenced by presence and abundance of competitors that interact directly and indirectly with each other (such as through shared predators). The optimal habitat choice will thus depend on competition for resources by other species that can also modify predation risk. It may be possible to disentangle these two effects with careful analysis of density‐dependent habitat selection by a focal prey species. We tested this conjecture by calculating habitat isodars (graphs of density assuming ideal habitat selection) of chital deer living in two adjoining dry‐forest habitats in Gir National Park and Sanctuary, western India. The habitats differed only in presence (Sanctuary) and absence (National Park) of domestic prey (cattle and buffalo). Both species are preyed on by Asiatic lions. The habitat isodar revealed at low densities, that chital live in small groups and prefer habitat co‐occupied by livestock that reduce food resources, but also reduce predation risk. At higher densities, chital form larger groups and switch their preference toward risky habitat without livestock. The switch in chital habitat use is consistent with theories predicting that prey species should trade off safety in favor of food as population density increases.  相似文献   

17.
Assessing variation in breeding performance in relation to habitat characteristics may provide insights into predicting the consequences of land‐use change on species ecology and population dynamics. We compared four Marsh Harrier Circus aeruginosus populations subject to similar environmental conditions, but which differed in habitat composition, ranging from natural habitats to intensively cultivated areas. Using a 6‐year dataset, we characterized breeding habitat and diet in these four study sites, and analysed breeding performance in relation to this gradient of land‐use intensification. There was minimal variation in breeding performance between study years but consistent variation between study sites. Unexpectedly, Marsh Harriers breeding in intensively cultivated habitats had higher reproductive success than those breeding in more natural habitats, which, however, hosted higher breeding densities, so overall net population productivity (fledglings per unit area) was similar across sites. This resulted from combined effects of density‐dependence and different predation rates between study sites. The colonization of intensive farmland habitats may not necessarily impact negatively on population sustainability when breeding success and population density are traded against each other. However, our findings should not mask longer‐term conservation issues for populations breeding in these intensively managed areas, and further studies should assess potential long‐term negative effects of occupancy of human‐altered habitat.  相似文献   

18.
A key prediction made by theories of density‐dependent competition is that resource overlap should increase the intensity of competition. By extension, we can predict that competition should lead to density‐dependent natural selection. I studied natural selection on limb length and body size in a total of seven populations of Anolis sagrei over 3 years in the Bahamas. Experimental manipulations of population density on small off‐shore cays revealed that the strength of natural selection on body size increased with density, suggesting that density‐dependent intraspecific competition drives natural selection. At low density, reduced competition revealed significant selection on limb length driven by changes in perch diameter, indicating that selection favoured a match between morphology and habitat. The role habitat played in shaping selection was further illuminated by inter‐annual changes in vegetation structure stemming from variation in precipitation among years. Thus, changes in both the intensity of competition across spatial replicates, and in resource availability through time, revealed changes in the targets of natural selection. Results provide empirical support for the long‐standing hypothesis that density‐dependent natural selection shapes the fitness surface of Greater Antilles anoles.  相似文献   

19.
The concept of refugee species provides a theoretical framework towards increasing the predictive power of the ‘declining population paradigm’ through identifying species which are expected to suffer from a declining population syndrome. Using a simple habitat model as a framework, refugee species are defined as those that can no longer access optimal habitat, but are confined to suboptimal habitats, with consequences of decreased fitness and density, and attendant conservation risks. Refugee species may be difficult to detect in the absence of information on prior habitat use and fitness and their observed ecology will be constrained by the habitat limits forced on them. Identification of refugee species, characterisation of pre‐refugee ecology and the restoration of such species to optimal habitat is critical to their successful conservation. The concept is showcased by addressing the conundrum of a large grazing bovid, the European bison Bison bonasus, being managed as a forest specialist, despite its evolutionary background, dental morphology, neonatal behaviour, diet and microhabitat selection being characteristic of a grazing species inhabiting open, grass‐rich habitats. It is hypothesized that a combination of increasing replacement of open steppe by forest cover after the last postglacial period and increasing human pressure forced bison into forests as a refuge habitat. This process was then reinforced through active management of bison in forests as managers committed themselves to the ‘bison as forest species’ paradigm. A research agenda to test this hypothesis using an experimental approach in the conservation management of European bison by introducing populations into diverse habitat types is suggested.  相似文献   

20.
1. Per‐capita resource availability in aquatic habitats is influenced directly by consumer density via resource competition and indirectly via delayed resource competition when temporally non‐overlapping cohorts of larvae exploit the same resources. In detritus‐based systems, resources are likely to be influenced by the age of the aquatic habitat, as detritus changes in quality over time and may be replenished by new inputs. 2. For aquatic insects that exploit detritus‐based habitats, feeding conditions experienced during immature stages can influence fitness directly via effects on development and survivorship, but also indirectly by influencing adult traits such as fecundity and longevity. 3. Larval habitat age and prior resource exploitation were manipulated in a field experiment using the container mosquito Aedes triseriatus. 4. It was found that A. triseriatus from older habitats had greater larval survival, faster development and greater adult longevity. Exploitation of larval habitats by a prior cohort of larvae had a significant negative effect on subsequent cohorts of larvae by delaying development. 5. It is suggested that extended conditioning of detritus probably resulted in conversion of recalcitrant resources to more available forms which improved the quality of the habitat. 6. In a parallel study, evidence was found of carry‐over effects of habitat age and prior exploitation on adult longevity for A. triseriatus and Aedes japonicus collected from unmanipulated aquatic habitats. 7. These results indicate the importance of detritus dynamics and the discontinuous nature of resource competition in these mosquito‐dominated aquatic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号