首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Peroxisomal disorders are a newly described group of inherited neurological diseases. In disorders of peroxisomal biogenesis, e.g., Zellweger syndrome, owing to the lack of peroxisomes, catalase, a peroxisomal enzyme, is found to be present in the cytoplasm instead. We observed higher catalase activity (7.59 ± 0.41 mU/mg of protein) in cultured skin fibroblasts from Zellweger patients than in control fibroblasts (4.45 ± 0.29 mU/mg of protein). Moreover, we also found that the majority of the catalase in Zellweger cells was present in the inactive form. The specific activities following reactivation in Zellweger and control cells were 12.1 and 4.9 mU/mg of protein, respectively. To understand the molecular basis of higher levels of catalase in Zellweger than control cells, we examined the rate of synthesis and turnover of catalase and levels of catalase mRNA and protein levels in Zellweger cells as compared with control cells. The initial rates of synthesis of catalase in Zellweger (1.68 ± 0.15 mU/mg of protein) and control (1.51 ± 0.14 mU/mg of protein) cells were similar. The rates of turnover of catalase in Zellweger (t1/2 = 47 ± 8 h) and control (t1/2 = 49 ± 7 h) were also similar. Consistent with the enzyme activity, the levels of catalase protein were higher in Zellweger cells as compared with control cells. On the other hand, there was no difference in the level of catalase mRNA between control and Zellweger cells. Although the rate of synthesis in Zellweger and control cells were initially similar, it was down-regulated to a lower level at ~72 h of culture in control fibroblasts as compared with Zellweger cells, which continued to synthesize catalase at the same rate up to 5 days in culture. The presence of similar levels of mRNA in control and Zellweger cells and continued synthesis of catalase in Zellweger cells at a higher level as compared with control cells suggest a loss of regulation at the translational level.  相似文献   

2.
The activity of peroxisomal enzymes was studied in human liver and cultured human skin fibroblasts in relation to the finding (Goldfischer, S. et al. (1973) Science 182, 62-64) that morphologically distinct peroxisomes are not detectable in patients with the cerebro-hepato-renal (Zellweger) syndrome. In homogenates of liver from the patients, dihydroxyacetone phosphate acyltransferase, a membrane-bound peroxisomal enzyme, is deficient (Schutgens, R.B.H., et al. (1984) Biochem. Biophys. Res. Commun. 120, 179-184). In contrast, there is no deficiency of the soluble peroxisomal matrix enzymes catalase, L-alpha-hydroxyacid oxidase and E-aminoacid oxidase. Catalase is also not deficient in homogenates of cultured skin fibroblasts from the patients. The results of digitonin titration experiments showed that in control fibroblasts at least 70% of the catalase activity is present in subcellular particles distinct from mitochondria or lysosomes. In contrast, all of the catalase activity in fibroblasts from Zellweger patients is found in the same compartment as the cytosolic marker enzyme lactate dehydrogenase.  相似文献   

3.
The biosynthesis and intracellular localization of nonspecific lipid transfer protein (nsLTP) in control human subjects and in patients with peroxisome-deficient disorders were investigated. The molecular mass of human nsLTP was indistinguishable from that of rat nsLTP (13 kDa) by immunoblot analysis. Intracellular localization was identical with that of catalase, a marker enzyme of peroxisomal matrix, by a double immunofluorescence study. The nsLTP was deficient in liver tissues or fibroblasts from patients with peroxisome-deficient disorders such as Zellweger syndrome and neonatal adrenoleukodystrophy (ALD). Pulse-chase experiments showed that nsLTP was synthesized as a large precursor in both the control and Zellweger fibroblasts. However, the processing to the 13 kDa mature protein was disturbed and the degradation was rapid in Zellweger fibroblasts. After somatic cell fusion using Zellweger fibroblasts from different genetic groups, the processing was normalized. These results suggest that the biosynthesis and localization of human nsLTP are similar to those of rat nsLTP and that the defect of nsLTP in peroxisome-deficient disorders is a phenomenon secondary to an abnormal transport mechanism of peroxisomal proteins. The defect of nsLTP may play an important role in metabolic disturbances in bile acid synthesis and steroidogenesis in peroxisome-deficient disorders.  相似文献   

4.
The presence and intracellular localization of peroxisomal integral membrane proteins (PMP) were investigated in liver and cultured skin fibroblasts from control subjects and patients with the Zellweger syndrome and related disorders in which peroxisomes are virtually absent. Immunoblotting experiments showed that 22, 36 and 69 kDa PMPs were present and were confined to the membranous fraction both in the control liver and in the livers from the Zellweger patients. The 22 and 36 kDa PMPs were present in significantly lower amounts in the patients' livers than in the control liver. A reduced amount of the 69 kDa PMP was found in liver from one Zellweger but not in liver from another. The subcellular localization in fibroblasts of catalase and the 69 kDa PMP was studied by indirect immunofluorescence. A characteristic punctate fluorescence was seen in control cells incubated with either anti-(catalase) or with anti-(69 kDa PMP). Incubation of mutant cells with anti-(catalase) resulted in a diffuse fluorescence, whereas with anti-(69 kDa PMP) fluorescent particles were visualized which, in some cell lines, were larger and fewer in number than in control cells. Cryosections of control and mutant cells were examined by electron microscopy using immunogold labeling. Control cells contained small structures consisting of a single membrane enclosing a homogeneous matrix; the membranes reacted with anti-(69 kDa PMP) and the matrix with anti-(catalase). The mutant cell lines contained spherical or ellipsoidal structures whose membranes reacted with anti-(69 kDa PMP); no labeling was observed with anti-(catalase). We conclude that peroxisomal ghosts, the membranes of which contain the 69 kDa PMP, are present in peroxisome-deficient cell lines from all complementation groups studied so far.  相似文献   

5.
The activities, properties, and steady-state kinetics of the five enzymes catalyzing the synthesis of 1-acyl- and 1-alkyl-sn-glycerol 3-phosphate in the cultured skin fibroblasts from Zellweger syndrome patients and normal controls were studied in detail. Judging from their Km and Vmax values, glycerol phosphate acyltransferase (EC 2.3.1.15), acyl/alkyl dihydroxyacetone phosphate reductase (EC 1.1.1.101), and acyl coenzyme A reductase (long-chain alcohol forming), appear to be affected only slightly by the absence of peroxisomes characteristic of the Zellweger syndrome. Glycerophosphate acyltransferase also showed no differences in N-ethylmaleimide sensitivity nor in inhibition by dihydroxyacetone phosphate between these cell types. Dihydroxyacetone phosphate acyltransferase (EC 2.3.1.42) and alkyl dihydroxyacetone phosphate synthase (EC 2.5.1.26) have altered activity and kinetic constants in homogenates from Zellweger syndrome fibroblasts. Dihydroxyacetone phosphate acyltransferase has similar Km (DHAP) values in both control and Zellweger syndrome cells; however, the value for the Vmax in Zellweger syndrome cells is only 6% of that found in the controls. This is interpreted as indicating that this enzyme is not defective in this disease but is simply present at a depressed level. Also, this enzyme activity has a maximum rate at pH 7.0-7.5 in the mutant cells as opposed to pH 5.4 in the controls. Acylation of dihydroxyacetone phosphate by control cell homogenate was stimulated by N-ethylmaleimide at both pH 5.7 and 7.5 whereas this activity from Zellweger syndrome cells was slightly inhibited at pH 5.7 and strongly inhibited at pH 7.5. In the absence of detergent, dihydroxyacetone phosphate acyltransferase in the Zellweger syndrome cells was much more labile to trypsin than in the control cells. Alkyl dihydroxyacetone phosphate synthase had a slightly higher Km (33 vs 17 microM) for palmitoyl dihydroxyacetone phosphate and a lower Vmax (0.07 vs 0.24 mU/mg protein) in the Zellweger syndrome cells as compared to controls. Although this is a substantial decrease in activity, it probably contributes little to the decreased rate of ether lipid synthesis in these cells. The major problem in this respect is apparently the loss of dihydroxyacetone phosphate acyltransferase activity. All of these enzymes, in both control and Zellweger syndrome cell homogenates, are sedimentable by centrifugation at 100,000g. Also, with the exception of dihydroxyacetone phosphate acyltransferase they had similar patterns of inactivation by heat in both cell types.  相似文献   

6.
In the present study we investigated peroxisomal functions in cultured human muscle cells from control subjects and from a patient with the Zellweger syndrome, a genetic disease characterized by the absence of morphologically distinguishable peroxisomes in liver and kidney. In homogenates of cultured muscle cells from control subjects, catalase is contained within subcellular particles, acyl-CoA:dihydroxyacetonephosphate acyltransferase activity is present and palmitoyl-CoA can be oxidized by a peroxisomal beta-oxidative pathway; these findings are indicative of the presence of peroxisomes in the cells. In homogenates of cultured muscle cells from the patient with the Zellweger syndrome, acyl-CoA:dihydroxyacetonephosphate acyltransferase activity was deficient, peroxisomal beta-oxidation of palmitoyl-CoA was impaired and catalase was not particle-bound. These findings indicate that functional peroxisomes are absent in muscle from patients with the Zellweger syndrome. We conclude that cultured human muscle cells can be used as a model system to study peroxisomal functions in muscle and the consequences for this tissue of a generalized dysfunction of peroxisomes.  相似文献   

7.
The cerebro-hepato-renal (Zellweger) syndrome is an autosomal recessive disorder biochemically characterized by the absence of morphologically distinguishable peroxisomes. Key enzymes involved in the biosynthesis of ether phospholipids, i.e., dihydroxyacetone phosphate acyltransferase and alkyl dihydroxyacetone phosphate synthase, are located in mammalian (micro)peroxisomes. We have previously shown a strikingly reduced activity of dihydroxyacetone phosphate acyltransferase in liver, brain, and cultured skin fibroblasts from Zellweger patients (Schutgens et al. 1984. Biochim. Biophys. Res. Commun. 120: 179-184). We have now extended these investigations by studying alkyl dihydroxyacetone phosphate synthase in cultured human skin fibroblasts. Enzymatic activity was determined by measuring the formation of radioactive alkyl dihydroxyacetone phosphate from palmitoyl dihydroxyacetone phosphate and [1-14C]hexadecanol as substrates. The enzyme was optimally active at pH 8.5 and was stimulated (about 2-3-fold) by the presence of 0.05% (v/v) Triton X-100. The apparent KM values for the enzyme in control fibroblasts amounted to 35 microM for palmitoyl dihydroxyacetone phosphate and 90 microM for hexadecanol. The reaction became inhibited at higher concentrations of both Triton X-100 and palmitoyl dihydroxyacetone phosphate. Control skin fibroblasts showed alkyl dihydroxyacetone phosphate synthase activity of 69 +/- 28 pmol X min-1 X mg-1 (n = 7), while fibroblasts from patients had an activity of only 6.3 +/- 1.7 pmol X min-1 X mg-1 (n = 7). Alkyl dihydroxyacetone phosphate synthase was also found to be deficient in tissue homogenates of Zellweger patients. The specific activity of this enzyme in liver, kidney, and brain homogenates from Zellweger patients was less than 15% of that in the corresponding tissues from controls.  相似文献   

8.
In the Zellweger syndrome where peroxisomes are absent, extremely long fatty acids (24:0 and 26:0) accumulate in tissues suggesting that these fatty acids are normally beta-oxidized in the peroxisomes. Previous studies with rat hepatocytes suggest that peroxisomes are also important in oxidation of C22 unsaturated fatty acids. This study shows that cultured fibroblasts from normal human controls shorten [14-14C]erucic acid (22:1(n-9)) to oleic acid (18:1(n-9)) efficiently while Zellweger fibroblasts are deficient in chain-shortening. [2-14C]Adrenic acid (22:4(n-6)) is oxidized in control fibroblasts probably by chain-shortening to arachidonic acid (20:4(n-6)). Only a little adrenic acid is oxidized in Zellweger fibroblasts. Linolenic acid (18:3(n-3)) is desaturated and chain-elongated in both control and Zellweger fibroblasts. The results support the view that peroxisomes play a normal physiological role in the shortening of C22 unsaturated fatty acids and that this function is deficient in Zellweger fibroblasts.  相似文献   

9.
We have previously reported the isolation of Chinese hamster ovary (CHO) cell mutants that are defective in the biosynthesis of plasmalogens, deficient in at least two peroxisomal enzymes (dihydroxyacetonephosphate (DHAP) acyltransferase and alkyl-DHAP synthase), and in which catalase is not found within peroxisomes (Zoeller, R. A., and Raetz, C. R. H. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5170). We now provide further evidence that three such strains are more generally defective in peroxisome biogenesis. Electron microscopic cytochemistry revealed that the mutants did not contain recognizable peroxisomes. However, immunofluorescence microscopy using an antibody directed against peroxisomal integral membrane proteins revealed the presence of peroxisomal membrane ghosts resembling those seen in cells of patients suffering from one of the human peroxisomal disorders, Zellweger syndrome. Immunoblot analyses, using antibodies specific for peroxisomal matrix proteins, demonstrated deficiencies of peroxisomal proteins in the mutant CHO cells that were similar to those in Zellweger syndrome. Fusion of a CHO mutant with fibroblasts obtained from Zellweger patients resulted in restoration of peroxisomal dihydroxyacetonephosphate acyltransferase and peroxisomal acyl-coenzyme A oxidation activities. The hybrid cells also regained the ability to synthesize plasmenylethanolamine. Moreover, normal peroxisomes were seen by immunofluorescence in the hybrid cells. These results indicate that the hybrid cells have recovered the ability to assemble peroxisomes and that, although the mutant CHO cells are biochemically and morphologically very similar to cells from patients with Zellweger syndrome, the genetic lesions are distinct. Our somatic cell mutants should be useful in identifying factors and genes involved in peroxisome biogenesis and may aid the genetic categorization of the various peroxisomal disorders.  相似文献   

10.
To delineate the role of peroxisomes in the pathophysiology of hypoxia-reoxygenation we examined the functions of peroxisomes and mitochondria in cultured skin fibroblasts from controls and from patients with cells lacking peroxisomes (Zellweger cells). The loss of peroxisomal functions (lignoceric acid oxidation and dihydroxyacetonephosphate acyltransferase [DHAP-AT] activities) in control cells following hypoxia and hypoxia followed by reoxygenation, suggests that peroxisomes are sensitive to oxidative injury. The sensitivity of peroxisomes to oxidative stress was compared to that of mitochondria by examining the oxidation of palmitic acid (a function of both mitochondria and peroxisomes) in control and Zellweger cell lines, following hypoxia-reoxygenation. The greater loss of activity of palmitic acid oxidation observed in control cells as compared to that seen in Zellweger cells suggests that the peroxisomal β-oxidation system is relatively more labile to hypoxia- reoxygenation induced oxidative stress. This data clearly demonstrates the difference in the response of mitochondria and peroxisomes to oxidative stress.  相似文献   

11.
Empty membrane ghosts of peroxisomes were found in fibroblasts from a patient with Zellweger's syndrome, a genetic disease of humans (Santos et al: Science 239:1536-1538, 1988). Import of soluble matrix proteins into the organelle was defective. We have now studied fibroblasts from seven patients representing five complementation groups of the syndrome (defined by complementation for peroxisome enzyme function). We find that empty peroxisome ghosts are present in all seven cell samples. Three patients, representing three complementation groups, give the same membrane pattern by immunofluorescence: few large ghosts. Three other patients, representing two complementation groups, give a second pattern: many large ghosts. The seventh patient's pattern is distinct. Thus, all seven of these patients exhibit Peroxisome IMport (PIM) mutations. Since membrane assembly occurs in these cells, the results indicate that biogenesis of organelle content and membrane proteins proceed by different mechanisms. Growth and division of the empty peroxisomal membrane must occur, but are modified by the mutations (ghost size and abundance vary). Cell fusion and immunofluorescence analyses of peroxisome size and catalase packaging formally demonstrate genetic complementation groups for peroxisome assembly in Zellweger syndrome.  相似文献   

12.
T Koeck  K Kremser 《Nitric oxide》2001,5(3):213-218
As shown recently, in human skin fibroblasts both a constitutively expressed and the inducible nitric oxide synthase (NOS) isoform are present. To identify the NOS isoforms expressed under standard conditions in healthy human skin fibroblasts and fibroblasts with peroxisomal deficiencies (cell lines from patients suffering from X-chromosome linked Adrenoleukodystrophy (X-ALD) and the Zellweger Syndrome), we cultivated the cells in Dulbecco's modified Eagle's medium without inflammatory mediators. Our experiments clearly showed that human fibroblasts with and without peroxisomal deficiencies only contain the constitutively expressed endothelial nitric oxide synthase (eNOS) isoform and that the eNOS is tyrosine-phosphorylated. The inducible isoform (iNOS) could not be detected under standard conditions. Healthy human skin fibroblasts show a higher specific NOS activity than X-ALD and Zellweger cells (2.25 to 1.68 and 1.17 pmol L-citrulline/min/mg total cellular protein), although the content of eNOS protein does not differ significantly in these cell lines. However the tyrosine-phosphorylated portion of eNOS is significantly lower in X-ALD and Zellweger cells.  相似文献   

13.
Peroxisomal beta-oxidation enzyme proteins in the Zellweger syndrome   总被引:12,自引:0,他引:12  
The absence of peroxisomes in patients with the cerebro-hepato-renal (Zellweger) syndrome is accompanied by a number of biochemical abnormalities, including an accumulation of very long-chain fatty acids. We show by immunoblotting that there is a marked deficiency in livers from patients with the Zellweger syndrome of the peroxisomal beta-oxidation enzyme proteins acyl-CoA oxidase, the bifunctional protein with enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase activities and 3-oxoacyl-CoA thiolase. Using anti-(acyl-CoA oxidase), increased amounts of cross-reactive material of low Mr were seen in the patients. With anti-(oxoacyl-CoA thiolase), high Mr cross-reactive material, presumably representing precursor forms of 3-oxoacyl-CoA thiolase, was detected in the patients. Catalase protein was not deficient, in accordance with the finding that catalase activity is not diminished in the patients. Thus in contrast to the situation with catalase functional peroxisomes are required for the stability and normal activity of peroxisomal beta-oxidation enzymes.  相似文献   

14.
We have studied fibroblast cell lines derived from a control subject (cell line 85AD5035F) and three patients clinically described as having the Zellweger syndrome (cell line W78/515), the infantile form of Refsum disease (cell line BOV84AD) and hyperpipecolic acidaemia (cell line GM3605), respectively. The mutant cell lines belonged to the same complementation group. The fibroblasts were cultured under identical conditions and were harvested at different time intervals after reaching confluece. Several peroxisomal parameters were determined. In agreement with previous reports, a lowered enzymic activity of acyl-CoA:dihydroxyacetonephosphate acyltransferase and a decrease in latent catalase clearly distinguished the patient cell limes from the control cell line. However, the cell lines exhibited a phenotypic heterogeneity. This was most strikingly encountered when cells were processed for indirect immunofluorescence microscopy and stained with anti-(catalase). The control cells exhibited a punctate fluorescence, which is indicative of the presence of catalase in peroxisomes. In the mutant cell line W78.515 a diffuse fluorescence was observed, indicative of the presence of catalase in the cytosol. In the other two mutant cell lines a puncate fluorescence was observed in some of the cells. Moreover, clear differences in the extent of proteolytic processing of acyl-CoA oxidase were detected. The mutant cell line BOV84AD displayed a control-like pattern with all molecular forms of acyl-CoA oxidase (72, 52 and 20 kDa) present, whereas in the W78/515 cell line only the 72 kDa component could be visualised. The GM3605 cell line was intermediate in this respect.  相似文献   

15.
Peroxisomes play an essential role in human cellular metabolism. Peroxisomal disorders, a group of genetic diseases caused by peroxisomal dysfunction, can be classified in three groups namely a group of disorders with a general peroxisomal dysfunction (Zellweger syndrome; infantile type of Refsum's disease; neonatal adrenoleukodystrophy, hyperpipecolic acidemia), a group with an impairment of some, but not all peroxisomal functions (rhizomelic chondrodysplasia punctata) and a group with impairment of only a single peroxisomal function (acatalasemia, X-linked adrenoleukodystrophy/adrenomyeloneuropathy; adult type of Refsum's disease; peroxisomal thiolase deficiency; peroxisomal acyl-CoA oxidase deficiency; hyperoxaluria type I). In this paper we report the typical findings in ophthalmological examinations of patients suspected of Zellweger syndrome contributing to the clinical diagnosis of this disorder. In biochemical studies using a rapid gaschromatographic detection method for plasmalogens we confirmed that plasmalogens are severely deficient in all tissues of Zellweger patients studied. Moreover, using a recently developed radiochemical method, de novo plasmalogen biosynthesis was found to be impaired in fibroblasts from patients with Zellweger syndrome, infantile Refsum's disease, neonatal adrenoleukodystrophy or rhizomelic chondrodysplasia punctata, this in contrast to X-linked chondrodysplasia in which a normal plasmalogen biosynthesis was found. From the literature it is known that peroxisomal beta-oxidation with both long-chain (C16:0) and very long-chain (C24:0; C26:0) fatty acids is deficient in Zellweger syndrome, infantile Refsum's disease and neonatal adrenoleukodystrophy. In contrast, in X-linked adrenoleukodystrophy only the peroxisomal beta-oxidation of the very long chain fatty acids is impaired. As a result very long-chain fatty acids accumulate in tissues, plasma, fibroblasts and amniotic fluid cells from patients with Zellweger syndrome, infantile Refsum's disease, neonatal and X-linked adrenoleukodystrophy, but not in rhizomelic chondrodysplasia punctata or X-linked chondrodysplasia. Finally we confirmed that the peroxisomal enzyme alanine glyoxylate aminotransferase is severely deficient in liver from a patient that died because of the neonatal type of hyperoxaluria type I, but not in liver from Zellweger patients.  相似文献   

16.
In relation to the finding that human skin fibroblasts are capable of de novo either phospholipid biosynthesis, we have studied the properties of acyl-CoA:dihydroxyacetone phosphate acyltransferase in fibroblast homogenates using a new assay method. The results indicate that the acylation of dihydroxyacetone phosphate shows an optimum at pH 5.5 with a broad shoulder of activity up to pH 6.4 and a decline in activity up to pH 8.2. At pH 5.5 the acyltransferase accepts dihydroxyacetone phosphate, but not glycerol 3-phosphate as a substrate. Furthermore, the transferase activity was found to be membrane-bound and inactivated by Triton X-100 at concentrations above 0.025% (w/v). Similar properties have been described for the enzyme as present in rat-liver and guinea-pig liver peroxisomes. These data, together with the finding that acyl-CoA:dihydroxyacetone phosphate acyltransferase is deficient in cultured skin fibroblasts from patients without peroxisomes (Zellweger syndrome), suggest that in cultured skin fibroblasts the enzyme is primarily located in peroxisomes.  相似文献   

17.
We have studied fibroblast cell lines derived from a control subject (cell line 85AD5035F) and three patients clinically described as having the Zellweger syndrome (cell line W78/515), the infantile form of Refsum disease (cell line BOV84AD) and hyperpipecolic acidaemia (cell line GM3605), respectively. The mutant cell lines belonged to the same complementation group. The fibroblasts were cultured under identical conditions and were harvested at different time intervals after reaching confluence. Several peroxisomal parameters were determined. In agreement with previous reports, a lowered enzymic activity of acyl-CoA: dihydroxyacetonephosphate acyltransferase and a decrease in latent catalase clearly distinguished the patient cell lines from the control cell line. However, the cell lines exhibited a phenotypic heterogeneity. This was most strikingly encountered when cells were processed for indirect immunofluorescence microscopy and stained with anti-(catalase). The control cells exhibited a punctate fluorescence, which is indicative of the presence of catalase in peroxisomes. In the mutant cell line W78/515 a diffuse fluorescence was observed, indicative of the presence of catalase in the cytosol. In the other two mutant cell lines a punctate fluorescence was observed in some of the cells. Moreover, clear differences in the extent of proteolytic processing of acyl-CoA oxidase were detected. The mutant cell line BOV84AD displayed a control-like pattern with all molecular forms of acyl-CoA oxidase (72, 52 and 20 kDa) present, whereas in the W78/515 cell line only the 72 kDa component could be visualised. The GM3605 cell line was intermediate in this respect.  相似文献   

18.
The influence of plasmalogen deficiency on membrane lipid mobility was determined by measuring fluorescence anisotropy of trimethylammoniumdiphenylhexatriene (TMA-DPH) and diphenylhexatrienylpropanoylhydrazylstachyose (glyco-DPH) inserted in the plasma membranes of human skin fibroblasts deficient in plasmalogens. The cells used were from patients affected with cerebrohepatorenal (Zellweger) syndrome (CHRS) or rhizomelic chondrodysplasia punctata. Their plasmalogen content (0-5% of total phospholipid) is significantly reduced compared with that of control cells from healthy donors (13-15% of total phospholipid) or of CHRS fibroblasts supplemented with the plasmalogen precursor, hexadecylglycerol. Plasmalogen-deficient cells consistently showed lower fluorescence anisotropies of membrane-bound DPH fluorophores corresponding to higher membrane lipid mobilities as compared to controls. However, very similar lipid mobilities were found for sonicated aqueous dispersions of phospholipids extracted either from CHRS or control cells. Therefore, the differences observed with living cells are not due to differences in the overall physical properties of the membrane lipid constituents. Other phenomena such as lipid asymmetry and/or plasmalogen-protein interactions may be responsible for the effects observed in the biomembranes.  相似文献   

19.
Alkyl-dihydroxyacetonephosphate synthase (alkyl-DHAP synthase) is a peroxisomal enzyme involved in the biosynthesis of ether phospholipids. To localize the enzyme in human peroxisomal disorders, indirect immunofluorescence and immunoblot analysis was performed. In Zellweger syndrome and rhizomelic chondrodysplasia punctata fibroblast cell lines, alkyl-DHAP synthase protein levels on immunoblots were strongly decreased and residual immunofluorescence was diffusely localized throughout the cytoplasm. In a particular neonatal adrenoleukodystrophy cell line, characterized by the absence of a functional peroxisomal targeting signal 1 receptor, the precursor form of the enzyme was detected in Western blots at levels comparable to that of the mature enzyme in control fibroblasts. Similarly, fibroblasts from patients with a single deficiency in the activity of either alkyl-DHAP synthase or DHAP-acyltransferase showed normal levels of the mature alkyl-DHAP synthase protein on immunoblots. Immunofluorescence experiments revealed a peroxisomal localization of both the precursor and the mature form of the enzyme. Collectively, these results visualize the peroxisomal localization of alkyl-DHAP synthase, indicate that the enzyme is unstable outside its target organelle and explain that normal enzyme protein levels found in some peroxisomal disorders result from protection against cytoplasmic degradation through import into peroxisomes. Additionally, alkyl-DHAP synthase could be detected in rat mesangial cells and murine NIH-3R3 fibroblasts by immunofluorescence as well as immunoblot analysis. Immunoelectron microscopy showed that the enzyme is predominantly located on the lumenal side of the peroxisomal membrane in rat and guinea pig liver.  相似文献   

20.
The beta-oxidation of stearic acid and of alpha- and gamma-methyl isoprenoid-derived fatty acids (pristanic and tetramethylheptadecanoic acids, respectively) was investigated in normal skin fibroblasts and in fibroblasts from patients with inherited defects in peroxisomal biogenesis. Stearic acid beta-oxidation by normal fibroblast homogenates was several-fold greater compared to the oxidation of the two branched chain fatty acids. The effect of phosphatidylcholine, alpha-cyclodextrin, and bovine serum albumin on the three activities suggests that different enzymes are involved in the beta-oxidation of straight chain and branched chain fatty acids. Homogenates of fibroblasts from patients with a deficiency in peroxisomes (Zellweger syndrome and infantile Refsum's disease) showed a normal ability to beta-oxidize stearic acid, but the oxidation of pristanic and tetramethylheptadecanoic acid was decreased. Concomitantly, 14CO2 production from the branched chain fatty acids by Zellweger fibroblasts in culture (but not from stearic acid) was greatly diminished. The Zellweger fibroblasts also showed a marked reduction in the amount of water-soluble metabolites from the radiolabeled branched chain fatty acids that are released into the culture medium. The data presented indicate that the oxidation of alpha- and gamma-methyl isoprenoid-derived fatty acids takes place largely in peroxisomes in human skin fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号