首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fine root systems may respond to soil chemical conditions, but contrasting results have been obtained from field studies in non-manipulated forests with distinct soil chemical properties. We investigated biomass, necromass, live/dead ratios, morphology and nutrient concentrations of fine roots (<2 mm) in four mature Norway spruce (Picea abies [L.] Karst.) stands of south-east Germany, encompassing variations in soil chemical properties and climate. All stands were established on acidic soils (pH (CaCl2) range 2.8–3.8 in the humus layer), two of the four stands had molar ratios in soil solution below 1 and one of the four stands had received a liming treatment 22 years before the study. Soil cores down to 40 cm mineral soil depth were taken in autumn and separated into four fractions: humus layer, 0–10 cm, 10–20 cm and 20–40 cm. We found no indications of negative effects of N availability on fine root properties despite large variations in inorganic N seepage fluxes (4–34 kg N ha−1 yr−1), suggesting that the variation in N deposition between 17 and 26 kg N ha−1 yr−1 does not affect the fine root system of Norway spruce. Fine root biomass was largest in the humus layer and increased with the amount of organic matter stored in the humus layer, indicating that the vertical pattern of fine roots is largely affected by the thickness of this horizon. Only two stands showed significant differences in fine root biomass of the mineral soil which can be explained by differences in soil chemical conditions. The stand with the lowest total biomass had the lowest Ca/Al ratio of 0.1 in seepage, however, Al, Ca, Mg and K concentrations of fine roots were not different among the stands. The Ca/Al ratio in seepage might be a less reliable stress parameter because another stand also had Ca/Al ratios in seepage far below the critical value of 1.0 without any signs of fine root damages. Large differences in the live/dead ratio were positively correlated with the Mn concentration of live fine roots from the mineral soil. This relationship was attributed to faster decay of dead fine roots because Mn is known as an essential element of lignin degrading enzymes. It is questionable if the live/dead ratio can be used as a vitality parameter of fine roots since both longevity of fine roots and decay of root litter may affect this parameter. Morphological properties were different in the humus layer of one stand that was limed in 1983, indicating that a single lime dose of 3–4 Mg ha−1 has a long-lasting effect on fine root architecture of Norway spruce. Almost no differences were found in morphological properties in the mineral soil among the stands, but vertical patterns were apparently different. Two stands with high base saturation in the subsoil showed a vertical decrease in specific root length and specific root tip density whereas the other two stands showed an opposite pattern or no effect. Our results suggest that proliferation of fine roots increased with decreasing base saturation in the subsoil of Norway spruce stands.  相似文献   

2.
Abstract. For seven years we studied the recovery of vegetation in a Belgian P limited rich fen (Caricion davallianae), which had been fertilized with nitrogen (200 g.m?2) and phosphorus (50 g.m?2) in 1992. The vegetation in this fen has low above‐ground biomass production (< 100 g m?2) due to the strong P limitation. Above‐ground biomass was harvested from 1992 to 1998 and P and N concentrations measured. In 1998, below‐ground biomass was also harvested. The response to fertilization differed markedly between below‐ and above‐ground compartments. Above‐ground, P was the single most important factor that continued to stimulate growth 7 yr after fertilization. Below‐ground, N tended to decrease live root biomass and increase dead root biomass and seemed to have a toxic effect on the roots. In the combined NP treatment the stimulating effect of P (an increase of live root biomass) was countered by N. The 1998 soil analysis showed no difference in soil P in the plots. Thus, Fe hydroxides are not capable of retaining P in competition with fen vegetation uptake. However, higher capture of P in root Fe coatings from N plots may partially explain this negative N effect. The results suggest that N root toxicity will be amplified in strongly P limited habitats but that its persistence will be less influenced by P availability. This mechanism may be a competitive advantage for N2 fixing species that grow in strongly P limited wetlands.  相似文献   

3.
The annual dynamics of live and dead fine roots for trees and the field layer species and live/dead ratios were investigated at a coniferous fern forest (Picea abies L. Karts) in Sweden. Our methods of estimating the average amount of fine roots involved the periodic sampling of fine roots in sequential cores on four sampling occasions. The highest live/dead ratio was found in the upper part of the humus layer for both tree and field-layer species and decreased with depth. Most tree fine roots on the four sampling occasions were found in the mineral soil horizon, where 86, 81, 85 and 89% of <1 mm and 89, 88, 89 and 92% of <2 mm diameter of the total amounts of live fine roots in the soil profile were found. The mean amounts of live fine roots of tree species for the total soil profile on the four sampling occasions was 317, 150, 139 and 248 g m?2 for <1 mm and 410, 225, 224 and 351 g m?2 for <2 mm diameter fine roots. The related amount of dead fine roots was 226, 321, 176 and 299 g m?2 and 294, 424, 282 and 381 g m?2, respectively. Average amounts of live and dead fine-roots and live/dead ratios from other Picea abies forest ecosystems were within the range of our estimates. The production of fine roots, <1 and <2 mm in diameter, estimated from the annual increments in live fine roots, was 207 and 303 g m?2. The related accumulation of dead fine roots was 257 and 345 g m?2, The turnover rate of tree fine roots <1 mm in diameter in the total soil profile amounted to 0.7 yr?1 for live and 0.8 yr?1 for dead fine roots. The related turnover rates for tree fine roots <2 mm were 0.4 yr?1 and 0.7 yr?1. Our data, although based on minimum estimates of the annual fluxes of live and dead fine roots, suggests a carbon flow to the forest soil from dead fine-roots even more substantial than from the needle litter fall. Fine-root data from several Picea abies forest ecosystems, suggest high turnover rates of both live and dead tree fine-roots.  相似文献   

4.
Radiocarbon (14C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4–11 years (ranging from <1 to >40 years). Measurements of 14C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2‐year‐old) photosynthetic products. High Δ14C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1–3 years) than the age of standing fine root C stocks obtained from radiocarbon (4–11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using 14C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the 14C values in soil pore space CO2, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time.  相似文献   

5.
It is generally believed that high soil solution Al3+ in acidic soils with low base saturation (BS), negatively influences the properties of fine roots. Fine roots from European beech (Fagus sylvatica L.) trees growing in highly acidic soils with very low BS and potentially high Al3+ concentration in the soil solution were analysed and the dependency of fine root properties on soil BS was measured. The fine roots were sampled down to 1 m depth at seven forest sites located on the Swiss Plateau. These sites varied in their BS from 1.4 to 11.4% in the mineral layers. We evaluated relationships between the BS of these mineral layers and fine root properties, such as ratio between bio- and necromass (live/dead ratio), specific root length (SRL), root tip abundance (RTA), root branching abundance (RBA), O2-consumption, and the Ca/Al molar ratio in the fine root tissue. The fine root properties were compared not only with the BS of the soil, but also with the Ca/Al molar ratio in the fine root tissues. Significant relations of fine root properties occurred when the soils of the seven sites were grouped into two BS groups (<5 and 5–10%). The live/dead ratio, the RTA, the RBA, the O2-consumption, and Ca/Al molar ratio were lower in the group of BS <5% than in the group 5–10%. Decreases in the morphological properties and in the O2-consumption were related to decrease in the Ca/Al molar ratio of the fine root tissues. There is evidence that the fine root properties are negatively influenced, nevertheless, fine root systems of mature European beech in their natural ecological environment seem to be able to compensate adverse effects of low BS. Responsible Editor: Philippe Hinsinger.  相似文献   

6.
人工混交林中杉木、桤木和刺楸细根养分迁移的初步研究   总被引:13,自引:0,他引:13  
比较分析了杉木 桤木和杉木 刺楸混交林中杉木、桤木和刺楸活细根、死细根的N、P、K含量 .结果表明 ,桤木细根N迁移能力较强 ,刺楸较弱 ,杉木细根N不迁移 ;P在桤木和刺楸细根中迁移能力较强 ,而在杉木细根中基本不迁移 ;3个树种细根脱落前都将K迁移回树体内 .比较分析 2个混交林中活细根N、P、K在树种间的差异 ,发现在杉木 桤木混交林中桤木根部N可能向杉木迁移 ,而在杉木 刺楸混交林中刺楸根部K可能向杉木根部迁移 ,但迁移机制还有待于从根 土界面生态过程进行研究  相似文献   

7.
采伐干扰对华北落叶松细根生物量空间异质性的影响   总被引:5,自引:0,他引:5  
以华北落叶松天然林为研究对象,选择采伐干扰林分(样地A)和未采伐干扰林分(样地B),利用根钻法分3层(0—10cm,10—20cm,20—30cm)获取各径级细根(≤1mm、1—2mm、2—5mm3级活细根,≤2mm死亡细根)生物量数据。采用地统计学变异函数和经典统计相结合的数据分析方法对采伐干扰造成的细根生物量空间异质性的变化进行定量研究。主要研究结果如下:采伐干扰林分样地A各经级细根生物量均值减少;同一土层相同径级细根生物量样地A与样地B相比差异显著(P<0.05);不同土层的细根生物量异质性具有显著差别(P<0.05)。0—10cm土层,未采伐干扰林分≤1mm细根生物量呈现较明显的空间自相关变异,采伐干扰林分则表现为随机性变异特征,采伐干扰导致≤1mm细根生物量空间分布特征更加复杂(分维数D=1.978);10—20cm土层,采伐干扰林分各径级细根生物量异质性程度明显降低,只有未采伐干扰林分的5.4%—88.9%。20—30cm土层,未采伐干扰林分≤1mm细根生物量在较小尺度范围(<2.9m)表现出明显的空间自相关变异(结构方差比86.1%),受采伐干扰林分各径级细根生物量异质性程度只有未采伐干扰林分的8.9%—45.9%,且呈现随机性变异。各径级细根生物量空间异质性的垂直分异均表现为随土层深度的增加异质性强度明显降低。  相似文献   

8.
Abstract We estimated the below‐ground net plant productivity (BNPP) of different biomass components in an intensively and continuously 45‐ha grazed site and in a neighbouring exclosure ungrazed for 16 years for a natural mountain grassland in central Argentina. We measured approximately twice as much dead below‐ground biomass in the grazed site as in the ungrazed site, with a strong concentration of total below‐ground biomass towards the upper 10 cm of the soil layer in both sites. The main contribution to total live biomass was accounted for by very fine (<0.5 mm) and fine roots (0.5–1.0 mm) both at the grazed (79%) and at the ungrazed (81%) sites. We measured more dead biomass for almost all root components, more live biomass of rhizomes, tap roots and bulbs, and less live biomass of thicker roots (>1 mm) in the grazed site. The seasonal variation of total live below‐ground biomass mainly reflected climate, with the growing season being limited to the warmer and wetter portion of the year, but such variation was higher in the grazed site. Using different methods of estimation of BNPP, we estimated maximum values of 1241 and 723 g m?2 year?1 for the grazed and ungrazed sites, respectively. We estimated that very fine root productivity was almost twice as high at the grazed site as at the ungrazed one, despite the fact that both sites had similar total live biomass, and root turnover rate was twofold at the grazed site.  相似文献   

9.
Ingrowth cores in the field were used to compare fine root characteristics of hinoki cypress (Chamaecyparis obtusa) among rooting substrate in the form of needle leaf litter, decomposing organic material, and mineral soil. Fine root growth, morphology, arbuscular mycorrhizal (AM) associations, and tissue C and N concentration were determined. The inorganic N leaching from each soil substrate was taken as a measure of N availability. Although there was no significant difference in total N leaching among substrates, more NH + 4 -N leached from the decomposing organic material than other substrates. Rapid fine root production was observed in the organic material, whereas root production in the litter substrate was suppressed. Annual net fine root productions in litter, organic material, and mineral soil were 51, 193, and 132 g m−2, respectively. In the leaf litter substrate, AM colonization was suppressed and specific root length was higher than in the other substrates, indicating severe nutrient limitation in the litter. These responses of hinoki cypress roots seemed to be a soil exploitation pattern whereby absorptive fine roots were arranged to maximize nutrient acquisition.  相似文献   

10.
Using a new approach involving one-time measurements of radiocarbon (14C) in fine (<2 mm diameter) root tissues we have directly measured the mean age of fine-root carbon. We find that the carbon making up the standing stock of fine roots in deciduous and coniferous forests of the eastern United States has a mean age of 3-18 years for live fine roots, 10-18 years for dead fine roots, and 3-18 years for mixed live+dead fine roots. These 14C-derived mean ages represent the time C was stored in the plant before being allocated for root growth, plus the average lifespan (for live roots), plus the average time for the root to decompose (for dead roots and mixtures). Comparison of the 14C content of roots known to have grown within 1 year with the 14C of atmospheric CO2 for the same period shows that root tissues are derived from recently fixed carbon, and the storage time prior to allocation is <2 years and likely <1 year. Fine-root mean ages tend to increase with depth in the soil. Live roots in the organic horizons are made of C fixed 3-8 years ago compared with 11-18 years in the mineral B horizons. The mean age of C in roots increases with root diameter and also is related to branching order. Our results differ dramatically from previous estimates of fine-root mean ages made using mass balance approaches and root-viewing cameras, which generally report life spans (mean ages for live roots) of a few months to 1-2 years. Each method for estimating fine-root dynamics, including this new radiocarbon method, has biases. Root-viewing approaches tend to emphasize more rapidly cycling roots, while radiocarbon ages tend to reflect those components that persist longest in the soil. Our 14C-derived estimates of long mean ages can be reconciled with faster estimates only if fine-root populations have varying rates of root mortality and decomposition. Our results indicate that a standard definition of fine roots, as those with diameters of <2 mm, is inadequate to determine the most dynamic portion of the root population. Recognition of the variability in fine-root dynamics is necessary to obtain better estimates of belowground C inputs.  相似文献   

11.
Supply-side controls on soil respiration among Oregon forests   总被引:3,自引:0,他引:3  
To test the hypothesis that variation in soil respiration is related to plant production across a diverse forested landscape, we compared annual soil respiration rates with net primary production and the subsequent allocation of carbon to various ecosystem pools, including leaves, fine roots, forests floor, and mineral soil for 36 independent plots arranged as three replicates of four age classes in three climatically distinct forest types. Across all plots, annual soil respiration was not correlated with aboveground net primary production (R2=0.06, P>0.1) but it was moderately correlated with belowground net primary production (R2=0.46, P<0.001). Despite the wide range in temperature and precipitation regimes experienced by these forests, all exhibited similar soil respiration per unit live fine root biomass, with about 5 g of carbon respired each year per 1 g of fine root carbon (R2=0.45, P<0.001). Annual soil respiration was only weakly correlated with dead carbon pools such as forest floor and mineral soil carbon (R2=0.14 and 0.12, respectively). Trends between soil respiration, production, and root mass among age classes within forest type were inconsistent and do not always reflect cross‐site trends. These results are consistent with a growing appreciation that soil respiration is strongly influenced by the supply of carbohydrates to roots and the rhizosphere, and that some regional patterns of soil respiration may depend more on belowground carbon allocation than the abiotic constraints imposed on subsequent metabolism.  相似文献   

12.
The effects of liquid and solid fertilizers on fine-root development were studied in a 130-year-old Scots pine (Pinus sylvestris L.) stand. Ingrowth cores,viz. initially root-free mesh bags with sieved mineral soil taken outside the plots and driven to a depth of 30 cm from the soil surface, were subsequently resampled and the amount of fine roots was estimated. The total accretion of both fine-root length and dry weight was comparatively high in the liquid fertilization plot. The most substantial net accretion, however, during the 1984 period was in the control plot. The results of the study is that the ramification pattern of the fine roots was strongly influenced by fertilization. The average number of root tips per unit length was 9.9 cm−1 in the control plot cm−1, compared with both the solid (A and B) and liquid fertilization plots (2.3, 3.2 and 3.3 cm−1, respectively) due to a greater occurrence of mycorrhizal aggregates (‘ball mycorrhiza’). The effects of fertilization on the mineral nutrient concentrations in the fine roots were limited—the strongest effects were in the liquid-fertilized area. The observed increase in the concentration of most mineral nutrients in the latter experimental area, however, may be due to a change in the growth pattern of the fine roots rather than an effect of the fertilizers themselves.  相似文献   

13.
14.
本文对一个25年生大冷杉林在伪潜育土至45cm矿质土壤里,从1987年晚秋滞水期至1988年生长旺盛期的毫根量动态及化学组成变化进行了研究。 滞水期土壤中死根量(5558kg DS/ha)显著高于活根量(3594kg DS/ha)。生长旺盛期初,活根量增加约50%,死根量降低约27%。经过夏季至生长旺盛期末,活根量仍略有增加,死根量继续降低。毫根化学组成分析显示,滞水期活根中K、Mg及Zn离子含量显著低于生长旺盛期,Mn离子含量则明显高于生长旺盛期。这一结果表明,除了与季节性相关的生长节奏因素外,大冷杉毫根生物量的变化主要是由滞水状况所致。  相似文献   

15.
Elevated nitrogen (N) deposition to tropical forests may accelerate ecosystem phosphorus (P) limitation. This study examined responses of fine root biomass, nutrient concentrations, and acid phosphatase activity (APA) of bulk soil to five years of N and P additions in one old-growth and two younger lowland tropical forests in southern China. The old-growth forest had higher N capital than the two younger forests from long-term N accumulation. From February 2007 to July 2012, four experimental treatments were established at the following levels: Control, N-addition (150 kg N ha–1 yr–1), P-addition (150 kg P ha–1 yr–1) and N+P-addition (150 kg N ha–1 yr–1 plus 150 kg P ha–1 yr–1). We hypothesized that fine root growth in the N-rich old-growth forest would be limited by P availability, and in the two younger forests would primarily respond to N additions due to large plant N demand. Results showed that five years of N addition significantly decreased live fine root biomass only in the old-growth forest (by 31%), but significantly elevated dead fine root biomass in all the three forests (by 64% to 101%), causing decreased live fine root proportion in the old-growth and the pine forests. P addition significantly increased live fine root biomass in all three forests (by 20% to 76%). The combined N and P treatment significantly increased live fine root biomass in the two younger forests but not in the old-growth forest. These results suggest that fine root growth in all three study forests appeared to be P-limited. This was further confirmed by current status of fine root N:P ratios, APA in bulk soil, and their responses to N and P treatments. Moreover, N addition significantly increased APA only in the old-growth forest, consistent with the conclusion that the old-growth forest was more P-limited than the younger forests.  相似文献   

16.
Fine root length production, biomass production, and turnover in forest floor and mineral soil (0–30 cm) layers were studied in relation to irrigated (I) and irrigated-fertilized (IL) treatments in a Norway spruce stand in northern Sweden over a 2-year period. Fine roots (<1 mm) of both spruce and understory vegetation were studied. Minirhizotrons were used to estimate fine root length production and turnover, and soil cores were used to estimate standing biomass. Turnover was estimated as both the inverse of root longevity (RTL) and the ratio of annual root length production to observed root length (RTR). RTR values of spruce roots in the forest floor in I and IL plots were 0.6 and 0.5 y−1, respectively, whereas the corresponding values for RTL were 0.8 and 0.9 y−1. In mineral soil, corresponding values for I, IL, and control (C) plots were 1.2, 1.2, and 0.9 y−1 (RTR) and 0.9, 1.1, and 1 y−1 (RTL). RTR and RTL values of understory vegetation roots were 1 and 1.1 y−1, respectively. Spruce root length production in both the forest floor and the mineral soil in I plots was higher than in IL plots. The IL-treated plots gave the highest estimates of spruce fine root biomass production in the forest floor, but, for the mineral soil, the estimates obtained for the I plots were the highest. The understory vegetation fine root production in the I and IL plots was similar for both the forest floor and the mineral soil and higher (for both layers) than in C plots. Nitrogen (N) turnover in the forest floor and mineral soil layers (summed) via spruce roots in IL, I, and C plots amounted to 2.4, 2.1, and 1.3 g N m−2 y−1, and the corresponding values for field vegetation roots were 0.6, 0.5, and 0.3 g N m−2 y−1. It was concluded that fertilization increases standing root biomass, root production, and N turnover of spruce roots in both the forest floor and mineral soil. Data on understory vegetation roots are required for estimating carbon budgets in model studies.  相似文献   

17.
Root turnover in a beech and a spruce stand of the Belgian Ardennes   总被引:8,自引:0,他引:8  
The theoretical basis of fine root turnover estimation in forest soils is discussed, in relation to appropriate experimental techniques of measurement. After sequential coring, the correct expression is the sum of significant positive increments of live and dead roots of the various diameter categories, to which the transfer of dead roots to organic matter derived from roots, OMDR, has to be added. This should not be confounded with dead root mineralization. The transfer rates should first be estimated in root dimensions and not in weight of dry matter. The measurements were carried out in a 120 year old beech (Fagus sylvatica L.) stand and a 35 year old Norway spruce (Picea abies Karst) stand, in the Eastern Ardennes, Belgium. The turnover rate of fine roots (diam. <5 mm) was 4393 kg ha−1 year−1 (root dry weight), including 711.2 kg ha−1 year−1 for dead root transfer to OMDR, for beech. For spruce, turnover rate was 7011 kg ha−1 year−1 (root dry weight), including 1498 kg ha−1 year−1 for dead root transfer to OMDR. Under beech, there was a slight root density increase in spring. No seasonal fluctuations were observed under spruce, but a strong irreversible drop in live root growth was found in the later season 1980–1981, corresponding to a decrease of tree height growth and trunk radius increment. Turnover rates were further expressed in dry weight and in amounts of elements (kg ha−1 year−1) (Ca, Mg, K, Na, Al, N, P, S). Correlative relations between root dimensions and dry weight and element concentrations show that the derived values, and in particular root specific density (dry weight volume−1) vary according to species, root category, and seasonal sampling. Various schemes of seasonal variations of root growth, described in Europe, show that the major dependance on general climate is obscured by environmental factors (soil, exposure, species). It is suggested that root density fluctuation approach the steady state on an annual basis under mild Atlantic conditions.  相似文献   

18.
The fine root systems of three tropical montane forests differing in age and history were investigated in the Cordillera Talamanca, Costa Rica. We analyzed abundance, vertical distribution, and morphology of fine roots in an early successional forest (10–15 years old, ESF), a mid‐successional forest (40 years old, MSP), and a nearby undisturbed old‐growth forest (OGF), and related the root data to soil morphological and chemical parameters. The OGF stand contained a 19 cm deep organic layer on the forest floor (i.e., 530 mol C/m2), which was two and five times thicker than that of the MSF (10 cm) and ESF stands (4 cm), respectively. There was a corresponding decrease in fine root biomass in this horizon from 1128 g dry matter/m2 in the old‐growth forest to 337 (MSF) and 31 g/m2 (ESF) in the secondary forests, although the stands had similar leaf areas. The organic layer was a preferred substrate for fine root growth in the old‐growth forest as indicated by more than four times higher fine root densities (root mass per soil volume) than in the mineral topsoil (0–10 cm); in the two secondary forests, root densities in the organic layer were equal to or lower than in the mineral soil. Specific fine root surface areas and specific root tip abundance (tips per unit root dry mass) were significantly greater in the roots of the ESF than the MSF and OGF stands. Most roots of the ESF trees (8 abundant species) were infected by VA mycorrhizal fungi; ectomycorrhizal species (Quercus copeyemis and Q. costaricensis) were dominant in the MSF and OGF stands. Replacement of tropical montane oak forest by secondary forest in Costa Rica has resulted in (1) a large reduction of tree fine root biomass; (2) a substantial decrease in depth of the organic layer (and thus in preferred rooting space); and (3) a great loss of soil carbon and nutrients. Whether old–growth Quercus forests maintain a very high fine root biomass because their ectomycorrhizal rootlets are less effective in nutrient absorption than those of VA mycorrhizal secondary forests, or if their nutrient demand is much higher than that of secondary forests (despite a similar leaf area and leaf mass production), remains unclear.  相似文献   

19.
The effect of mineral N availability on nitrogen nutrition and biomass partitioning between shoot and roots of pea (Pisum sativum L., cv Baccara) was investigated under adequately watered conditions in the field, using five levels of fertiliser N application at sowing (0, 50, 100, 200 and 400 kg N ha–1). Although the presence of mineral N in the soil stimulated vegetative growth, resulting in a higher biomass accumulation in shoots in the fertilised treatments, neither seed yield nor seed nitrogen concentration was affected by soil mineral N availability. Symbiotic nitrogen fixation was inhibited by mineral N in the soil but it was replaced by root mineral N absorption, which resulted in optimum nitrogen nutrition for all treatments. However, the excessive nitrogen and biomass accumulation in the shoot of the 400 kg N ha–1 treatment caused crop lodging and slightly depressed seed yield and seed nitrogen content. Thus, the presumed higher carbon costs of symbiotic nitrogen fixation, as compared to root mineral N absorption, affected neither seed yield nor the nitrogen nutrition level. However, biomass partitioning within the nodulated roots was changed. The more symbiotic nitrogen fixation was inhibited, the more root growth was enhanced. Root biomass was greater when soil mineral N availability was increased: root growth was greater and began earlier for plants that received mineral N at sowing. Rooting density was also promoted by increased mineral N availability, leading to more numerous but finer roots for the fertilised treatments. However, the maximum rooting depth and the distribution of roots with depth were unchanged. This suggested an additional direct promoting effect of mineral N on root proliferation.  相似文献   

20.
Fine root litter is a primary source of soil organic matter (SOM), which is a globally important pool of C that is responsive to climate change. We previously established that ~20 years of experimental nitrogen (N) deposition has slowed fine root decay and increased the storage of soil carbon (C; +18%) across a widespread northern hardwood forest ecosystem. However, the microbial mechanisms that have directly slowed fine root decay are unknown. Here, we show that experimental N deposition has decreased the relative abundance of Agaricales fungi (?31%) and increased that of partially ligninolytic Actinobacteria (+24%) on decaying fine roots. Moreover, experimental N deposition has increased the relative abundance of lignin‐derived compounds residing in SOM (+53%), and this biochemical response is significantly related to shifts in both fungal and bacterial community composition. Specifically, the accumulation of lignin‐derived compounds in SOM is negatively related to the relative abundance of ligninolytic Mycena and Kuehneromyces fungi, and positively related to Microbacteriaceae. Our findings suggest that by altering the composition of microbial communities on decaying fine roots such that their capacity for lignin degradation is reduced, experimental N deposition has slowed fine root litter decay, and increased the contribution of lignin‐derived compounds from fine roots to SOM. The microbial responses we observed may explain widespread findings that anthropogenic N deposition increases soil C storage in terrestrial ecosystems. More broadly, our findings directly link composition to function in soil microbial communities, and implicate compositional shifts in mediating biogeochemical processes of global significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号