首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome c was permitted to react with several lipid monolayers in which surface pressure, lipid charge and unsaturation were varied. Cytochrome c interaction with the films caused increased surface pressures, and the magnitude and rate of surface pressure change were compared under a variety of experimental conditions. Large surface pressure changes were associated with more expanded films, whereas greater rates of surface pressure change were associated with favorable charge interaction between cytochrome c and the films. Under the most favorable conditions, rates of surface pressure change were limited principally by protein diffusion to the interface. From these data, it is suggested that unsaturation in lipids of biological membranes may help stabilise non-polar protein-lipid interactions, whereas charge interaction may facilitate and direct initial binding of protein to membranes.  相似文献   

2.
Cytochrome c from Nitrobacter agilis was isolated and purified approx. 60-fold. Absorption spectra of both the oxidized and the reduced Nitrobacter cytochrome c and the oxidized minus reduced difference spectrum of this cytochrome were essentially identical to the corresponding spectra of horse-heart cytochrome c. The redox potential of this cytochrome was determined by spectrophotometric titration with ferrocyanide/ferricyanide and found to be +0.282 V over the pH range 6.0 to 8.7, while a potential of +0.265 V was determined in the same manner for horse-heart cytochrome c. The titration also indicated that the Nitrobacter ferrocytochrome is oxidized by a single electron transfer.  相似文献   

3.
4.
The spectral changes caused by binding soft ligands to the cytochrome c iron and their correlation to ligand affinities support the hypothesis that the iron—methionine sulfur bond of this heme protein is enhanced by delocalization of the metal l2, electrons into the empty 3d orbitals of the ligand atom. These findings also explain the unique spectrum of cytochrome c in the far red.  相似文献   

5.
6.
1. The reduction of cytochrome c oxidase by hydrated electrons was studied in the absence and presence of cytochrome c.

2. Hydrated electrons do not readily reduce the heme of cytochrome c oxidase. This observation supports our previous conclusion that heme a is not directly exposed to the solvent.

3. In a mixture of cytochrome c and cytochrome c oxidase, cytochrome c is first reduced by hydrated electrons (k = 4 · 1010 M−1 · s−1 at 22 °C and pH 7.2) after which it transfers electrons to cytochrome c oxidase with a rate constant of 6 · 107 M−1 · s−1 at 22 °C and pH 7.2.

4. It was found that two equivalents of cytochrome c are oxidized initially per equivalent of heme a reduced, showing that one electron is accepted by a second electron acceptor, probably one of the copper atoms of cytochrome c oxidase.

5. After the initial reduction, redistribution of electrons takes place until an equilibrium is reached similar to that found in redox experiments of Tiesjema, R. H., Muijsers, A. O. and Van Gelder, B. F. (1973) Biochim. Biophys. Acta 305, 19–28.  相似文献   


7.
Aspirin and other non-steroidal anti-inflammatory drugs induce apoptosis in many cell types. Although the involvement of caspases has been demonstrated, the mechanism leading to caspase activation remains unknown. We have studied the role of the mitochondrial pathway in aspirin-induced apoptosis. The apoptotic effect of aspirin was analyzed in different cell lines (Jurkat, MOLT-4, Raji and HL-60) showing induction of mitochondrial cytochrome c release and caspases 9, 3 and 8 processing. Furthermore, early aspirin-induced cytochrome c release was not affected by the caspase inhibitor Z-VAD·fmk and preceded loss of mitochondrial membrane potential. Therefore, aspirin-induced apoptosis involves caspase activation through cytochrome c release.  相似文献   

8.
A procedure for the preparation from frozen beef heart mitochondria of cytochrome c oxidase (EC 1.9.3.1) of high heme ( 14 μmoles/mg protein) and low extraneous copper ( 1.1 atoms Cu/mole heme) and low lipid ( 0.05 g phospholipid/g protein) content is described. EPR signals observed with the enzyme between 6 and 100 °K at various states of oxidation and at different conditions of pH and presence of solutes are described in detail. The quantities of paramagnetic species represented by these signals are estimated. Under no conditions does the sum of the EPR detectable species represent more than approx. 50% of the potentially paramagnetic components of the enzyme. Comparisons are made to the corresponding signals as observed in whole tissue, mitochondria and submitochondrial particles from a number of species. The assignment of the observed signals to known components of cytochrome c oxidase is discussed briefly.  相似文献   

9.
The oxidation-reduction reaction of horse heart cytochrome c and cytochrome c (552, Thermus thermophilus), which is highly thermoresistant, was studied by temperature-jump method. Ferrohexacyanide was used as reductant.
Thermodynamic and activation parameters of the reaction obtained for both cytochromes were compared with each other. The results of this showed that (1) the redox potential of cytochrome c-552,+0.19 V, is markedly less than that of horse heart cytochrome c. (2) ?Hox3 of cytochrome c-552 is considerably lower than that of horse heart cytochrome c. (3) ?Hox3 and ?Sred3 of cytoochrome c-552 are more negative than those of horse heart cytochrome c. (4) kred of cytochrome c-552 is much lower than that of horse heart cytochrome c at room temperature.  相似文献   

10.
The reduction of cytochrome c by thioglycolic acid was found to be extremely sensitive to metal catalysis. The rate of the uncatalyzed reaction was negligible and independent of pH, indicating that thioglycolic acid cannot reduce cytochrome c directly. Both copper and iron act as catalysts with copper being superior to iron. The metal-catalyzed reaction appears to be independent of pH and the presence of oxygen but is sensitive to the presence of chelating agents. The reduction of cytochrome c by thioglycolic acid is also catalyzed by impurities present in oxidized glutathione. The rate of this reaction is sensitive to changes in pH and oxygen concentration but insensitive to changes in ionic strength. Chelating agents have no effect on the rate of this reaction. The data, therefore, suggest that the reduction of cytochrome c by thioglycolic acid can proceed via distinct mechanisms which are dependent on the nature of the catalyst.  相似文献   

11.
Scott Power  Graham Palmer 《BBA》1980,593(2):400-413
We have prepared and characterized resealed erythrocyte ghosts in which the only discernible pigment is cytochrome c. The resealed ghosts have the normal orientation and are free of ‘leaky’ species; they are stable and can be maintained at 4°C for many days without lysis.

The internal cytochrome c participates in redox reactions with both soluble and insolubilized cytochrome c present externally, and with external cytochrome b5. No reaction was observed with plastocyanin, cytochrome c oxidase or NADPH-cytochrome c reductase.

A study has been made of the reaction of the internal cytochrome c with the low molecular weight reductants, ascorbate and glutathione. Complex kinetics are observed with both reagents: with ascorbate the results are best explained by assuming the existence, in the membrane, of a redox-active species able to undergo dedimerization. A protein bound disulfide bond would satisfy the requirement.  相似文献   


12.
In this study we investigated the lipid specificity for destabilization of the native structure of horse heart cytochrome c by model membranes. From (i) the enhanced release of deuterium from deuterium-labelled cytochrome c and (ii) the increased proteolytic digestion of the protein in the presence of anionic lipids, it was concluded that these lipids are able to destabilize the native structure of cytochrome c. Changes in the absorbance at 695 nm indicated that the destabilization was accompanied by a diminished ligation of Met-80 to the heme. Beef heart cardiolipin was found to be more effective than DOPS, DOPG or DOPA, while no protein destabilization was observed in the presence of the zwitterionic lipid DOPC or, surprisingly, in the presence of E. coli cardiolipin. Experimnts with mitoplasts showed that the protein can also be destabilized in its native structure by a biological membrane.  相似文献   

13.
The triphasic course previously reported for the reduction of cytochrome b in the succinate-cytochrome c reductase by either succinate or duroquinol has been shown to be dependent on the redox state of the enzyme preparation. Prior reduction with increasing concentrations of ascorbate leads to partial reduction of cytochrome c1, and a gradual decrease in the magnitude of the oxidation phase of cytochrome b. At an ascorbate concentration sufficient to reduce cytochrome c1 almost completely, the reduction of cytochrome b by either succinate or duroquinol becomes monophasic. Owing to the presence of a trace amount of cytochrome oxidase in the reductase preparation employed, the addition of cytochrome c makes electron flow from substrate to oxygen possible. Under such circumstances, the addition of a limited amount of either succinate or duroquinol leads to a multiphasic reduction and oxidation of cytochrome b. After the initial three phases as described previously, cytochrome b becomes oxidized before cytochrome c1 when the limited amount of added substrate is being used up. However, at the end of the reaction when cytochrome ca is being rapidly oxidized, cytochrome b becomes again reduced. The above observations support a cyclic scheme of electron flow in which the reduction of cytochrome b proceeds by two different routes and its oxidation controlled by the redox state of a component of the respiratory chain.  相似文献   

14.
Gary O. Gray  David B. Knaff 《BBA》1982,680(3):290-296
The sulfide:cytochrome c oxidoreductase activity of the flavocytochrome c-522 from the purple sulfur bacterium Chromatium vinosum has been investigated. The oxidized sulfur product of the sulfide:cytochrome c reductase activity has been shown to be elemental sulfur. Cytochrome c-552 has been found to form a stable complex with horse heart cytochrome c that appears to be held together by electrostatic interactions. The stability of this complex and the sulfide:cytochrome c reductase activity of cytochrome c-552 are both ionic strength dependent, with maximal rates of cytochrome c reduction and extent of complex formation occurring over the same ionic strength range. Trifluoroacetylated cytochrome c is not reduced in the presence of cytochrome c-552 and sulfide, nor does it form a complex with cytochrome c-552. These results suggest the possible involvement of cytochrome c lysine residues in complex formation. Cytochrome c-552 migrates with an anomalously high apparent molecular weight on gel filtration columns equilibrated with low ionic strength buffers, suggesting the possibility of conformational changes or dimerization of the protein. However, complexation of cytochrome c-552 with cytochrome c still occurs at low ionic strength.  相似文献   

15.
J. Butler  G.G. Jayson  A.J. Swallow 《BBA》1975,408(3):215-222

1. 1. The superoxide anion radical (O2) reacts with ferricytochrome c to form ferrocytochrome c. No intermediate complexes are observable. No reaction could be detected between O2 and ferrocytochrome c.

2. 2. At 20 °C the rate constant for the reaction at pH 4.7 to 6.7 is 1.4 · 106 M−1 · s−1 and as the pH increases above 6.7 the rate constant steadily decreases. The dependence on pH is the same for tuna heart and horse heart cytochrome c. No reaction could be demonstrated between O2 and the form of cytochrome c which exists above pH ≈ 9.2. The dependence of the rate constant on pH can be explained if cytochrome c has pKs of 7.45 and 9.2, and O2 reacts with the form present below pH 7.45 with k = 1.4 · 106 M−1 · s−1, the form above pH 7.45 with k = 3.0 · 105 M−1 · s−1, and the form present above pH 9.2 with k = 0.

3. 3. The reaction has an activation energy of 20 kJ mol−1 and an enthalpy of activation at 25 °C of 18 kJ mol−1 both above and below pH 7.45. It is suggested that O2 may reduce cytochrome c through a track composed of aromatic amino acids, and that little protein rearrangement is required for the formation of the activated complex.

4. 4. No reduction of ferricytochrome c by HO2 radicals could be demonstrated at pH 1.2–6.2 but at pH 5.3, HO2 radicals oxidize ferrocytochrome c with a rate constant of about 5 · 105–5 · 106 M−1 · s−1

.  相似文献   


16.
Desulfovibrio vulgaris Hildenborough cytochrome c3 contains four hemes in a low-spin state with bis-histidinyl coordination. High-spin forms of cytochrome c3 can be generated by protonation of the axial ligands in order to probe spin equilibrium (low-spin/high-spin). The spin alterations occurring at acid pH, the associated changes in redox potentials, as well as the reactivity towards external ligands were followed by the conjunction of square wave voltammetry and UV–visible, CD, NMR and EPR spectroscopies. These processes may be used for modelling the action of enzymes that use spin equilibrium to promote enzyme activity and reactivity towards small molecules.  相似文献   

17.
The cytochrome c gene (cycA) of the filamentous fungus Aspergillus nidulans has been isolated and sequenced. The gene is present in a single copy per haploid genome and encodes a polypeptide of 112 amino acid residues. The nucleotide sequence of the A. nidulans cycA gene shows 87% identity to the DNA sequence of the Neurospora crassa cytochrome c gene, and approximately 72% identity to the sequence of the Saccharomyces cerevisiae iso-1-cytochrome c gene (CYC1). The S. cerevisiae CYC1 gene was used as a heterologous probe to isolate the homologous gene in A. nidulans. The A. nidulans cytochrome c sequence contains two small introns. One of these is highly conserved in terms of position, but the other has not been reported in any of the cytochrome c genes so far sequenced. Expression of the cycA gene is not affected by glucose repression, but has been shown to be induced approximatly tenfold in the presence of oxygen and three- to fourfold under heatshock conditions.  相似文献   

18.
B.T. Storey  C.P. Lee 《BBA》1973,292(3):554-565

1. Circular dichroism spectra of the cytochromes in membrane fragments derived from sonicated beef heart mitochondria have been obtained in the wavelength region 400–480 nm in which the major absorbance maxima of the heme prosthetic groups are found.

2. 2. Cytochrome oxidase in the mitochondrial membrane fragments has a band of positive ellipticity at 426 nm in the oxidized form and a pronounced band of positive ellipticity at 445 nm in the reduced form. The reduced-minus-oxidized difference molar ellipticity at 445 nm, Δ[θ]445 is 3.0·105 degree·cm−2·dmole−1 heme a for membrane-bound oxidase compared to 1.6·105 degree·cm−2·dmole−1 heme a for the purified oxidase. The membrane-bound oxidase in the reduced form also appears to have a band of negative ellipticity at 426 nm not found in the purified oxidase.

3. 3. When reduced with succinate in the presence of cyanide and oxygen, cytochrome oxidase in the membrane fragments has a positive band at 442 nm very similar to that observed with the purified oxidase.

4. 4. Cytochrome c, which has a positive band at 426 nm in the purified form when reduced, appears to have a negative band at this wavelength in the mito-chondrial membrane fragments which contributes to the pronounced negative band at 426 nm observed in the membrane fragments reduced with succinate in anaerobiosis. There is no evidence for a contribution to the CD spectra of the membrane fragments from cytochrome c1 or from cytochrome b561 in either the oxidized or the reduced form.

5. 5. Cytochrome b566 in the mitochondrial membrane fragments has no detectable CD spectrum in the oxidized form, but has a small positive band at 427 nm and a small negative band at 436 nm in the reduced form. The same CD spectrum is observed with cytochrome b566 reduced with succinate in the presence of antimycin A or 2-heptyl-4-hydroxyquinoline-N-oxide. The same increase in positive ellipticity is observed at 427 nm in the mitochondrial membrane fragments, treated with oligomycin to restore energy coupling, when cytochrome b566 is reduced with succinate in the energized membrane, as is observed in the inhibitor-treated membrane fragments. The absence of a pronounced conformational change in cytochrome b566 on energization, as revealed by its CD spectrum, favors the concept that its reduction by succinate in the energized state is due to reversed electron transport rather than an intrinsic shift in the cytochrome's midpoint redox potential.

Abbreviations: HOQNO, 2-heptyl-4-hydroxy quinoline-N-oxide; PMS, phenazine methosulfate  相似文献   


19.
In this work low temperature molecular dynamics simulations of cytochrome c oxidase are used to predict an experimentally observable, namely Mössbauer spectra width. Predicted lineshapes are used to model Lorentzian doublets, with which published cytochrome c oxidase Mössbauer spectra were simulated. Molecular dynamics imposed constraints to spectral lineshapes permit to obtain useful information, like the presence of multiple chemical species in the binuclear center of cytochrome c oxidase. Moreover, a benchmark of quality for molecular dynamic simulations can be obtained. Despite the overwhelming importance of dynamics in electron–proton transfer systems, limited work has been devoted to unravel how much realistic are molecular dynamics simulations results. In this work, molecular dynamics based predictions are found to be in good agreement with published experimental spectra, showing that we can confidently rely on actual simulations. Molecular dynamics based deconvolution of Mössbauer spectra will lead to a renewed interest for application of this approach in bioenergetics.  相似文献   

20.
The cytochrome c and hydrogen peroxide-dependent oxidation of m-aminophenol was investigated by electrochemistry and spectrophotometry. The results indicated that the hydroxylated species of m-aminophenol have at least two conjugated substituted groups on the ring system (most possibly, its oxidized form 2-hydroxy-4-iminoquinone), and that the degradation of cytochrome c by hydrogen peroxide can also be prevented in the presence of m-aminophenol. The hydroxyl radical scavengers, mannitol and sodium benzoate, almost completely eliminate the hydroxylation of m-aminophenol. But oxo-heme species scavenger, uric acid, does not inhibit the hydroxylation. Combining the results of mass spectrum, nuclear magnetic resonance and element analysis with that of spectrophotometry, electrochemistry and chemical scavengers, it is suggested that cytochrome c may act as a peroxidase, which facilitates the hydroxylation and subsequent dimerization of m-aminophenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号