首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ClpA and ClpX function both as molecular chaperones and as the regulatory components of ClpAP and ClpXP proteases, respectively. ClpA and ClpX bind substrate proteins through specific recognition signals, catalyze ATP-dependent protein unfolding of the substrate, and when in complexes with ClpP translocate the unfolded polypeptide into the cavity of the ClpP peptidase for degradation. To examine the mechanism of interaction of ClpAP with dimeric substrates, single round binding and degradation experiments were performed, revealing that ClpAP degraded both subunits of a RepA homodimer in one cycle of binding. Furthermore, ClpAP was able to degrade both protomers of a RepA heterodimer in which only one subunit contained the ClpA recognition signal. In contrast, ClpXP degraded both subunits of a dimeric substrate only when both protomers contained a recognition signal. These data suggest that ClpAP and ClpXP may recognize and bind substrates in significantly different ways.  相似文献   

2.
3.
The coordinated activities of chaperones and proteases that supervise protein folding and degradation are important factors for deciding the fate of proteins whose folding is impaired by missense variations. We have studied the role of Lon and ClpXP proteases in handling of wild-type and a folding-impaired disease-associated variant (R28C) of the mitochondrial enzyme medium-chain acyl-CoA dehydrogenase (MCAD). Using an Escherichia coli model system, we co-overexpressed the MCAD variants and the respective proteases at two conditions: at 31 degrees C where R28C MCAD protein folds partially and at 37 degrees C where it misfolds and aggregates. Co-overexpression of Lon protease considerably accelerated the degradation rate of a pool of R28C variant MCAD synthesised during a 30min pulse and counteracted accumulation of aggregates at 37 degrees C, whereas increasing the amounts of ClpXP protease had no clear effect. Co-overexpression of either Lon or ClpXP protease markedly decreased the steady state levels of both wild-type and R28C mutant MCAD at 37 degrees C but not at 31 degrees C. Our results suggest that Lon is more efficient than ClpXP in elimination of non-native MCAD protein conformations, and accordingly, that Lon can recognise a broader spectrum of MCAD protein conformations.  相似文献   

4.
5.
6.
Periplasmic proteases of Escherichia coli   总被引:3,自引:0,他引:3  
In the course of examining the turnover of enzymes and proteins subject to catabolite inhibition and/or catabolite repression in Escherichia coli, we have observed at least three novel calcium- or manganese-activated proteolytic activities restricted to the periplasmic space. The occurrence and level of these proteolytic activities vary with the stage of cell growth and carbon source. Each of these proteases are neutral metalloendoproteases capable of degrading test substrates such as casein, insulin, globin, and protamine and appear to be unique when compared with the known periplasmic proteases in E. coli. One of these proteases (designated protease VII) has been purified to homogeneity and characterized in regard to subunit structure, sensitivity to protease inhibitors and metal ions, and substrate specificity. Immunological and genetic approaches are being employed to determine if these novel proteases arise from a common gene product. The physiological role of these proteases remains to be established.  相似文献   

7.
In Escherichia coli, the ClpAP protease, together with the adaptor protein ClpS, is responsible for the degradation of proteins bearing an amino‐terminal destabilizing amino acid (N‐degron). Here, we determined the three‐dimensional structures of ClpS in complex with three peptides, each having a different destabilizing residue—Leu, Phe or Trp—at its N terminus. All peptides, regardless of the identity of their N‐terminal residue, are bound in a surface pocket on ClpS in a stereo‐specific manner. Several highly conserved residues in this binding pocket interact directly with the backbone of the N‐degron peptide and hence are crucial for the binding of all N‐degrons. By contrast, two hydrophobic residues define the volume of the binding pocket and influence the specificity of ClpS. Taken together, our data suggest that ClpS has been optimized for the binding and delivery of N‐degrons containing an N‐terminal Phe or Leu.  相似文献   

8.
The Helicobacter pylori neutrophil-activating protein (HP-NAP), a member of the Dps family, is a fundamental virulence factor involved in H.pylori-associated disease. Dps proteins protect bacterial DNA from oxidizing radicals generated by the Fenton reaction and also from various other damaging agents. DNA protection has a chemical component based on the highly conserved ferroxidase activity of Dps proteins, and a physical one based on the capacity of those Dps proteins that contain a positively charged N-terminus to bind and condense DNA. HP-NAP does not possess a positively charged N-terminus but, unlike the other members of the family, is characterized by a positively charged protein surface. To establish whether this distinctive property could be exploited to bind DNA, gel shift, fluorescence quenching and atomic force microscopy (AFM) experiments were performed over the pH range 6.5–8.5. HP-NAP does not self-aggregate in contrast to Escherichia coli Dps, but is able to bind and even condense DNA at slightly acid pH values. The DNA condensation capacity acts in concert with the ferritin-like activity and could be used to advantage by H.pylori to survive during host-infection and other stress challenges. A model for DNA binding/condensation is proposed that accounts for all the experimental observations.  相似文献   

9.
During exponential growth, the level of Dps transiently increases in response to oxidative stress to sequester and oxidize Fe2+, which would otherwise lead to hydroxyl radicals that damage the bacterial chromosome. We report that Dps specifically interacts with DnaA protein by affinity chromatography and a solid phase binding assay, requiring the N-terminal region of DnaA to interact. In vitro , Dps inhibits DnaA function in initiation by interfering with strand opening of the replication origin. Comparing isogenic dps + and dps :: kan strains by flow cytometry and by quantitative polymerase chain reaction assays at either the chromosomally encoded level, or at an elevated level encoded by an inducible plasmid, we show that Dps causes less frequent initiations. Results from genetic experiments support this conclusion. We suggest that Dps acts as a checkpoint during oxidative stress to reduce initiations, providing an opportunity for mechanisms to repair oxidative DNA damage. Because Dps does not block initiations absolutely, duplication of the damaged DNA is expected to increase the genetic variation of a population, and the probability that genetic adaptation leads to survival under conditions of oxidative stress.  相似文献   

10.
Multifunctional protein Dps plays an important role in iron assimilation and a crucial role in bacterial genome packaging. Its monomers form dodecameric spherical particles accumulating ~400 molecules of oxidized iron ions within the protein cavity and applying a flexible N-terminal ends of each subunit for interaction with DNA. Deposition of iron is a well-studied process by which cells remove toxic Fe2+ ions from the genetic material and store them in an easily accessible form. However, the mode of interaction with linear DNA remained mysterious and binary complexes with Dps have not been characterized so far. It is widely believed that Dps binds DNA without any sequence or structural preferences but several lines of evidence have demonstrated its ability to differentiate gene expression, which assumes certain specificity. Here we show that Dps has a different affinity for the two DNA fragments taken from the dps gene regulatory region. We found by atomic force microscopy that Dps predominantly occupies thermodynamically unstable ends of linear double-stranded DNA fragments and has high affinity to the central part of the branched DNA molecule self-assembled from three single-stranded oligonucleotides. It was proposed that Dps prefers binding to those regions in DNA that provide more contact pads for the triad of its DNA-binding bundle associated with one vertex of the protein globule. To our knowledge, this is the first study revealed the nucleoid protein with an affinity to branched DNA typical for genomic regions with direct and inverted repeats. As a ubiquitous feature of bacterial and eukaryotic genomes, such structural elements should be of particular care, but the protein system evolutionarily adapted for this function is not yet known, and we suggest Dps as a putative component of this system.  相似文献   

11.
ClpXP is a two-component protease composed of ClpX, an ATP-dependent chaperone that recognizes and unfolds specific substrates, and ClpP, a serine protease. One ClpXP substrate in Escherichia coli is FtsZ, which is essential for cell division. FtsZ polymerizes and forms the FtsZ ring at midcell, where division occurs. To investigate the role of ClpXP in cell division, we examined the effects of clpX and clpP deletions in several strains that are defective for cell division. Together, our results suggested that ClpXP modulates cell division through degradation of FtsZ and possibly other cell division components that function downstream of FtsZ ring assembly. In the ftsZ84 strain, which is temperature sensitive for filamentation due to a mutation in ftsZ, we observed that deletion of clpX or clpP suppresses filamentation and reduces FtsZ84 degradation. These results are consistent with ClpXP playing a role in cell division by modulating the level of FtsZ through degradation. In another division-defective strain, ΔminC, the additional deletion of clpX or clpP delays cell division and exacerbates filamentation. Our results demonstrate that ClpXP modulates division in cells lacking MinC by a mechanism that requires ATP-dependent degradation. However, antibiotic chase experiments in vivo indicate that FtsZ degradation is slower in the ΔminC strain than in the wild type, suggesting there may be another cell division component degraded by ClpXP. Taken together these studies suggest that ClpXP may degrade multiple cell division proteins, thereby modulating the precise balance of the components required for division.  相似文献   

12.
13.
In Escherichia coli, starvation (stationary-phase)-mediated differentiation involves 50 or more genes and is triggered by an increase in cellular sigma s levels. Western immunoblot analysis showed that in mutants lacking the protease ClpP or its cognate ATPase-containing subunit ClpX, sigma s levels of exponential-phase cells increased to those of stationary-phase wild-type cells. Lack of other potential partners of ClpP, i.e., ClpA or ClpB, or of Lon protease had no effect. In ClpXP-proficient cells, the stability of sigma s increased markedly in stationary-phase compared with exponential-phase cells, but in ClpP-deficient cells, sigma s became virtually completely stable in both phases. There was no decrease in ClpXP levels in stationary-phase wild-type cells. Thus, sigma s probably becomes more resistant to this protease in stationary phase. The reported sigma s-stabilizing effect of the hns mutation also was not due to decreased protease levels. Studies with translational fusions containing different lengths of sigma s coding region suggest that amino acid residues 173 to 188 of this sigma factor may directly or indirectly serve as at least part of the target for ClpXP protease.  相似文献   

14.
Protein degradation in bacteria plays a dynamic and critical role in the cellular response to environmental stimuli such as heat shock and DNA damage and in removing damaged proteins or protein aggregates. Escherichia coli recN is a member of the structural maintenance of chromosomes family and is required for DNA double strand break (DSB) repair. This study shows that RecN protein has a short half-life and its degradation is dependent on the cytoplasmic protease ClpXP and a degradation signal at the C terminus of RecN. In cells with DNA DSBs, green fluorescent protein-RecN localized in discrete foci on nucleoids and formed visible aggregates in the cytoplasm, both of which disappeared rapidly in wild-type cells when DSBs were repaired. In contrast, in DeltaclpX cells, RecN aggregates persisted in the cytoplasm after release from DNA damage. Furthermore, analysis of cells experiencing chronic DNA damage revealed that proteolytic removal of RecN aggregates by ClpXP was important for cell viability. These data demonstrate that ClpXP is a critical factor in the cellular clearance of cytoplasmic RecN aggregates from the cell and therefore plays an important role in DNA damage tolerance.  相似文献   

15.
Peptidases and proteases of Escherichia coli and Salmonella typhimurium   总被引:5,自引:0,他引:5  
A number of peptidases and proteases have been identified in Escherichia coli. Although their specific physiological roles are often not known, some of them have been shown to be involved in: the maturation of nascent polypeptide chains; the maturation of protein precursors; the signal peptide processing of exported proteins; the degradation of abnormal proteins; the use of small peptides as nutrients; the degradation of colicins; viral morphogenesis; the inactivation of some regulatory proteins for which a limited lifetime is a physiological necessity. Some of these enzymes act in concert to carry out specific functions. At present, twelve peptidases and seventeen proteases have been characterized. The specificity for only a few of them is known. The possible roles and the properties of these enzymes are discussed in this review.  相似文献   

16.
17.
Formation and degradation of SsrA-tagged proteins enable ribosome recycling and elimination of defective products of incomplete translation. We produced an antibody against the SsrA peptide and used it to measure the amounts of SsrA-tagged proteins in Escherichia coli cells without interfering with tagging or altering the context of the tag added at the ends of nascent polypeptides. SsrA-tagged proteins were present in very small amounts unless a component of the ClpXP protease was missing. From the levels of tagged proteins in cells in which degradation is essentially blocked, we calculate that > or =1 in 200 translation products receives an SsrA tag. ClpXP is responsible for > or =90% of the degradation of SsrA-tagged proteins. The degradation rate in wild type cells is > or =1.4 min(-1) and decreases to approximately 0.10 min(-1) in a clpX mutant. The rate of degradation by ClpXP is decreased approximately 3-fold in mutants lacking the adaptor SspB, whereas degradation by ClpAP is increased 3-5-fold. However, ClpAP degrades SsrA-tagged proteins slowly even in the absence of SspB, possibly because of interference from ClpA-specific substrates. Lon protease degrades SsrA-tagged proteins at a rate of approximately 0.05 min(-1) in the presence or absence of SspB. We conclude that ClpXP, together with SspB, is uniquely adapted for degradation of SsrA-tagged proteins and is responsible for the major part of their degradation in vivo.  相似文献   

18.
In aerobic environments, mutants of Escherichia coli that lack peroxidase and catalase activities (Hpx(-)) accumulate submicromolar concentrations of intracellular H(2)O(2). We observed that in defined medium these strains constitutively expressed members of the Fur regulon. Iron-import proteins, which Fur normally represses, were fully induced. H(2)O(2) may antagonize Fur function by oxidizing the Fur:Fe(2+) complex and inactivating its repressor function. This is a potential problem, as in iron-rich environments excessive iron uptake would endanger H(2)O(2)-stressed cells by accelerating hydroxyl-radical production through the Fenton reaction. However, the OxyR H(2)O(2)-response system restored Fur repression in iron-replete Luria-Bertani medium by upregulating the synthesis of Fur protein. Indeed, when the OxyR binding site upstream of fur was disrupted, Hpx(-) mutants failed to repress transporter synthesis, and they exhibited high levels of intracellular free iron. Mutagenesis and bacteriostasis resulted. These defects were eliminated by mutations or chelators that slowed iron import, confirming that dysregulation of iron uptake was the root problem. Thus, aerobic organisms must grapple with a conundrum: how to monitor iron levels in oxidizing environments that might perturb the valence of the analyte. The induction of Fur synthesis by the OxyR response comprises one evolutionary solution to that problem.  相似文献   

19.
Protein aggregation is involved in several human diseases, and presumed to be an important process in protein quality control. In bacteria, aggregation of proteins occurs during stress conditions, such as heat shock. We studied the protein aggregates of Escherichia coli during heat shock. Our results demonstrate that the concentration and diversity of proteins in the aggregates depend on the availability of proteases. Aggregates obtained from mutants in the Lon (La) protease contain three times more protein than wild-type aggregates and show the broadest protein diversity. The results support the assumption that protein aggregates are formed from partially unfolded proteins that were not refolded by chaperones or degraded by proteases.  相似文献   

20.
Subcellular distribution of various proteases in Escherichia coli.   总被引:8,自引:10,他引:8       下载免费PDF全文
It has been reported recently that Escherichia coli cells contain eight distinct soluble enzymes capable of degrading proteins to acid-soluble material. Two are metalloproteases that degrade [125I]insulin but not larger proteins: protease Pi, which is identical to protease III, is restricted to the periplasm, and protease Ci is restriction to the cytoplasm. The six others (named Do, Re, Mi, Fa, So, and La, which is the ATP-dependent protease) are serine proteases that degrade [14C]globin and [3H]casein, but not insulin. One of these (Mi) is localized to the periplasm, and one (Re) is distributed equally between the two cellular fractions. The others are present only in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号