首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. As part of a study designed to estimate the developmental costs of antipredator behaviour of larval chironomids, we used laboratory experiments to study effects of food and factors that could influence predation risk [presence of fish, cover from fish (simulated debris) and light level], on microhabitat selection by Chironomus tentans larvae in the third and fourth instar. 2. Larvae were more likely to build tubes where there was more food although their ability to move far to find food appeared limited. 3. Larvae did not avoid areas with fish and the presence of fish did not alter larval response to food. 4. Larvae avoided areas of cover (simulated debris) but cover did not alter larval response to food. 5. When provided with a choice between light and dark areas, larvae initially without tubes were found more often in the dark areas. Light level had no effect on location of larvae that had begun the experiment with tubes. 6. Results suggest the tubicolous life-style of larval Chironomus tentans limits their ability to select microhabitats that could alter their risk of predation.  相似文献   

2.
Larval damselflies frequently engage in aggressive interactions that may increase their risk of fish predation. To test this we analyzed the behavior of larval Ischnura verticalis exposed to both conspecifics and fish predators. Larvae in the presence of conspecifics oriented, struck, and swam more but crawled less compared to solitary larvae; the presence of fish reduced, or tended to reduce, all behaviors. Fish struck more at interacting larvae compared to noninteracting larvae. Increased attack rate by fish likely reflects the increase in the very active swimming behavior by larvae and suggests a conflict between antipredator behaviors. Swimming is an appropriate response to avoid predation by odonate larvae which normally ambush prey but is clearly dangerous when fast-swimming fish that cue in on movement are nearby.  相似文献   

3.
Using larval Cx. annulirostris mosquitoes, this study compared the predation rate of Pseudomugil signifer and Gambusia holbrooki for four larval instars, three prey densities, and three vegetation densities. There was no significant difference in the quantity of first, second, and third instar larvae consumed by the two fish species after 24 h. There was a significant negative relationship between the predation rate and both larval instar and prey density for both fish species. In simulated vegetation trials, P. signifer performed marginally better than G. holbrooki in medium to high density vegetation (0.3 stems/cm 2 and 0.6 stems/cm2, respectively).  相似文献   

4.
 Larval damselflies resist infestation by parasitic larval mites by exhibiting behaviours such as grooming, crawling, swimming, and striking at host-seeking mites. Larval damselflies are known to increase time spent in these behaviours in the presence of mites but reduce time spent in these behaviours in the presence of fish predators. The presence of both fish and larval mites presents an obvious conflict: a larval damselfly may actively avoid parasitism by mites, thus increasing its risk of predation, or it may reduce its activity when fish are present, thus increasing its risk of parasitism. We analysed the behaviour of larval Ischnura verticalis in an experiment where we crossed presence and absence of fish with presence and absence of larval mites. Presence of mites induced a large increase in activity of larval I. verticalis but fish had no effect and there were no interpretable interactions between effects of mites and fish. Subsequent experiments indicated that larval I. verticalis in the presence of both mites and fish were more likely to be attacked and killed by fish than those exposed only to fish. The high activity level of I. verticalis larvae in the presence of both fish and mites may suggest that costs of parasitism are high, or that under field conditions it is rare for larvae to be in the immediate presence of both fish predators and potentially parasitic mites. Received: 28 March 1996 / Accepted: 6 September 1996  相似文献   

5.
S. M. Dixon  R. L. Baker 《Oecologia》1988,76(2):200-205
Summary We used laboratory studies to examine the role of predation risk and cost of anti-predator behaviour in determining the behavioural response of several larval instars of Ischnura verticalis to a fish predator (Lepomis gibbosus). Smaller larvae were less susceptible to fish predation than larger larvae. Smaller larvae depressed movement to a greater degree in the presence of fish than did larger larvae; large larvae were generally less active than small larvae regardless of fish presence. Reduced feeding resulted in smaller larvae suffering more in terms of reduced growth than did large larvae. In general, our results tend to support the hypothesis that individuals that suffer high costs of anti-predator behaviour but little risk of predation may only exhibit anti-predator behaviours in the presence of predators, whereas individuals with a higher risk of predation and a lower cost of anti-predator behaviour may evolve anti-predator mechanisms that are in effect even in the absence of predators.  相似文献   

6.
7.
Previous work has shown that streamside salamander larvae (Ambystoma barbouri; Ambystomatidae) exhibit an adaptive ‘sink to the bottom’ response to chemical cues from predatory green sunfish (Lepomis cyanellus; Centrarchidae), that is, larvae sink to the bottom more quickly (thus minimizing exposure time to sunfish predation) when they are dropped into water with sunfish chemicals (as compared to Ashless controls). Here, we examined this anti-predator behaviour in early hatchlings and the effects of age and experience on subsequent expression of this behaviour. Hatchlings responded significantly to fish chemical cues within the first 18 h after hatching. Age did not significantly influence this response, i.e. regardless of age (1, 7, or 14 days after hatching) larvae showed a significant response during their first exposure to fish chemical cues. Experience also did not significantly influence the larval response to fish chemicals i.e., repeated exposures over 2 weeks did not significantly influence the magnitude of the response. Finally, comparisons of 3 siblingships detected significant variation among siblingships that might reflect genetic variation in this behaviour.  相似文献   

8.
C. L. Pierce 《Oecologia》1988,77(1):81-90
Summary Dragonfly larvae (Odonata: Anisoptera) are often abundant in shallow freshwater habitats and frequently co-occur with predatory fish, but there is evidence that they are underutilized as prey. This suggests that species which successfully coexist with fish may exhibit behaviors that minimize their risk of predation. I conducted field and laboratory experiments to determine whether: 1) dragonfly larvae actively avoid fish, 2) microhabitat use and foraging success of larvae are sensitive to predation risk, and 3) vulnerability of larvae is correlated with microhabitat use. I experimentally manipulated the presence of adult bluegills (Lepomis macrochirus) in defaunated patches of littoral substrate in a small pond to test whether colonizing dragonfly larvae would avoid patches containing fish. The two dominant anisopteran species, Tetragoneuria cynosura and Ladona deplanata (Odonata: Libellulidae), both strongly avoided colonizing patches where adult bluegills were present. Laboratory experiments examined the effects of diel period and bluegills on microhabitat use and foraging success, using Tetragoneuria, Ladona and confamilial Sympetrum semicictum, found in a nearby fishless pond. Tetragoneuria and Ladona generally occupied microhabitats offering cover, whereas Sympetrum usually occupied exposed locations. Bluegills induced increased use of cover in all three species, and use of cover also tended to be higher during the day than at night. Bluegills depressed foraging in Tetragoneuria and to a lesser extent in Ladona, but foraging in Sympetrum appeared unaffected. Other laboratory experiments indicated that Sympetrum were generally more vulnerable than Tetragoneuria or Ladona to bluegill predation, and that vulnerability was positively correlated with use of exposed microhabitats. Both fixed (generally low use of exposed microhabitats, diel microhabitat shifts) and reactive (predator avoidance, predator-sensitive microhabitat shifts) behavioral responses appear to reduce risk of predation in dragonfly larvae. Evidence indicates that vulnerability probably varies widely among species and even among instars within species, and suggests that spatial distributions of relatively vulnerable species may be limited by their inability to avoid predation.  相似文献   

9.
10.
Adult fish may affect the growth and survival of conspecific larvae through a variety of pathways, including negative interactions via competition for shared limiting resources or via predation (i.e., cannibalism), and positive interactions due to the consumption of larval predators and via resource enhancement (i.e., presence of adults increases availability of larval prey). To examine the overall effect of adult bluegill sunfish (Lepomis macrochirus) on larval bluegill, we conducted a field experiment in which we manipulated adult densities and quantified larval growth and survival, prey abundance, invertebrate predator abundance, and cannibalism. The presence of adult bluegill had a negative effect on final larval mass. This response was consistent with competition for zooplankton prey. Adult bluegill reduced the abundance of large zooplankton (e.g., Chaoborus and Daphnia), which were the dominant prey of bluegill larvae in the absence of adults. Larvae in the no-adult treatment also had significantly more prey in their stomachs compared to larvae in the presence of adults. Larval survival was maximized at intermediate adult densities and the overall production of larvae peaked at intermediate adult densities. The higher larval survival at intermediate adult densities is attributed to a reduction in invertebrate predators in treatments with adult bluegill; invertebrate predators experienced an 80% reduction in the presence of adult fish. Decreased larval survival at the highest adult density was not due to resource limitation and may be due to cannibalism, which was not directly observed in our study, but has been observed in other studies.  相似文献   

11.
Summary An investigation of the larval dragonfly fauna associated with the plant, Sagittaria platyphylla, was conducted in a small pond. Despite the presence of several larval anisopteran species in the pond, only Pachydiplax longipennis larvae were found on Sagittaria plants. A study of the microspatial distribution of P. longipennis larvae on S. platyphylla indicated that larvae use the various regions of a plant in a highly non-random fashion. Larvae show a strong preference for the leaf axil area. A generalized predator, the bluegill sunfish (Lepomis macrochirus), was allowed to selectively eat either of two larvae placed in various plant regions. This experiment indicated that larvae in a leaf axil area were significantly less susceptible to bluegill predation than larvae positioned in other plant regions. The microspatial distribution of starved larvae revealed that larvae with high hunger levels occupied the leaf axil area significantly less than well fed larvae, suggesting 1) larvae do not use these regions as feeding sites, and 2) high hunger levels may induce a behavioral shift in habitat use, with starved larvae forced into areas of high predation risk by the need to fulfill nutritional requirements.  相似文献   

12.
1. Predator and alternative food density are important factors influencing herbivore suppression by generalist predators. Herbivore suppression can be reduced if predators forage preferentially on alternative foods. Cannibalism can increase at high predator densities, further reducing herbivore suppression. However, complex interactions are possible, as alternative food can increase predator abundance and survival restoring top‐down effects on herbivores. 2. In two species of carabid larvae (Poecilus chalcites and Anisodactylus ovularis), we studied how alternative foods (fly pupae and grass seeds) and predator density affect predation of black cutworm larvae and how alternative foods affect cannibalism among carabid larvae. 3. Adding alternative food to microcosms generally reduced total predation of cutworms. However, the strength of this effect was dependent on carabid species, larval density, and food type. 4. Increasing larval density from one to three per microcosm reduced per‐capita predation by both species irrespective of alternative food treatment. 5. Alternative food reduced cannibalism in both carabid species and increased survival of carabid larvae in field plots, such that twice as many were captured in plots subsidised with pupae than plots with no alternative food. 6. These results provide new insight into the complex interactions that influence predator survival and herbivore suppression in resource diverse habitats by demonstrating the primacy of intraguild interactions among carabid larvae.  相似文献   

13.
Flume experiments were carried out to examine whether larval blackflies (Simulium ornatum complex, Diptera: Simuliidae) use microhabitats with a highvelocity current to reduce the risk of predation by some of their main predators, viz. larvae of the stoneflies Isoperla grammatica and Diura nanseni (Plecoptera: Perlodidae), and the caddis-fly Rhyacophila nubila (Trichoptera: Rhyacophilidae). We exposed blackfly larvae to four different current velocities and measured their feeding rate using dye particles. The maximum feeding rate was recorded at intermediate velocities (18.8 and 36.2 cm/s), whereas at low (7.3 cm/s) and high (53.3 cm/s) velocities, the feeding rate was reduced. In separate experiments, we investigated the behaviour and attack success of the different predator species. The two perlodids showed a similar hunting behaviour, which was significantly less successful at higher velocities. Drift of the perlodids from the experimental arena resulted in reduced encounter and attack rates, especially in I. grammatica, which had completely lost efficiency at 36.2 cm/s. R. nubila had a slower mode of hunting and was unaffected by current speed within the velocity gradient studied. Drift in Rhyacophila was rare. Observations on the behaviour of blackfly larvae were performed in the same experiments. The larvae showed no apparent ability to sense the presence of the predators except when these disrupted the flow pattern or were in physical contact, which often resulted in aggressive defence, though without effect on the predators. Escape of blackfly larvae by drift did occur, but this was no more common than being captured. In a current velocity gradient, blackfly larvae showed a weak preference for increasing velocities. Thus, at velocities between 7 and 54 cm/s, blackfly larvae appear to select microhabitats with high current velocities, despite a reduction in feeding optimality, thereby easing the predation impact from perlodids, though not from Rhyacophila. The study demonstrates the importance of microhabitat selection by blackfly larvae both for efficient feeding and predator avoidance.  相似文献   

14.
SUMMARY 1. We investigate the role of differential activity of chiro-nomids as an explanation for the size selection of small larvae by fish.
2. In the laboratory, pumpkinseed sunfish (Lepomis gibbosus L.) selectively consumed large larvae of Chironomus tentans Fab. when no tube-building materials were available. Small larvae were selectively consumed when a mud substrate was provided but there was no difference in predation rates on large and small larvae in sand.
3. Small larvae spent more time out of their tubes than large larvae in the presence of fish, which may explain the selection for small larvae in mud. Large larvae apparently compensated for decreased foraging activity in the presence of fish by increasing activity when fish were absent. Visibility of large larvae inside tubes may account for their increased mortality in sand.
4. Our results suggest that differential activity is important in explaining the size-selective mortality observed in the field.  相似文献   

15.
Ontogenetic shifts in habitat use and activity in a stream-dwelling isopod   总被引:2,自引:0,他引:2  
We examined ontogenetic changes in diel patterns of habitat use and activity of the lotic isopod Lirceus fontinalis in relation to differences in predation risk from green sunfish, Lepomis cyanellus. Juveniles are ≤5 mm total length (TL), individuals 6-9 mm TL are mature females (c. 90%) and immature males, and mature males are ≥10 mm TL. Isopods of all sizes were far more dense in Cladophora , a filamentous green algae, than in open silt/sand substrates in fish pools. Densities of each size did not increase in open areas at night in fish pools when risk of predation presumably decreases. Few individuals of any size class occurred in open silt/sand areas in fish pools. However, habitat use did not depend on fish presence. Densities and relative abundances of all sizes were similar between algal and open habitats in fishless pools both day and night, except for mature males which were more abundant in open areas during daylight. All sizes of isopods were significantly more dense in fishless versus fish pools, and density of a size class was influenced by fish presence. Densities of size classes were typically juveniles > individuals 6-9 mm TL > mature males. Green sunfish are size selective feeders on isopods, thus demography of isopods within pools may be partially influenced by the size structure of the fish population.
Isopods reduced their activity, as measured by captures in benthic traps, in the presence of caged green sunfish only at night. This behavior coupled with relatively high activity levels during daylight regardless of fish presence suggests other predators or factors may influence diel activity. Mature males were overrepresented in traps relative to their occurrence in fish runs, indicating high activity levels. Mature males were also more active than gravid and nongravid females and juveniles in the presence of fish in laboratory aquaria. Number of male encounters with nongravid females depended on activity level.  相似文献   

16.
Invasive fish have a high disruptive potential in aquatic ecosystems, in which amphibians may be highly impacted due to intense competition and/or predation on their eggs and larvae. Most studies have focused on the effect of large invasive fishes such as salmonids, whereas the effect of smaller fish on amphibians has been seldom investigated. We experimentally studied effects of the invasive Eastern mosquitofish (Gambusia holbrooki) on pygmy newts (Triturus pygmaeus), a species endemic to the Iberian Peninsula. We set up outdoor mesocosms in Doñana National Park with native aquatic flora and invertebrate fauna, and containing larval newts at two experimental densities. Density of larval newts was also crossed with presence or absence of mosquitofish, either free-swimming or caged, in order to distinguish consumptive and non-consumptive effects. Increased density of coexisting larval newts did not reduce their survival, but reduced their growth and development. Newt survival and size at metamorphosis were dramatically reduced in the presence of free-swimming mosquitofish, whether at low or high fish densities. Caged mosquitofish, however, had no effect on larval newts. In laboratory trials, mosquitofish preyed more efficiently on insect larvae than did larval pygmy newts, highlighting the high competitive potential of mosquitofish. This was confirmed by the depletion of zooplankton that free fish caused in the experimental outdoor mesocosms. Our study suggests that invasive mosquitofish exert a high negative impact on coexisting newt populations. Such effects can be explained by a combination of direct predation, injuries caused by predation attempts, and intense competitive exploitation of common food resources.  相似文献   

17.
Vonesh JR 《Oecologia》2005,143(2):280-290
While theoretical studies of the timing of key switch points in complex life cycles such as hatching and metamorphosis have stressed the importance of considering multiple stages, most empirical work has focused on a single life stage. However, the relationship between the fitness components of different life stages may be complex. Ontogenetic switch points such as hatching and metamorphosis do not represent new beginnings—carryover effects across stages can arise when environmental effects on the density and/or traits of early ontogenetic stages subsequently alter mortality or growth in later stages. In this study, I examine the effects of egg- and larval-stage predators on larval performance, size at metamorphosis, and post-metamorphic predation in the African tree frog Hyperolius spinigularis. I monitored the density and survival of arboreal H. spinigularis clutches in the field to estimate how much egg-stage predation reduced the input of tadpoles into the pond. I then conducted experiments to determine: (1) how reductions in initial larval density due to egg predators affect larval survival and mass and age at metamorphosis in the presence and absence of aquatic larval predators, dragonfly larvae, and (2) how differences in mass or age at metamorphosis arising from predation in the embryonic and larval environments affect encounters with post-metamorphic predators, fishing spiders. Reduction in larval densities due to egg predation tended to increase per capita larval survival, decrease larval duration and increase mass at metamorphosis. Larval predators decreased larval survival and had density-dependent effects on larval duration and mass at metamorphosis. The combined effects of embryonic and larval-stage predators increased mass at metamorphosis of survivors by 91%. Larger mass at metamorphosis may have immediate fitness benefits, as larger metamorphs had higher survival in encounters with fishing spiders. Thus, the effects of predators early in ontogeny can alter predation risk even two life stages later.  相似文献   

18.
Robby Stoks 《Oecologia》1998,117(3):443-448
Damselfly larvae can autotomize their caudal lamellae to escape predation. Costs of caudal lamellae autotomy were investigated by directly manipulating lamellae condition of Lestes sponsa in laboratory experiments. Larvae without lamellae had higher predation mortality in the presence of Notonecta. Both lamellae loss and larval density increased the probability of being cannibalized. The results suggest that the increased vulnerability after lamellae loss resulted from a reduced escape performance. Larvae were less mobile after lamellae loss or in the presence of a predator, but the decrease was no longer significant when both factors were combined. This indicates that larvae compensate for the increased predation risk with a fixed response. Both lamellae loss and predator presence reduced hunting success, but the decrease after lamellae loss was only significant in the absence of a predator. The fitness consequences of these effects for both the larval and adult stages are discussed. In general, the data strongly suggest that lamellae autotomy plays a role in population regulation of damselflies. Received: 1 April 1998 / Accepted: 28 August 1998  相似文献   

19.
The behavioural response of juvenile bluegill sunfish (Lepomis macrochirus) to predation risk when selecting between patches of artificial vegetation differing in food and stem density was investigated. Bluegill foraging activity was significantly affected by all three factors. Regardless of patch stem density or risk of predation bluegills preferred patches with the highest prey number. During each trial bluegill foraging activity was clearly divided into a between- and within-patch component. In the presence of a predator bluegills reduced their between-patch foraging activity by an equivalent amount regardless of patch stem density or food level, apparently showing a risk-adjusting behavioural response to predation risk. Within patches, however, foraging activity was affected by both food level and patch stem density. When foraging in a patch offering a refuge from predation, the presence of a predator had no effect on bluegill foraging activity within this patch. However, if foraging in a patch with only limited refuge potential, bluegill foraging activity was reduced significantly in the presence of a predator. Further, this reduction was significantly greater if the patch contained a low versus a high food level, indicating a risk-balancing response to predation with respect to within-patch foraging activity. Both these responses differ from the risk-avoidance response to predation demonstrated by juvenile bluegills when selecting among habitats. Therefore, our results demonstrate the flexibility of juvenile bluegill foraging behaviour.  相似文献   

20.
The predation impact of the larvae of pond smelt Hypomesus transpacificus nipponensis on a zooplankton community was studied using mesocosms. The fish significantly depressed the abundances of copepod nauplii and rotifers, especially Hexarthra mira. The vulnerabilities of these prey might be determined by their swimming behavior and population density, suggesting that larval fish selectively prey on zooplankton that have a high encounter rate with the predator. The larvae did not have a negative effect on the densities of cladocerans, but fish predation altered the cladoceran community structure from the dominance of B. longirostris to that of B. fatalis. This result suggests that larval fish predation is an important factor that shifts the species composition of Bosmina in some lakes, the shift occurring in the season when fish larvae are abundant. Our results have shown that predation by the larval fish would control not only the abundance, but also the community structure of the small-sized zooplankton prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号