首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Apple (Malus domestica Borkh.), an important horticultural crop, produces human health-promoting metabolites during fruit ripening. Because that process, which involves complex biochemical and physiological changes, is genetically programmed, molecular and genetic approaches have been taken to understand the associated cellular mechanisms. The release of 151,687 apple expressed sequence tags (ESTs) into a public database has made possible large-scale studies of expression. Analysis of apple ESTs allows for the identification and characterization of genes with potential roles in fruit development, particularly those related to aroma production and protein degradation during ripening. Apple cDNA and oligonucleotide microarrays have been generated for more comprehensive examinations. Such tools are powerful means for elucidating the molecular events involved in metabolite biosynthesis and physiological changes and will also enable researchers to understand how to control that ripening process.  相似文献   

3.
An overview of the apple genome through BAC end sequence analysis   总被引:1,自引:0,他引:1  
The apple, Malus x domestica Borkh., is one of the most important fruit trees grown worldwide. A bacterial artificial chromosome (BAC)-based physical map of the apple genome has been recently constructed. Based on this physical map, a total of approximately 2,100 clones from different contigs (overlapping BAC clones) have been selected and sequenced at both ends, generating 3,744 high-quality BAC end sequences (BESs) including 1,717 BAC end pairs. Approximately 8.5% of BESs contain simple sequence repeats (SSRs), most of which are AT/TA dimer repeats. Potential transposable elements are identified in approximately 21% of BESs, and most of these elements are retrotransposons. About 11% of BESs have homology to the Arabidopsis protein database. The matched proteins cover a broad range of categories. The average GC content of the predicted coding regions of BESs is 42.4%; while, that of the whole BESs is 39%. A small number of BES pairs were mapped to neighboring chromosome regions of A. thaliana and Populus trichocarpa; whereas, no pairs are mapped to the Oryza sativa genome. The apple has a higher degree of synteny with the closely related Populus than with the distantly related Arabidopsis. BAC end sequencing can be used to anchor a small proportion of the apple genome to the Populus and possibly to the Arabidopsis genomes.  相似文献   

4.
With the aim of finding genes involved in the floral transition of woody species four MADS box genes containing cDNAs from apple (Malus domestica) have been isolated. Three genes were isolated from vegetative tissue of apple, but were homologues of known genes that specify floral organ identity. MdMADS13 is an AP3-like B class MADS box gene, and was mainly expressed in petals and stamens as demonstrated by Northern blot analysis. MdMADS14 and -15 are AGAMOUS-like genes. They differed slightly in expression patterns on Northern blots, with MdMADS15 mRNA levels equally high in stamens and carpels, but MdMADS14 preferably expressed in carpels. MdMADS14 is likely to be the apple orthologue of one of the Arabidopsis thaliana SHATTERPROOF genes, and MdMADS15 closely resembled the Arabidopsis AGAMOUS gene. It has been shown with RT-PCR that the three floral apple MADS box genes are expressed in vegetative tissues of adult as well as juvenile trees, albeit at low levels. MdMADS12 is an AP1-like gene that is expressed at similar levels in leaves, vegetative shoots, and floral tissues, and that may be involved in the transition from the juvenile to the adult stage.  相似文献   

5.
The dihydrochalcone phlorizin (phloretin 2'-glucoside) contributes to the flavor, color and health benefits of apple fruit and processed products. A genomics approach was used to identify the gene MdPGT1 in apple (Malus x domestica) with homology to the UDP-glycosyltransferase 88 family of uridine diphosphate glycosyltransferases that show specificity towards flavonoid substrates. Expressed sequence tags for MdPGT1 were found in all tissues known to produce phlorizin including leaf, flower and fruit. However, the highest expression was measured by quantitative PCR in apple root tissue. The recombinant MdPGT1 enzyme expressed in Escherichia coli glycosylated phloretin in the presence of [(3)H]-UDP-glucose, but not other apple antioxidants, including quercetin, naringenin and cyanidin. The product of phloretin and UDP-glucose co-migrated with an authentic phlorizin standard. LC/MS indicated that MdPGT1 could glycosylate phloretin in the presence of three sugar donors: UDP-glucose, UDP-xylose and UDP-galactose. This is the first report of functional characterization of a UDP-glycosyltransferase that utilizes a dihydrochalcone as its primary substrate.  相似文献   

6.
In an effort to expand the Gossypium hirsutum L. (cotton) expressed sequence tag (EST) database, ESTs representing a variety of tissues and treatments were sequenced. Assembly of these sequences with ESTs already in the EST database (dbEST, GenBank) identified 9675 cotton sequences not present in GenBank. Statistical analysis of a subset of these ESTs identified genes likely differentially expressed in stems, cotyledons, and drought-stressed tissues. Annotation of the differentially expressed cDNAs tentatively identified genes involved in lignin metabolism, starch biosynthesis and stress response, consistent with pathways likely to be active in the tissues under investigation. Simple sequence repeats (SSRs) were identified among these ESTs, and an inexpensive method was developed to screen genomic DNA for the presence of these SSRs. At least 69 SSRs potentially useful in mapping were identified. Selected amplified SSRs were isolated and sequenced. The sequences corresponded to the EST containing the SSRs, confirming that these SSRs will potentially map the gene represented by the EST. The ESTs containing SSRs were annotated to help identify the genes that may be mapped using these markers.  相似文献   

7.
Proanthocyanidins (PAs) are a class of flavonoids with numerous functions in plant ecology and development, including protection against microbial infection, animal foraging and damage by UV light. PAs are also beneficial in the human diet and livestock farming, preventing diseases of the cardiovascular system and lowering the risk of cancer, asthma and diabetes. Apples (Malus x domestica Borkh.) are naturally rich in flavonoids, but the flavonoid content and composition varies significantly between cultivars. In this work, we applied knowledge from the model plant Arabidopsis thaliana, for which the main features of flavonoid biosynthesis have been elucidated, to investigate PA accumulation in apple. We identified functional homologues of the Multidrug And Toxic compound Extrusion (MATE) gene TRANSPARENT TESTA12 from A. thaliana using a comparative genomics approach. MdMATE1 and MdMATE2 were differentially expressed, and the function of the encoded proteins was verified by complementation of the respective A. thaliana mutant. In addition, MdMATE genes have a different gene structure in comparison to homologues from other species. Based on our findings, we propose that MdMATE1 and MdMATE2 are vacuolar flavonoid/H(+) -antiporters, active in PA accumulating cells of apple fruit. The identification of these flavonoid transporter genes expands our understanding of secondary metabolite biosynthesis and transport in apple, and is a prerequisite to improve the nutritional value of apples and apple-derived beverages.  相似文献   

8.
9.
10.
11.
Using a strategy requiring only modest computational resources, wheat expressed sequence tag (EST) sequences from various sources were assembled into contigs and compared with a nonredundant barley sequence assembly, with ESTs, with complete draft genome sequences of rice and Arabidopsis thaliana, and with ESTs from other plant species. These comparisons indicate that (i) wheat sequences available from public sources represent a substantial proportion of the diversity of wheat coding sequences, (ii) prediction of open reading frames in the whole genome sequence improves when supplemented with EST information from other species, (iii) a substantial number of candidates for novel genes that are unique to wheat or related species can be identified, and (iv) a smaller number of genes can be identified that are common to monocots and dicots but absent from Arabidopsis. The sequences in the last group may have been lost from Arabidopsis after descendance from a common ancestor. Examples of potential novel wheat genes and Triticeae-specific genes are presented.  相似文献   

12.
13.
Biosynthesis of phenolic compounds and its regulation in apple   总被引:6,自引:0,他引:6  
This paper summarises the information on the occurrence of phenolic compounds in apple Malus domestica leaves and fruits with special reference to their developmental changes and regulation of biosynthesis. Besides the ontogenetic variation in biosynthesis and accumulation, the stress-induced and pathogenesis-related changes are emphasised. Aspects of commercial importance are addressed, ranging from fruit colouration, through disease resistance, to the direct use of apple tissues, as raw material for the extraction of bioactive phenolic compounds.  相似文献   

14.
15.
Sorbitol, the primary photosynthate and translocated carbohydrate in apple (Malusxdomestica Borkh.), is converted to fructose by sorbitol dehydrogenase (SDH; EC 1.1.1.14) which is active in apple fruit throughout development. In the apple genome, nine SDH genes have been isolated and their sequences characterized, but their individual expression patterns during apple fruit set and development have not been determined. The objective of this work was to ascertain if SDH genes are differentially expressed and how their patterns of expression may relate to SDH activity in apple seed and cortex during early fruit development. Seed SDH activity was found to be much higher than cortex SDH activity per mg and g fresh weight (FW), and seed SDH activity contributed significantly to whole fruit SDH activity during weeks 2-5 after bloom. Five of the nine SDH genes present in the apple genome were expressed in apple fruit. Two SDH genes, SDH1 and SDH3, were expressed in both seed and cortex tissues. SDH2 expression was limited to cortex, while SDH6 and SDH9 were expressed in seed tissues only. SDH isomeric proteins of different pI values were detected in apple fruit. SDH isomers with pI values of 4.2, 4.8, 5.5, and 6.3 were found in seeds, and SDH isomers with pI values of 5.5, 6.3, 7.3, and 8.3 were found in cortex. The present work is the first to show that SDH is highly active in apple seed and that SDH genes are differentially expressed in seed and cortex during early development.  相似文献   

16.
以苹果属(Malus)植物沧江海棠(M.ombrophila Hand.-Mazz)的果实为材料,对其发育过程中苹果酸的含量进行测定,并结合转录组测序的方法筛选控制果实酸度的候选基因。结果显示:MdPH1候选基因的编码区包含2829 bp,编码942个氨基酸;基因组序列全长为4269 bp,包含8个外显子和7个内含子。对10份苹果种质资源中PH1基因序列的分析结果表明,该基因序列中存在22个单核苷酸多态性(SNP),其中13个位于内含子区,9个位于外显子区;位于最后一个外显子上SNP(G/A)的变异导致了编码氨基酸从缬氨酸变为异亮氨酸。MdPH1蛋白包含8个跨膜结构域,其中蛋白N端包含3个跨膜结构域,C端包含5个跨膜结构域。系统进化分析结果显示,苹果中的PH家族成员与梨(Pyrus communis L.)中的PH家族成员聚集成一簇。组织特异性表达结果发现,MdPH1基因在苹果果实中的表达量最高,其次是叶、花和根,茎中表达量最低。亚细胞定位分析表明MdPH1蛋白定位于液泡膜上。  相似文献   

17.
Six sequences that are closely related to the S gene family of the largely self-incompatible Brassica species have been identified in self-fertilizing Arabidopsis. The sequences define four genomic regions that map to chromosomes 1 and 3. Of the four functional genes identified, only the previously reported Arabidopsis AtS1 gene was expressed specifically in papillar cells and may function in pollination. The remaining three genes, including two novel genes designated ARK2 and ARK3, encode putative receptor-like serine/threonine protein kinases that are expressed predominantly in vegetative tissues. ARK2 promoter activity was detected exclusively in above-ground tissues, specifically in cotyledons, leaves, and sepals, in correlation with the maturation of these structures. ARK3 promoter activity was detected in roots as well as above-ground tissues but was limited to small groups of cells in the root-hypocotyl transition zone and at the base of lateral roots, axillary buds, and pedicels. The nonoverlapping patterns of expression of the ARK genes and the divergence of their sequences, particularly in their predicted extracellular domains, suggest that these genes perform nonredundant functions in specific aspects of development or growth of the plant body.  相似文献   

18.
Apple (Malus × domestica) is one of the most important temperate fruits. To better understand the molecular basis of this species, we characterized the complete chloroplast (cp) genome sequence downloaded from Genome Database for Rosaceae. The cp genome of apple is a circular molecule of 160068bp in length with a typical quadripartite structure of two inverted repeats (IRs) of 26352bp, separated by a small single copy region of 19180bp (SSC) and a large single copy region (LSC) of 88184bp. A total of 135 predicted genes (115 unique genes, and another 20 genes were duplicated in the IR) were identified, including 81 protein coding genes, four rRNA genes and 30 tRNA genes. Three genes of ycf15, ycf68 and infA contain several internal stop codons, which were interpreted as pseudogenes. The genome structure, gene order, GC content and codon usage of apple are similar to the typical angiosperm cp genomes. Thirty repeat regions (≥30bp) were detected, twenty one of which are tandem, six are forward and three are inverted repeats. Two hundred thirty seven simple sequence repeat (SSR) loci were revealed and most of them are composed of A or T, contributing to a distinct bias in base composition. Additionally, average 10000bp non coding region contains 24 SSR sites, while protein coding region contains five SSR sites, indicating an uneven distribution of SSRs. The complete cp genome sequence of apple reported in this paper will facilitate the future studies of its population genetics, phylogenetics and chloroplast genetic engineering.  相似文献   

19.
An EST survey of the sugarcane transcriptome   总被引:8,自引:0,他引:8  
Its large genome and high polyploidy makes sugarcane (Saccharum spp.) a singularly challenging crop to study and improve using genetic approaches. To provide large numbers of functionally characterized candidate genes that might be tested for direct association (rather than distant linkage) with economically important traits, we sequenced the 5' ends of 9,216 clones from three cDNA libraries (apex, leaf and mature internode), representing 3,401 non-redundant sequences. About 57% of these sequences could be assigned a tentative function based on statistically significant similarity to previously characterized proteins or DNA sequences. Another 28% corresponded to previously identified, but uncharacterized, sequences. Some of the remaining unidentified sequences were predicted to be genes which could potentially be new to plants or unique to sugarcane. Comparisons of the sugarcane ESTs to a large sorghum EST database revealed similar compositions of expressed genes between some different tissues. Comparison to a detailed Arabidopsis protein database showed some highly conserved sequences, which might be useful DNA markers for pan-angiosperm comparative mapping. These EST sequences provide a foundation for many new studies to accelerate isolation of agronomically important genes from the cumbersome sugarcane genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号