首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the isolation and sequencing of the hip gene of Escherichia coli and show that it encodes the β subunit of integration host factor (IHFβ). In order to locate the coding region, we constructed a set of deletion mutants by exonucleolytic digestion of a fragment containing hip, determined which mutants were hip+ and which hip? by complementation, and then sequenced the ends of the critical deletions. The 5′ end of the coding region was located precisely by comparing the deduced amino acid sequence to the actual N-terminal amino acid sequence of IHF. Our assignment of the coding region was further substantiated by the nucleotide sequences of a hip point mutant and of internal replacement mutations. We found a probable promoter for hip located about 85 base-pairs upstream from the initial AUG codon and about 75 base-pairs downstream from the 3′ end of the neighboring gene. rpsA, and we constructed an IHFβ overproducer by fusing the coding sequences to the λpL promoter. A survey of known protein sequences revealed a close relationship between IHFβ and the type II prokaryotic DNA binding proteins (the “histone-like” proteins). This relationship is shared to a considerable extent by the other subunit of IHF, IHFα. A hip missense mutation that replaces a completely conserved glycine with aspartate has a null phenotype, suggesting that the conserved regions are functionally important.  相似文献   

2.
3.
Bacteriophage lambda integration and exicision occur by reciprocal recombination within a 15-base homologous core region present in the recombining attachment (att) sites. Strand exchange within the core occurs at precise nucleotide positions, which define an overlap region in which the products of recombination contain DNA strands derived from different parents. In order to define the role of sequence homology during recombination we have constructed point mutations within the core and assayed their effects in vivo and in vitro on site-specific recombination. Two of the mutations are located at position ?3 of the core, which is one base-pair outside of the overlap region where strand exchange occurs. These mutations do not affect integrative or excisive recombination, thereby suggesting that homology outside the overlap region is not required for recombination. Two other mutations are located at position ?2 of the core, which is one base-pair within the overlap region. These mutations show severely depressed integrative and excisive recombination activities in vitro and in vivo when recombined against wild-type att sites. However, the ?2 mutations show normal recombination activity when recombined against att sites containing the homologous mutation, thereby suggesting that homology-dependent DNA interactions are required within the overlap region for effective recombination. In vitro recombination between homoduplex attP sites and heteroduplex attB sites demonstrated that the DNA interactions require only one strand of the attB overlap region to be homologous to attP in order to promote recombination.  相似文献   

4.
T4 endonuclease VII cleaves holliday structures   总被引:1,自引:0,他引:1  
T4 endonuclease VII cleaves Holliday structures in vitro by cutting two strands of the same polarity at or near the branch point. The two unbranched duplexes produced by cleavage each contain a strand break that can be sealed by DNA ligase. This suggests that the cut sites are at the same position in the nucleotide sequence in each strand. The joint action of endonuclease VII and DNA ligase can therefore resolve Holliday structures into genetically sensible products. These observations account for the role of endonuclease VII in the DNA metabolism of phage T4, and provide the first example of an enzyme that acts specifically on branch points in duplex DNA.  相似文献   

5.
Using a highly purified enzyme preparation of uridine phosphorylase from Escherichia coli B, we have performed detailed kinetic studies which include initial-velocity and product-inhibition experiments in the forward and reverse directions of the reaction. These studies indicate a rapid-equilibrium random mechanism for this enzyme with the formation of an enzyme . uracil phosphate abortive complex. Lack of formation of the enzyme . uridine . ribose-1-phosphate abortive complex suggests that the ribosyl moiety of the two ligands compete for the same binding site. The random mechanism is different from the ordered addition of substrates found for uridine phosphorylase from other sources. All the kinetic constants in the forward and reverse directions and the Keq of reaction for E. coli uridine phosphorylase are reported herein.  相似文献   

6.
Intermediates of chromosomal DNA replication in Escherichia coli   总被引:2,自引:0,他引:2  
The product of bacteriophage T4 gene 63 has two activities, one which catalyzes the attachment of tail fibers to base plates during morphogenesis (TFA) and one which catalyzes the joining of single-stranded polynucleotides (RNA ligase). The only phenotype attributed to mutations in gene 63 is a defect in attachment of tail fibers leading to fiberless T4 particles. However, it is suspected that TFA and RNA ligase are unrelated activities of the same protein since they have very different requirements in vitro.We have isolated new mutants which have lost the RNA ligase but have retained the TFA activity of the product of gene 63. These mutants exhibit defects in T4 DNA replication and late gene expression in some strains of Escherichia coli. This work allows us to draw three conclusions: (1) the TFA and RNA ligase activities are unrelated functions of the gene 63 product making this the prototype for a protein which has more than one unrelated function; (2) the RNA ligase is probably involved in DNA metabolism rather than RNA processing as has been proposed: (3) the RNA ligase and polynucleotide 5′ kinase 3′ phosphatase of T4 perform intimately related functions.  相似文献   

7.
Three mutations previously mapped to the common core region of the bacteriophage lambda att site have been sequenced. All were found to be due to the deletion of a T residue from a string of six T residues within the 15 base-pair core, the region of homology between the recombining sites. As judged by DNAase I protection experiments, binding of the Int protein is the same in the mutant and wild-type core sites. However, a difference in the Int binding to mutant cores is observed when the small neocarzinostatin molecule is used as a nuclease probe. The differences between mutant and wild type lead to the suggestion that Int is interacting with sequences at the core-arm junctions. Accordingly, the mutants are proposed to be defective in the spacing of Int monomers bound at two recognition sequences spanning the core-arm junctions. The anomalous electrophoretic mobility of wild-type att fragments and, more specifically, the effect of the single base core deletion on electrophoretic mobility are discussed in the text and in the Appendix. The mutant att2501, defective in both att and int functions, was sequenced and found to be a 335 base-pair deletion removing the coding region for 25 amino acids from the carboxy-terminal end of Int, as well as the entire att site. The postulated origin of the 501 mutation is also consistent with the model of two juxtaposed Int recognition sites.  相似文献   

8.
9.
Dihydrofolate reductase from chicken liver has a single sulfhydryl group which reacts stoichiometrically and specifically with a wide variety of organic mercury compounds to yield an enzyme derivative which exhibits up to 10-fold the activity of the unmodified form when measured at pH 6.5, the optimum for the modified enzyme. The sulfhydryl group is apparently not at the active site since a 25-fold excess of either major cosubstrate, dihydrofolate or TPNH, affects neither the rate nor extent of the modification reaction. The reaction is essentially instantaneous and yields an enzyme with altered kinetic properties for all the substrate pairs examined (TPNH/dihydrofolate, TPNH/ folate, and DPNH/dihydrofolate) when tested near their pH optima. V values increased 3- to 10-fold when TPNH was cofactor; Km values increased 10- to 15-fold for the TPNH/dihydrofolate pair. The mercurial-activated enzyme, unlike the native form, exhibits a markedly increased sensitivity to heat, proteolysis, and the ionic environment, losing approximately 50% of its activity under conditions where there is no loss of activity in the native form. However, substrates can afford protection, the order of effectiveness being identical with the relative affinities of the substrates for the native enzyme (Subramanian, S., and Kaufman, B. T. (1978) Proc. Nat. Acad. Sci. USA75, 3201). Thus, dihydrofolate, with the largest binding constant is the most efficient, protecting completely against trypsin digestion when present at a 1:1 ratio with enzyme. Heating the mercury enzyme in the absence of substrates gives rise to a stable but altered conformation characterized by a time course which shows marked hysteresis. The striking similarity of the properties of the mercurial-activated dihydrofolate reductase to the reductase activated by 4 m urea, a reagent known to affect the tertiary structure of proteins, suggests that covalent binding of organic mercurials to the sulfhydryl group results in a similar conformational change characterized by a marked facilitation of the dihydrofolate reductase reaction.  相似文献   

10.
We have determined the nucleotide sequence of a secondary λ attachment site in proAB, a site that accounts for 3% of lysogens isolated from Escherichia coli strains deleted for the primary site. Direct sequence analysis of the transducing bacteriophages carrying the left and right att junctions, as well as the recombinant pro+ phage reveals that the proAB site shares an 11-nucleotide interrupted homology with the core sequence of the primary site. We have compared the proABatt site with other secondary attachment sites to gain insights into the structural features important for λ integration.  相似文献   

11.
3H-Labeled leukotriene C3 was efficiently taken up by the isolated, perfused rat liver and excreted into the bile. The isolated, perfused kidney eliminated leukotriene C3 from the perfusate slower and excreted only a fraction of the radioactivity into the urine. Isolated hepatic, intestinal and renal cells also took up leukotriene C3, the renal cells being the most effective in accumulating the label. Anthglutin, an inhibitor of γ-glutamyl transferase, decreased the uptake by kidney cells but had no effect on the uptake by the other cell types. In liver cells, the uptake rate was sensitive to temperature and to cellular ATP content. Chromatographic analyses indicated that renal cells metabolized leukotriene C3 more rapidly than hepatic and intestinal cells. Leukotriene D3 and E3 were formed during the incubations with kidney cells, whereas intestinal cells produced mainly more polar metabolites.  相似文献   

12.
The results of neutron distance measurement involving ribosomal protein S1 from Escherichia coli are reported. These data provide a position for S1 on the small ribosomal subunit. They also indicate that S1, bound to the ribosome, has a radius of gyration of 60 to 65 Å, suggesting that its axial ratio in the bound state is similar to that it has as a free molecule in solution; namely, 10: 1. The implications of these results for our understanding of the mode of action of S1 are discussed.  相似文献   

13.
A map of the positions of 12 of the 21 proteins of the 30 S ribosomal subunit of Escherichia coli (S1, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12 and S15), based on neutron scattering, is presented and discussed. Estimates for the radii of gyration of these proteins in situ are also obtained. It appears that many ribosomal proteins have compact configurations in the particle.  相似文献   

14.
The responsiveness of 5 human squamous cell carcinoma (SCC) lines derived from tumors of the epidermis and tongue to 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) was assessed by measuring the induction of the cytochrome P1-450-mediated monooxygenase activity, 7-ethoxycoumarin O-deethylase (ECOD). In 4 of the SCC lines the EC50 for this response was approximately 10(-9)M, whereas in one line the EC50 was 10(-10)M. In each of the less sensitive lines a concentration of 10(-10)M TCDD elicited less than 5% of the maximal enzyme activity. Specific binding of radiolabeled TCDD was detected in the cytosol fraction from all the SCC lines. The relative amount of receptor measured in each line correlated with maximally-induced ECOD activity. The data indicate that human cell lines derived from a target tissue for TCDD toxicity contain the TCDD receptor and show differential sensitivity to TCDD analogous to the murine strain differences in sensitivity regulated by the Ah locus.  相似文献   

15.
The relative quantities of 26 known transfer RNAs of Escherichia coli have been measured previously (Ikemura, 1981). Based on this relative abundance, the usage of cognate codons in E. coli genes as well as in transposon and coliphage genes was examined. A strong positive correlation between tRNA content and the occurrence of respective codons was found for most E. coli genes that had been sequenced, although the correlation was less significant for transposon and phage genes. The dependence of the usage of isoaccepting tRNA, in E. coli genes encoding abundant proteins, on tRNA content was especially noticeable and was greater than that expected from the proportional relationship between the two variables, i.e. these genes selectively use codons corresponding to major tRNAs but almost completely avoid using codons of minor tRNAs. Therefore, codon choice in E. coli genes was considered to be largely constrained by tRNA availability and possibly by translational efficiency. Based on the content of isoaccepting tRNA and the nature of codon-anticodon interaction, it was then possible to predict for most amino acids the order of preference among synonymous codons. The synonymous codon predicted in this way to be the most preferred codon was thought to be optimized for the E. coli translational system and designated as the “Optimal codon”. E. coli genes encoding abundant protein species use the optimal codons selectively, and other E. coli genes, such as amino acid synthesizing genes, use optimal and “non-optimal” codons to a roughly equal degree. The finding that the frequency of usage of optimal codons is closely correlated with the production levels of individual genes was discussed from an evolutionary viewpoint.  相似文献   

16.
This paper describes the construction and characterization of a chimeric plasmid that encodes the single-stranded DNA-binding protein of bacteriophage T4D (the product of gene 32). The plasmid contains a 2·6 × 103 base HindIII segment of T4 DNA that includes genes 59 and 32 as well as a portion of gene 33. Isolation of bacteria carrying the recombinant plasmid became possible when the segment of phage DNA contained an amber mutation in gene 32. This suggests that a functional gene 32 is deleterious to the cell. Using antibody to gene 32 protein, we have been able to demonstrate expression of the plasmid-borne gene 32 in uninfected bacteria. Deletion variants of the gene 32 plasmid have been constructed in vitro. These have been used to align the genetic map of the region with the restriction map and to study phage gene expression from the plasmid in both infected and uninfected cells. In phage-infected cells the level of functional gene 32 product regulates the efficiency of translation of its own messenger RNA. We also observe such self-regulation for gene 32 present on the plasmid.  相似文献   

17.
18.
Bullous pemphigoid (BP) antigen is a normal basement membrane zone antigen of epidermis and other stratified squamous epithelia. It is defined immunologically by antibodies in the sera of patients with the subepidermal blistering disease BP. In this study we sought to demonstrate that epidermal cells synthesize this antigen, to determine the immunological specificity of BP antibodies and to characterize this antigen. Cultured human epidermal cells (HEC) and a spontaneously transformed mouse epidermal cell line (Pam) both demonstrated BP antigen by indirect immunofluorescence. To characterize the antigen, these cells were radiolabeled with 35S-methionine or 14C-amino acids and extracts were immunoprecipitated using nine different BP sera. Immunoprecipitated proteins were identified using sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) and fluorography. All nine BP sera precipitated a protein with disulfide-linked chains of apparent molecular weight approximately 220 kd. Eight normal human sera and six pemphigus vulgaris sera, as well as antibodies directed against fibronectin and laminin, did not precipitate this protein. Furthermore, it was not precipitated by BP sera from radiolabeled extracts of fibroblasts. The protein was soluble in Tris-HCI buffered saline but was not secreted into the culture medium. These studies demonstrate that BP antigen is synthesized by epidermal cells in culture, different patients with BP have antibodies against the same protein, and BP antigen can be identified on SDS-PAGE as a high molecular weight protein consisting of disulfide-linked chains of approximate molecular weight 220 kd.  相似文献   

19.
The ssb-1 gene encoding a mutant Escherichia coli single-stranded DNA-binding protein has been cloned into plasmid pACYC184. The amount of overproduction of the cloned ssb-1 gene is dependent upon its orientation in the plasmid. In the less efficient orientation, 25-fold more mutant protein is produced than in strains carrying only one (chromosomal) copy of the gene: the other orientation results in more than 60-fold overproduction of this protein. Analysis of the effects of overproduction of the ssb-1 encoded protein has shown that most of the deficiencies associated with the ssb-1 mutation when present in single gene copy, including temperature-sensitive conditional lethality and deficiencies in amplified synthesis of RecA protein and ultraviolet light-promoted induction of prophage λ+, are reversed by increased production of ssb-1 mutant protein. These results provide evidence in vivo that SSB protein plays an active role in recA-dependent processes. Homogenotization of a nearby genetic locus (uvrA) was identified in the cloning of the ssb-1 mutant gene. This observation has implications in the analysis of uvrA? mutant strains and will provide a means of transferring ssb? mutations from plasmids to the chromosome. On a broader scale, the observation may provide the basis of a general strategy to transfer mutations between plasmids and chromosomes.  相似文献   

20.
The structure of Satellite tobacco necrosis virus (STNV) has been determined to 3.0 Å resolution by X-ray crystallography. Electron density maps were obtained with phases based on one heavy-atom derivative and several cycles of phase refinement using the 60-fold non-crystallographic symmetry in the particle. A model for one protein subunit was built using a computer graphics display. The subunit is constructed mainly of a β-roll structure forming two β-sheets, each of four antiparallel strands. The N-termini of the subunits form bundles of three α-helices extending into the RNA region of the virus at the 3-fold axis. The topology of the polypeptide chain is the same as, and the conformation clearly similar to, that of the shell domains of the Tomato bushy stunt virus (TBSV) and Southern bean mosaic virus (SBMV) protein subunits. The subunit packing in the T = 1 STNV structure is, however, significantly different from the packing of these T = 3 viruses: parts of some of the structural elements facing the RNA in TBSV and SBMV are utilized for subunit-subunit contacts in STNV. No RNA structure is obvious in the present icosahedrally averaged electron density maps. The protein surface facing the RNA contains mainly hydrophilic residues, especially lysine and arginine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号