首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A W Smith  M Ramsden  J F Peberdy 《Gene》1992,114(2):211-216
Promoter activity was examined in the beta-lactam-producing fungus, Acremonium chrysogenum, by assessment of the properties of transformant isolates. Transformation was achieved using plasmid constructs specifying hygromycin B resistance (HyR) linked to the promoter elements of gpdA (the glucose-6-phosphate dehydrogenase-encoding gene of Aspergillus nidulans), and pcbC [the gene encoding the isopenicillin N synthetase (IPNS) enzyme of A. chrysogenum]. Transformation frequency, HyR levels, and Hy phosphotransferase (HPT) levels suggested that the transformants of constructs using the gpdA promoter showed a higher level of expression of the HyR gene than in transformants obtained using the pcbC promoter. The patterns of integration of the transforming DNA also differed in that pcbC promoter construct transformants appeared to have tandem repeats. All integrations of plasmid DNA occurred on a single chromosome which was different in four out of five transformants studied. Multiple copy transformants of constructs using the pcbC promoter did not show the regulated pattern of expression of HPT activity observed with IPNS in untransformed strains.  相似文献   

2.
Evolutionary distances between bacterial and fungal isopenicillin N synthetase (IPNS) genes have been compared to distances between the corresponding 5S rRNA genes. The presence of sequences homologous to the IPNS gene has been examined in DNAs from representative prokaryotic organisms and Ascomycotina. The results of both analyses strongly support two different events of horizontal transfer of the IPNS gene from bacteria to filamentous fungi. This is the first example of such a type of transfer from prokaryotes to eukaryotes.  相似文献   

3.
4.
The beta-lactam antibiotic penicillin is produced as a secondary metabolite by some filamentous fungi. In this study, the molecular regulation of the Aspergillus (Emericella) nidulans penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) was analyzed. acvA and ipnA are divergently oriented and separated by an intergenic region of 872 bp. Translational fusions of acvA and ipnA with the two Escherichia coli reporter genes lacZ and uidA enabled us to measure the regulation of both genes simultaneously. A moving-window analysis of the 872-bp intergenic region indicated that the divergently oriented promoters are, at least in part, overlapping and share common regulatory elements. Removal of nucleotides -353 to -432 upstream of the acvA gene led to a 10-fold increase of acvA-uidA expression and simultaneously to a reduction of ipnA-lacZ expression to about 30%. Band shift assays and methyl interference analysis using partially purified protein extracts revealed that a CCAAT-containing DNA element within this region was specifically bound by a protein (complex), which we designated PENR1, for penicillin regulator. Deletion of 4 bp within the identified protein binding site caused the same contrary effects on acvA and ipnA expression as observed for all of the deletion clones which lacked nucleotides -353 to -432. The PENR1 binding site thus represents a major cis-acting DNA element. The intergenic regions of the corresponding genes of the beta-lactam-producing fungi Penicillium chrysogenum and Acremonium chrysogenum also diluted the complex formed between the A. nidulans probe and PENR1 in vitro, suggesting that these beta-lactam biosynthesis genes are regulated by analogous DNA elements and proteins.  相似文献   

5.
E Gómez-Pardo  M A Pe?alva 《Gene》1990,89(1):109-115
We have constructed a translational fusion between the isopenicillin-N-synthetase-encoding gene (IPNS) of Aspergillus nidulans and the lacZ gene of Escherichia coli. Recombinant strains carrying a single copy of the fusion integrated at the IPNS locus produced beta-galactosidase (beta Gal) during secondary metabolism. Integration of the fusion at the argB locus results in a situation in which the only 5'-flanking sequences of the IPNS gene upstream from the chimeric fused gene are those included in the transforming plasmid. Such a strain still expresses beta Gal activity during secondary metabolism, showing that a DNA fragment including sequences of the IPNS gene from nt -2000 to +35 (relative to the translation start codon) still contains sufficient information to drive expression of the fusion gene during secondary metabolism.  相似文献   

6.
7.
8.
Summary The genes coding for isopenicillin N synthase (IPNS) in Streptomyces jumonjinensis and S. lipmanii were isolated from recombinant phage lambda libraries using the S. clavuligerus IPNS gene as a heterologous probe. The S. jumonjinensis IPNS gene has an open reading frame coding for 329 amino acids, identical in size to that of the previously cloned S. clavuligerus IPNS gene. A partial nucleotide sequence was also determined for the S. lipmanii IPNS gene. Comparison of the predicted amino acid sequences of all three streptomycete IPNS proteins shows that they exhibit more than 70% similarity, close to that found in comparisons among fungal IPNS proteins and significantly greater than that found, approximately 60%, between Streptomyces and fungal IPNS proteins. We conclude that procaryotic and eucaryotic IPNS genes are subgroups of a single family of microbial IPNS genes. Hybridization probes prepared from IPNS genes of the above streptomycete species were used to detect analogous genes in eight other strains that included both penicillin and cephalosporin producers and non-producers. Each producer strain responded with all three probes implying the presence of an IPNS gene. Surprisingly, several non-producer strains also responded with one or two of the probes. Our results suggest that IPNS-related genes may be more prevalent in Streptomyces than previously believed.  相似文献   

9.
10.
B F Lang 《The EMBO journal》1984,3(9):2129-2136
The DNA sequence of the second intron in the mitochondrial gene for subunit 1 of cytochrome oxidase (cox1), and the 3'' part of the structural gene have been determined in Schizosaccharomyces pombe. Comparing the presumptive amino acid sequence of the 3'' regions of the cox1 genes in fungi reveals similarly large evolutionary distances between Aspergillus nidulans, Saccharomyces cerevisiae and S. pombe. The comparison of exon sequences also reveals a stretch of only low homology and of general size variation among the fungal and mammalian genes, close to the 3'' ends of the cox1 genes. The second intron in the cox1 gene of S. pombe contains an open reading frame, which is contiguous with the upstream exon and displays all characteristics common to class I introns. Three findings suggest a recent horizontal gene transfer of this intron from an Aspergillus type fungus to S. pombe. (i) The intron is inserted at exactly the same position of the cox1 gene, where an intron is also found in A. nidulans. (ii) Both introns contain the highest amino acid homology between the intronic unassigned reading frames of all fungi identified so far (70% identity over a stretch of 253 amino acids). However, in the most homologous region, a GC-rich sequence is inserted in the A. nidulans intron, flanked by two direct repeats of 5 bp. The 37-bp insert plus 5 bp of direct repeat amounts to an extra 42 bp in the A. nidulans intron. (iii) TGA codons are the preferred tryptophan codons compared with TGG in all mitochondrial protein coding sequences of fungi and mammalia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The use of microarrays in the analysis of gene expression is becoming widespread for many organisms, including yeast. However, although the genomes of a number of filamentous fungi have been fully or partially sequenced, microarray analysis is still in its infancy in these organisms. Here, we describe the construction and validation of microarrays for the fungus Aspergillus nidulans using PCR products from a 4092 EST conidial germination library. An experiment was designed to validate these arrays by monitoring the expression profiles of known genes following the addition of 1% (w/v) glucose to wild-type A. nidulans cultures grown to mid-exponential phase in Vogel's minimal medium with ethanol as the sole carbon source. The profiles of genes showing statistically significant differential expression following the glucose up-shift are presented and an assessment of the quality and reproducibility of the A. nidulans arrays discussed.  相似文献   

12.
A phylogenetic study of the isopenicillin-N-synthetase (IPNS) gene sequence from prokaryotic and lower eukaryotic producers of β-lactam antibiotics by means of a maximum-likelihood approach has been carried out. After performing an extensive search, rather than invoking a global molecular clock, the results obtained are best explained by a model with three rates of evolution. Grouped in decreasing order, these correspond toA. nidulans and then to the rest of the eukaryotes and prokaryotes, respectively. The estimated branching date between prokaryotic and fungal IPNS sequences (852 ±106 MY) strongly supports the hypothesis that the IPNS gene was horizontally transferred from bacterial β-lactam producers to filamentous fungi. Correspondence to: A. Moya  相似文献   

13.
Fungal microbodies (peroxisomes) are inducible organelles that proliferate in response to nutritional cues. Proteins involved in peroxisome biogenesis/proliferation are designated peroxins and are encoded by PEX genes. An autophagy-related process, termed pexophagy, is responsible for the selective removal of peroxisomes from the cell. Several genes involved in pexophagy are also required for autophagy and are collectively known as ATG genes. We have re-analysed the Aspergillus nidulans genome for the presence of PEX and ATG genes and have identified a number of previously missed genes. Also, we manually determined the correct intron positions in each identified gene. The data show that in A. nidulans and related fungi the basic set of genes involved in peroxisome biogenesis or degradation are conserved. However, both processes have features that more closely resemble organelle formation/degradation in mammals rather than yeast. Thus, filamentous fungi like A. nidulans are ideal model systems for peroxisome homeostasis in man.  相似文献   

14.
15.
Assigning functions to newly discovered genes constitutes one of the major challenges en route to fully exploiting the data becoming available from the genome sequencing initiatives. Heterologous expression in an appropriate host is central in functional genomics studies. In this context, filamentous fungi offer many advantages over bacterial and yeast systems. To facilitate the use of filamentous fungi in functional genomics, we present a versatile cloning system that allows a gene of interest to be expressed from a defined genomic location of Aspergillus nidulans. By a single USER cloning step, genes are easily inserted into a combined targeting-expression cassette ready for rapid integration and analysis. The system comprises a vector set that allows genes to be expressed either from the constitutive PgpdA promoter or from the inducible PalcA promoter. Moreover, by using the vector set, protein variants can easily be made and expressed from the same locus, which is mandatory for proper comparative analyses. Lastly, all individual elements of the vectors can easily be substituted for other similar elements, ensuring the flexibility of the system. We have demonstrated the potential of the system by transferring the 7,745-bp large mpaC gene from Penicillium brevicompactum to A. nidulans. In parallel, we produced defined mutant derivatives of mpaC, and the combined analysis of A. nidulans strains expressing mpaC or mutated mpaC genes unequivocally demonstrated that mpaC indeed encodes a polyketide synthase that produces the first intermediate in the production of the medically important immunosuppressant mycophenolic acid.  相似文献   

16.
Penicillins and cephalosporins belong chemically to the group of beta-lactam antibiotics. The formation of hydrophobic penicillins has been reported in fungi only, notably Penicillium chrysogenum and Emericella nidulans, whereas the hydrophilic cephalosporins are produced by both fungi, e.g., Acremonium chrysogenum (cephalosporin C), and bacteria. The producing bacteria include Gram-negatives and Gram-positives, e.g. Lysobacter lactamdurans (cephabacins) and Streptomyces clavuligerus (cephamycin C), respectively. For a long time the evolutionary origin of beta-lactam biosynthesis genes in fungi has been discussed. As often, there are arguments for both hypotheses, i.e., horizontal gene transfer from bacteria to fungi versus vertical descent. There were strong arguments in favour of horizontal gene transfer, e.g., fungal genes were clustered or some genes lack introns. The recent identification and characterisation of cis-/trans-elements involved in the regulation of the beta-lactam biosynthesis genes has provided new arguments in favour of horizontal gene transfer. In contrast to the bacterium S. clavuligerus, all regulators of fungal beta-lactam biosynthesis genes represent wide-domain regulators which were recruited to also regulate the beta-lactam biosynthesis genes. Moreover, the fungal regulatory genes are not part of the gene cluster. If bacterial regulators were co-transferred with the gene cluster from bacteria to fungi, most likely they would have been non-functional in eukaryotes and lost during evolution. Alternatively, it is conceivable that only a part of the beta-lactam biosynthesis gene cluster was transferred to some fungi, e.g., the acvA and ipnA gene without a regulatory gene.  相似文献   

17.
18.
Using a phylogenomic approach with 10 fungi of very different virulence and habitat, we determined that there was substantial diversification of subtilase-type proteases early in ascomycete history (with subsequent loss in many lineages) but with no comparable diversification of trypsins. Patterns of intron loss and the degree of divergence between paralogues demonstrated that the proliferation of proteinase K subtilases and subtilisin type subtilases seen in pathogenic ascomycetes (Metarhizium anisopliae, Magnaporthe grisea, Fusarium graminearum) occurred after the basidiomycete/ascomycete split but predated radiation of ascomycete lineages. This suggests that the early ascomycetes had a lifestyle that selected for multiple proteases, whereas the current disparity in gene numbers between ascomycete lineages results from retention of genes in at least some pathogens that have been lost in other lineages (yeasts, Aspergillus nidulans, Neurospora crassa). A similar prevailing trend towards lineage specific gene loss of trypsins in saprophytes and some pathogens suggests that their phylogenetic breadth will have been much wider in early fungi than currently.  相似文献   

19.
The trpC gene in the tryptophan biosynthetic pathway was isolated from an aflatoxigenic Aspergillus parasiticus by complementation of an Escherichia coli trpC mutant lacking phosphoribosylanthranilate isomerase (PRAI) activity. The cloned gene complemented an E. coli trpC mutant deficient in indoleglycerolphosphate synthase (IGPS) activity as well as an Aspergillus nidulans mutant strain that was defective in all three enzymatic activities of the trpC gene (glutamine amidotransferase, IGPS, and PRAI), thus indicating the presence of a complete and functional trpC gene. The location and organization of the A. parasiticus trpC gene on the cloned DNA fragment were determined by deletion mapping and by hybridization to heterologous DNA probes that were prepared from cloned trpC genes of A. nidulans and Aspergillus niger. These experiments suggested that the A. parasiticus trpC gene encoded a trifunctional polypeptide with a functional domain structure organized identically to those of analogous genes from other filamentous fungi. The A. parasiticus trpC gene was expressed constitutively regardless of the nutritional status of the culture medium. This gene should be useful as a selectable marker in developing a DNA-mediated transformation system to analyze the aflatoxin biosynthetic pathway of A. parasiticus.  相似文献   

20.
J S Horng  J E Linz    J J Pestka 《Applied microbiology》1989,55(10):2561-2568
The trpC gene in the tryptophan biosynthetic pathway was isolated from an aflatoxigenic Aspergillus parasiticus by complementation of an Escherichia coli trpC mutant lacking phosphoribosylanthranilate isomerase (PRAI) activity. The cloned gene complemented an E. coli trpC mutant deficient in indoleglycerolphosphate synthase (IGPS) activity as well as an Aspergillus nidulans mutant strain that was defective in all three enzymatic activities of the trpC gene (glutamine amidotransferase, IGPS, and PRAI), thus indicating the presence of a complete and functional trpC gene. The location and organization of the A. parasiticus trpC gene on the cloned DNA fragment were determined by deletion mapping and by hybridization to heterologous DNA probes that were prepared from cloned trpC genes of A. nidulans and Aspergillus niger. These experiments suggested that the A. parasiticus trpC gene encoded a trifunctional polypeptide with a functional domain structure organized identically to those of analogous genes from other filamentous fungi. The A. parasiticus trpC gene was expressed constitutively regardless of the nutritional status of the culture medium. This gene should be useful as a selectable marker in developing a DNA-mediated transformation system to analyze the aflatoxin biosynthetic pathway of A. parasiticus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号