首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We produced pulmonary fibrin microembolism using an infusion of a prothrombin activator (Echis carinatus venom, 30 min, 0.5 NIH thrombin equivalent units/kg) in open-chest mongrel dogs. To determine the nonclotting effects of this venom on edemagenesis we infused an irreversible thrombin inhibitor, D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (PPACK, 57 nmol X kg-1 X min-1 for 120 min), alone (n = 5) or with venom (Echis + PPACK, n = 5). The control group (n = 5) was given 1 ml of 0.9% NaCl. A decline in left atrial pressure (means +/- SE, 5.3 +/- 0.4 to 4.0 +/- 0.5 mmHg, P less than 0.05) and cardiac index (149 +/- 10 to 82 +/- 13 ml X min-1 X kg-1, P less than 0.01) in association with a marked increase in pulmonary arterial pressure (14.5 +/- 0.6 to 26.6 +/- 2.5 mmHg, P less than 0.001) and pulmonary vascular resistance (64 +/- 5 to 304 +/- 42 mmHg X ml-1 X min-1 X kg-1, P less than 0.001) was observed after 20 min of venom infusion. During this interval, pulmonary artery wedge pressure increased (4 +/- 1 to 12 +/- 4 mmHg, P less than 0.01) in four of eight animals. Fibrinogen declined below measurable levels and fibrin microemboli were seen in many pulmonary arterioles. These changes were not observed in the Echis + PPACK, PPACK, or control groups. Leukopenia and thrombocytopenia were observed in the Echis and Echis + PPACK groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Clarke C  Kuruppu S  Reeve S  Ian Smith A  Hodgson WC 《Peptides》2006,27(11):2655-2660
This study describes the characterization of oxylepitoxin-1 (MW 6789), the first postsynaptic neurotoxin isolated from the venom of the Inland taipan (Oxyuranus microlepidotus), which is the most venomous snake in the world. Oxylepitoxin-1, purified using successive steps of size-exclusion and reverse phase-high performance liquid chromatography, produced concentration-dependent (0.3-1.0 microM) inhibition of nerve-mediated (0.1 Hz, 0.2 ms, supramaximal V) twitches of the chick biventer cervicis nerve-muscle preparation. Taipan antivenom (5units/ml) prevented the neurotoxic activity of whole venom (10 microg/ml), but had no significant effect on oxylepitoxin-1 (1 microM). The toxin-induced inhibition of nerve-mediated twitches was significantly reversed upon washing the tissue at 5 min intervals. Oxylepitoxin-1 (30-300 nM) displayed competitive antagonism at the skeletal muscle nicotinic receptor with a pA(2) value of 7.16+/-0.28 (i.e. approximately 10-fold more potent than tubocurarine). The venom had a high level of PLA(2) activity (765+/-73 micromol/min/mg) while oxylepitoxin-1 displayed no PLA(2) activity. Partial N-terminal sequencing of oxylepitoxin-1 shows high sequence identity (i.e. 93%) to postsynaptic toxins isolated from the venom of the closely related coastal taipan (Oxyuranus scutellatus scutellatus).  相似文献   

3.
Vipera russellii venom was separated into thirteen fractions by means of DEAE-Sephadex A-50 column chromatography. Fraction III possessed anticoagulant and phospholipase A activities and Fraction XI possessed procoagulant and caseinolytic activities, both were further purified by gel filtration on Sephacryl S-200 column. Purified procoagulant (Component II) was a two-chain protein with molecular weight of 86 000 consisting of A-chain (Mr 66 000) and B-chain (Mr 20 000). It was a glycoprotein containing 7.8% neutral sugar and 715 amino-acid residues. The procoagulant activity was 10-times that of the crude venom. It was an acidic proteinase with isoelectric point of pH 4.2. Upon heat treatment at 60 degrees C, Component II was stable at pH 5.5 and 7.2 for 3 h, but was destroyed completely after 30 min at pH 8.9. It was devoid of esterase or amidase activity. Purified anticoagulant (Component I) was a single peptide chain with molecular weight of 16 000. It was carbohydrate free and contained 136 amino-acid residues. It was a basic protein with an isoelectric point of larger than pH 10. It was a potent phospholipase A with an enzymatic activity of 510 +/- 30 mumol/min per mg using phosphatidylcholine as substrate, and 1 microgram/ml was sufficient to cause 100% hemolysis by the indirect hemolytic method. Upon heat treatment at 90 degrees C, Component I was heat stable at pH 5.5 for more than 3 h, but was destroyed completely after 2 h at pH 7.2 and 8.9. The anticoagulant activity of Component I could be neutralized by platelet factor 3, tissue thromboplastin and cephalin.  相似文献   

4.
Cupiennin 1a (GFGALFKFLAKKVAKTVAKQAAKQGAKYVVNKQME-NH2) is a potent venom component of the spider Cupiennius salei. Cupiennin 1a shows multifaceted activity. In addition to known antimicrobial and cytolytic properties, cupiennin 1a inhibits the formation of nitric oxide by neuronal nitric oxide synthase at an IC50 concentration of 1.3 +/- 0.3 microM. This is the first report of neuronal nitric oxide synthase inhibition by a component of a spider venom. The mechanism by which cupiennin 1a inhibits neuronal nitric oxide synthase involves complexation with the regulatory protein calcium calmodulin. This is demonstrated by chemical shift changes that occur in the heteronuclear single quantum coherence spectrum of 15N-labelled calcium calmodulin upon addition of cupiennin 1a. The NMR data indicate strong binding within a complex of 1 : 1 stoichiometry.  相似文献   

5.
6.
We investigated the biochemical and biological effects of a new C-type galactoside specific lectin termed BPL that was isolated from the snake venom of Bothrops pirajai. This lectin was purified using size exclusion HPLC followed by an immobilized lactose affinity column. The purified BPL was homogeneous by reverse phase HPLC and SDS-PAGE. We evaluated the nephrotoxicity of the whole venom of B. pirajai and its lectin. The whole venom of B. pirajai (10 microg/mL) showed similar results as those observed for BPL (3, 10 and 30 microg/mL) evaluated by the perfused rat kidney method. They caused reductions in perfusion pressure (Control120 = 110.28 +/- 3.69; BP120 = 70.70 +/- 2.40*; BPL3(120) = 113.20 +/- 4.40; BPL10(120) = 67.80 +/- 3.00*; BPL30(120) = 64.90 +/- 3.50* mmHg; *: P < 0.05), renal vascular resistance, urinary flow, glomerular filtration rate (Control90 = 0.695 +/- 0.074; BP90 = 0.142 +/- 0.032*; BPL3(90) = 0.314 +/- 0.064; BPL10(90) = 0.250 +/- 0.038*; BPL30(90) = 0.088 +/- 0.021* mLg(-1) min(-1); *: P < 0.05) and sodium (Control120 = 81.28 +/- 0.26; BP120 = 55.71 +/- 5.72*; BPL3(120) = 80.94 +/- 0.93; BPL10(120) = 65.23 +/- 1.47*; BPL30(120) = 76.03 +/- 1.70* %; *: P < 0.05), potassium and chloride tubular transport. Neither whole venom nor purified BPL induced direct vasoactive effects in perfused arteriolar mesenteric bed, and BPL did not potentiate bradykinin contraction in the ileum. We postulate that both B. pirajai and BPL promoted the same renal effects probably caused by the release of inflammatory mediators.  相似文献   

7.
Nematocysts isolated from the stinging tentacles of the Atlantic Portuguese Man-of-War (Physalia physalis) possess a potent venom composed of several proteins. A hemolytic protein lethal to mice has been isolated from this nematocyst venom. This protein, physalitoxin, appears to be responsible for both the venom's hemolytic and lethal activities. The hemolysin has a molecular weight of approx. 240 000, a sedimentation coefficient of 7.8 S, and is rod-like in shape with a calculated axial ratio of about 1 : 10. It appears to be composed of three subunits of unequal size, each of which is glycosylated. Two of these subunits seem to have pKi values near 8.2 and the third near 5.5. Physalitoxin comprises about 28% of the total nematocyst venom protein. It is 10.6% carbohydrate by weight and represents the major glycoprotein of the venom. Physalitoxin is inactivated by concanavalin A and this inactivation can be blocked with alpha-methyl-mannoside. The inactivation by concanavalin A is temperature-dependent about 12 degrees C and the hemolytic activity of untreated venom is temperature-dependent below 12 degrees C. Physalitoxin is the first hemolytic toxin from a cnidarian to be purified directly from isolated nematocysts.  相似文献   

8.
Crude venom isolated from the ectoparasitic wasp Nasonia vitripennis was found to possess phenoloxidase (PO) activity. Enzyme activity was detected by using a modified dot blot analysis approach in which venom samples were applied to nylon membranes and incubated with either L-DOPA or dopamine. Dot formation was most intense with dopamine as the substrate and no activators appeared to be necessary to evoke a melanization reaction. No melanization occurred when venom was incubated in Schneider's insect medium containing 10% fetal bovine serum or when using tyrosine as a substrate, but melanization did occur when larval or pupal plasma from the fly host, Sarcophaga bullata, was exposed to tyrosine. Only fly larval plasma induced an enzyme reaction with the Schneider's insect medium. The PO inhibitor phenylthiourea (PTU) and serine protease inhibitor phenylmethylsulfonylfluoride (PMSF) abolished PO activity in venom and host plasma samples, but glutathione (reduced) only inhibited venom PO. Elicitors of PO activity (sodium dodecyl sulfate and trypsin) had no or a modest effect (increase) on the ability of venom, or larval and pupal plasma to trigger melanization reactions. SDS-PAGE separation of crude venom followed by in-gel staining using L-DOPA as a substrate revealed two venom proteins with PO activity with estimated molecular weights of 68 and 160 kDa. In vitro assays using BTI-TN-5B1-4 cells were performed to determine the importance of venom PO in triggering cellular changes and evoking cell death. When cell monolayers were pre-treated with 10 mM PTU or PMSF prior to venom exposure, the cells were protected from the effects of venom intoxication as evidenced by no observable cellular morphological changes and over 90% cell viability by 24 h after venom treatment. Simultaneous addition of inhibitors with venom or lower concentrations of PMSF were less effective in affording protection. These observations collectively argue that wasp venom PO is unique from that of the fly hosts, and that the venom enzyme is critical in the intoxication pathway leading to cell death.  相似文献   

9.
We reported previously that the methanolic root extract of the Indian medicinal plant Pluchea indica Less. (Asteraceae) could neutralize viper venom-induced action [Alam, M.I., Auddy, B., Gomes, A., 1996. Viper venom neutralization by Indian medicinal plant (Hemidesmus indicus and P. indica) root extracts. Phytother. Res. 10, 58-61]. The present study reports the neutralization of viper and cobra venom by beta-sitosterol and stigmasterol isolated from the root extract of P. indica Less. (Asteraceae). The active fraction (containing the major compound beta-sitosterol and the minor compound stigmasterol) was isolated and purified by silica gel column chromatography and the structure was determined using spectroscopic analysis (EIMS, (1)H NMR, (13)C NMR). Anti-snake venom activity was studied in experimental animals. The active fraction was found to significantly neutralize viper venom-induced lethal, hemorrhagic, defibrinogenation, edema and PLA(2) activity. Cobra venom-induced lethality, cardiotoxicity, neurotoxicity, respiratory changes and PLA(2) activity were also antagonized by the active component. It potentiated commercial snake venom antiserum action against venom-induced lethality in male albino mice. The active fraction could antagonize venom-induced changes in lipid peroxidation and superoxide dismutase activity. This study suggests that beta-sitosterol and stigmasterol may play an important role, along with antiserum, in neutralizing snake venom-induced actions.  相似文献   

10.
Human coagulation factor V is a protein cofactor that is an essential component of the prothrombinase complex. A full-length factor V cDNA has been subcloned into the mammalian expression vector pDX and used to transfect COS cells. Approximately 95 +/- 4% of the recombinant human factor V (rHFV) synthesized in COS cells is secreted into the culture medium. Forty-eight hours after transfection rHFV antigen levels in the conditioned medium were 70 +/- 15 ng/mL. Factor V activity determined by fibrometer assay increased approximately 5-fold from 0.027 +/- 0.012 to 0.124 +/- 0.044 unit/mL following activation by the factor V activating enzyme from Russell's viper venom (RVV-V). A chromogenic assay specific for factor Va indicated that recombinant factor V had 3.8 +/- 1.3% of the activity of the activated protein. The estimated specific activity of the recombinant factor Va was approximately 1800 +/- 500 units/mg, which is similar to the specific activity of purified plasma factor Va of 1700-2000 units/mg. Immunoprecipitation of [35S]methionine-labeled rHFV revealed a single high molecular mass component (approximately 330 kDa). Treatment of rHFV with thrombin or RVV-V resulted in the formation of proteolytic products that were similar to those seen with plasma factor V. We have also expressed a mutant, rHFV-des-B811-1441, that lacks a large portion of the highly glycosylated connecting region that is present in factor V. Immunoprecipitation of [35S]methionine-labeled rHFV-des-B811-1441 revealed a single-chain polypeptide with Mr approximately 230 kDa. This mutant constitutively expressed 38 +/- 7% of the activity of the RVV-V-activated protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Besides the previously described LVP1, a second protein, LVP2, inducing a lipolytic response in adipose cells, was purified from scorpion Buthus occitanus tunetanus venom. It represented 2% of crude venom proteins, with pHi = 6 and molecular mass of 16889 Da. The reduction and the alkylation of LVP2 revealed an heterodimeric structure. Isolated alpha and beta chains of LVP2 have a molecular weight (MW) of 8822 Da and 8902, respectively. This protein was not toxic to mice and stimulated lipolysis on freshly dissociated rat adipocytes in a dose-dependent manner with EC50 = 2 +/- 0.75 microg/ml. LVP2 subunits did not display any lipolytic activity. As previously described for venom and LVP1, beta adrenergic receptor (beta AR) antagonists interfere with LVP2 activity. Furthermore, it is shown that LVP2 competes with [3H] CGP 12177 (beta1/beta2 AR antagonist) for binding to adipocyte plasma membrane with an IC50 of about 10(-7)M. Thus, these results bring original information on the existence of proteins that are present in scorpion venoms and can exert a distinct biological activity on adipocyte lipolysis through a beta-type adreno-receptor pathway.  相似文献   

12.
Wei JF  Li T  Wei XL  Sun QY  Yang FM  Chen QY  Wang WY  Xiong YL  He SH 《Biochimie》2006,88(10):1331-1342
Group IIA phospholipase A(2) (PLA(2)) are major components in Viperidae/Crotalidae venom. In the present study, a novel PLA(2) named promutoxin with Arg at the site 49 has been purified from the venom of Protobothrops mucrosquamatus by chromatography. It consists of 122 amino acid residues with a molecular mass of 13,656 Da assessed by MALDI-TOF. It has the structural features of snake venom group IIA PLA(2)s, but has no PLA(2) enzymatic activity. Promutoxin shows higher amino acid sequence identity to the K49 PLA(2)s (72-95%) than to D49 PLA(2)s (52-58%). Promutoxin exhibits potent myotoxicity in the animal model with as little as 1 microg of promutoxin causing myonecrosis and myoedema in the gastrocnemius muscle of mice. Promutoxin is also able to stimulate the release of IL-12, TNFalpha, IL-6 and IL-1beta from human monocytes, and induce IL-2, TNFalpha and IL-6 release from T cells, indicating that this snake venom group IIA PLA(2) is actively involved in the inflammatory process in man caused by snake venom poisoning.  相似文献   

13.
To better understand the adaptive strategies that led to freshwater invasion by hyper-regulating Crustacea, we prepared a microsomal (Na+, K+)-ATPase by differential centrifugation of a gill homogenate from the freshwater shrimp Macrobrachium olfersii. Sucrose gradient centrifugation revealed a light fraction containing most of the (Na+, K+)-ATPase activity, contaminated with other ATPases, and a heavy fraction containing negligible (Na+, K+)-ATPase activity. Western blotting showed that M. olfersii gill contains a single alpha-subunit isoform of about 110 kDa. The (Na+, K+)-ATPase hydrolyzed ATP with Michaelis Menten kinetics with K5, = 165+/-5 microM and Vmax = 686.1+/-24.7 U mg(-1). Stimulation by potassium (K0.5 = 2.4+/-0.1 mM) and magnesium ions (K0.5 = 0.76+/-0.03 mM) also obeyed Michaelis-Menten kinetics, while that by sodium ions (K0.5 = 6.0+/-0.2 mM) exhibited site site interactions (n = 1.6). Ouabain (K0.5 = 61.6+/-2.8 microM) and vanadate (K0.5 = 3.2+/-0.1 microM) inhibited up to 70% of the total ATPase activity, while thapsigargin and ethacrynic acid did not affect activity. The remaining 30% activity was inhibited by oligomycin, sodium azide and bafilomycin A. These data suggest that the (Na+, K+)-ATPase corresponds to about 70% of the total ATPase activity; the remaining 30%, i.e. the ouabain-insensitive ATPase activity, apparently correspond to F0F1- and V-ATPases, but not Ca-stimulated and Na- or K-stimulated ATPases. The data confirm the recent invasion of the freshwater biotope by M. olfersii and suggest that (Na+, K+)-ATPase activity may be regulated by the Na+ concentration of the external medium.  相似文献   

14.
Hung YC  Sava V  Hong MY  Huang GS 《Life sciences》2004,74(16):2037-2047
Antivenin activity of melanin extracted from black tea (MEBT) was reported for the first time. The antagonistic effect of MEBT was evaluated for Agkistrodon contortrix laticinctus (broadbanded copperhead), Agkistrodon halys blomhoffii (Japanese mamushi), and Crotalus atrox (western diamondback rattlesnake) snake venoms administered i.p. to ICR mice. MEBT was injected i.p. immediately after the venom administration in dose of 3 mg per mouse in the same place of venom injection. MEBT demonstrated neutralization effect against all venoms tested. The greatest antivenin effect of MEBT was found against Japanese mamushi snake venom. In this case, half the mice died within 2.5 +/- 0.7 h after injection of 0.9 mg/kg of venom. An immediate injection of MEBT substantially reduced the toxic effect of venom and extended time at the 50% level of survival up to 52.3 +/- 2.3 h. The antivenin activity of MEBT is due to chelating of Ca++ and non-specific binding of phospholipase A2. The inhibitory effect of MEBT on phospholipase A2 assessed for different venoms was similar to that obtained with pure enzyme. Low toxicity of MEBT in combination with its antagonistic activity against different venoms may allow effective life-saving treatment against snakebites. Such application of MEBT is important when identification of the snake is impossible or if specific treatment is unavailable.  相似文献   

15.
Activation of the vestibular otolith organs with head-down rotation (HDR) increases muscle sympathetic nerve activity (MSNA) in humans. Previously, we demonstrated this vestibulosympathetic reflex (VSR) elicits increases in MSNA during baroreflex unloading (i.e., lower body negative pressure) in humans. Whether such an effect persists during baroreflex loading is unknown. We tested the hypothesis that the ability of the VSR to increase MSNA is preserved during baroreflex unloading and inhibited during baroreflex loading. Ten subjects (26 +/- 1 yr) performed three trials of HDR to activate the VSR. These trials were performed after a period of sustained saline (control), nitroprusside (baroreflex unloading: 0.8-1.0 microg.kg(-1).min(-1)), and phenylephrine (baroreflex loading: 0.6-0.8 microg.kg(-1).min(-1)) infusion. Nitroprusside infusion decreased (Delta7 +/- 1 mmHg, where Delta is change; P < 0.001) and phenylephrine infusion increased mean arterial pressure (Delta8 +/- 1 mmHg; P < 0.001) at rest. HDR performed during the control [Delta3 +/- 2 bursts/min, Delta314 +/- 154 arbitrary units (au) total activity, Delta41 +/- 18% total activity; P < 0.05] and nitroprusside trials [Delta5 +/- 2 bursts/min, Delta713 +/- 241 au total activity, Delta49 +/- 20% total activity; P < 0.05] increased MSNA similarly despite significantly elevated levels at rest (13 +/- 2 to 26 +/- 3 bursts/min) in the latter. In contrast, HDR performed during the phenylephrine trial failed to increase MSNA (Delta0 +/- 1 bursts/min, Delta-15 +/- 33 au total activity, Delta-8 +/- 21% total activity). These results confirm previous findings that the ability of the VSR to increase MSNA is preserved during baroreflex unloading. In contrast, the ability of the VSR to increase MSNA is abolished during baroreflex loading. These results provide further support for the concept that the VSR may act primarily to defend against hypotension in humans.  相似文献   

16.
This study described the involvement of short-term PKA, PKC or PI3K phosphorylation-mediated processes in the regulation of activity and trafficking of the excitatory amino acid transporters EAAC1, GLAST and GLT-1 endogenously expressed in neuron-enriched cultures. Glutamate uptake was dose-dependently decreased by inhibitors of protein kinase A (PKA), [N-[2-(p-bromocinnamylamino)-ethyl]-5-(isoquinolinesulfonamide)] (H89) or phosphatidylinositol 3-kinase (PI3K) (wortmannin), but not altered after protein kinase C (PKC) inhibition (staurosporine) or activation phorbol-12-myristate-13-acetate (PMA). Biotinylation and immunoblotting results (% of controls) showed that EAAC1 membrane expression was significantly decreased by H89 (71.9+/-4.7%) and wortmannin (63.3+/-20.0%) and increased by PMA (137.7+/-15.5%). H89 and PMA induced a significant decrease of the cell surface fraction of GLAST (54.0+/-34.1% and 73.3+/-14.3%, respectively) whereas wortmannin significantly increased this fraction (119.8+/-9.3%). After treatment with H89, the GLT-1 membrane level showed a two-fold increase (179.4+/-19.7%). Conversely, PMA and wortmannin induced a significant decrease of the cell surface expression of GLT-1 (49.0+/-15.4% and 40.7+/-33.7%, respectively). Confocal microscopy revealed a wortmannin-induced clustering of EAAC1 in the intracellular compartment. These data suggest that trafficking of glutamate transporters can be differentially regulated by PKA-, PKC- and PI3K-dependent signaling pathways and could therefore control total glutamate uptake activity. These processes may represent rapid adaptive responses to changes in the cellular environment, which significantly contribute to regulation of EAA transmission and further prevent possible excitotoxic events.  相似文献   

17.
5-HT1A-receptor agonists rapidly restore blood pressure and sympathetic activity in conscious rats subjected to hypotensive hemorrhage. 5-HT1A-receptor activation has also been shown to produce a robust increase in baroreceptor-dependent, pulse-synchronous firing of cardiac sympathetic nerves in anesthetized cats. To determine whether 5-HT1A-receptor agonists reverse hemorrhage-induced suppression of sympathetic activity through facilitation of the arterial baroreflex, the effects of the 5-HT1A-receptor agonist, 8-OH-DPAT, were assessed in male Sprague-Dawley rats subjected to sinoaortic baroreceptor denervation and subsequent hypotensive hemorrhage. 8-OH-DPAT produced rapid pressor and sympathoexcitatory responses in hemorrhaged animals that were attenuated, but not blocked, by sinoaortic denervation (SAD) (+49 +/- 4 vs. +37 +/- 4 mmHg; +165 +/- 30 vs. +92 +/- 24% baseline, P < 0.01). Spectral analysis of sympathetic activity showed that SAD abolished the 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT)-mediated increases in pulse-synchronous (13 +/- 1 vs. 5 +/- 1% total power for intact vs. SAD rats, P < 0.01) and Mayer wave-related bursting (18 +/- 3 vs. 8 +/- 1% total power, P < 0.05). However, 8-OH-DPAT continued to increase total power (+72 +/- 22 vs. -63 +/- 7% prehemorrhage total power, P < 0.05) and power at the respiratory frequency (35 +/- 2 vs. 25 +/- 4% total power) in SAD animals. These data indicate that full expression of the sympathoexcitatory effect of 8-OH-DPAT requires a functional arterial baroreflex. However, a portion of the effect is due to activation of arterial baroreflex-independent sympathetic pathways.  相似文献   

18.
Changes in the activity of serum gamma-glutamyl transpeptidase (gamma-GTP) and the percentage of the gamma-GTP fraction in healthy young men given a high carbohydrate diet (480-636 g/day, 80% of the total energy) for 21 days were examined. Serum total gamma-GTP activity showed no significant change in four healthy young volunteers who received high carbohydrate diet for 21 days. However, the percentage of the gamma-GTP (1) fraction increased significantly (P less than 0.01) from the basal level of 55.6 +/- 4.0% to 67.6 +/- 0.9% on day 10, and then decreased to 58.4 +/- 1.4% on day 21. When the experimental diet was replaced by usual diet, the percentage of the gamma-GTP (1) fraction returned to the same level as before the experiment. It is concluded from the results that the nutrient intake affects the percentage of gamma-GTP (1), but not the total serum gamma-GTP activity.  相似文献   

19.
Traditional venom immunotherapy uses injections of whole bee venom in buffer or adsorbed in Al (OH)(3) in an expensive, time-consuming way. New strategies to improve the safety and efficacy of this treatment with a reduction of injections would, therefore, be of general interest. It would improve patient compliance and provide socio-economic benefits. Liposomes have a long tradition in drug delivery because they increase the therapeutic index and avoid drug degradation and secondary effects. However, bee venom melittin (Mel) and phospholipase (PLA(2)) destroy the phospholipid membranes. Our central idea was to inhibit the PLA(2) and Mel activities through histidine alkylation and or tryptophan oxidation (with pbb, para-bromo-phenacyl bromide, and/or NBS- N-bromosuccinimide, respectively) to make their encapsulations possible within stabilized liposomes. We strongly believe that this formulation will be nontoxic but immunogenic. In this paper, we present the whole bee venom conformation characterization during and after chemical modification and after interaction with liposome by ultraviolet, circular dichroism, and fluorescence spectroscopies. The PLA(2) and Mel activities were measured indirectly by changes in turbidity at 400(n m), rhodamine leak-out, and hemolysis. The native whole bee venom (BV) presented 78.06% of alpha-helical content. The alkylation (A-BV) and succynilation (S-BV) of BV increased 0.44 and 0.20% of its alpha-helical content. The double-modified venom (S-A-BV) had a 0.74% increase of alpha-helical content. The BV chemical modification induced another change on protein conformations observed by Trp that became buried with respect to the native whole BV. It was demonstrated that the liposomal membranes must contain pbb (SPC:Cho:pbb, 26:7:1) as a component to protect them from aggregation and/or fusion. The membranes containing pbb maintained the same turbidity (100%) after incubation with modified venom, in contrast with pbb-free membranes that showed a 15% size decrease. This size decrease was interpreted as membrane degradation and was corroborated by a 50% rhodamine leak-out. Another fact that confirmed our interpretation was the observed 100% inhibition of the hemolytic activity after venom modification with pbb and NBS (S-A-BV). When S-A-BV interacted with liposomes, other protein conformational changes were observed and characterized by the increase of 1.93% on S-A-BV alpha-helical content and the presence of tryptophan residues in a more hydrophobic environment. In other words, the S-A-BV interacted with liposomal membranes, but this interaction was not effective to cause aggregation, leak-out, or fusion. A stable formulation composed by S-A-BV encapsulated within liposomes composed by SPC:Cho:pbb, at a ratio of 26:7:1, was devised. Large unilamellar vesicles of 202.5 nm with a negative surface charge (-24.29 mV) encapsulated 95% of S-A-BV. This formulation can, now, be assayed on VIT.  相似文献   

20.
Mucins in ulcerative colitis and colon cancer share common properties of reduced sulfation and increased oncofetal carbohydrate antigen expression. It has previously been shown that there is no simple correlation between these changes and the activity of the relevant glycosyl-, sialyl-, and sulfo-transferases. We examined mucin sulfation and expression of oncofetal Thomsen-Friedenreich (TF) antigen (galactosyl beta1-3N-acetylgalactosamine alpha-) in the goblet cell-differentiated human colon cancer cell line LS174T following treatment with bafilomycin A(1, )which raises intra-Golgi pH, or monensin, which disrupts medial-trans Golgi transport. Cells were dual-labeled with sodium [(35)S]-sulfate and D-[6-(3)H(N)]-glucosamine hydrochloride, or labeled with L-[U-(14)C]-threonine alone. Mucin was purified using Sepharose CL-4B gel filtration. Mucin sulfo-Lewis(a) and TF antigen expression were assessed using the F2 anti-sulfo-Lewis(a) monoclonal antibody and peanut agglutinin binding respectively. Bafilomycin (0.01 microM; 48 h) reduced total mucin sulfation, expressed relative to incorporation of glucosamine, to 0.50 +/- 0.04 d.p.m. [(35)S]-sulfate per d.p.m. [(3)H]-glucosamine compared to control, 0.84 +/- 0.05 (p < 0.001, n = 16). This was accompanied by 50.3 +/- 8.0% increased expression of TF antigen (p < 0.01) and 50.1 +/- 5.5% decreased expression of sulfo-Lewis(a) (p < 0.01). The reduced sulfate:glucosamine ratio was largely due to increased incorporation of glucosamine into newly synthesized mucin rather than reduction in total sulfate incorporation. In contrast, monensin only reduced total mucin glycosylation at concentrations > 0.1 microM and had no significant effect on mucin sulfation or TF expression. Intra-Golgi alkalinization affects mucin glycosylation, resulting in decreased mucin sulfation and increased expression of TF antigen, changes that mimic those seen in cancerous and premalignant human colonic epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号