首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated aspects of germination and seedling establishment that might influence the distribution and diversity of Carex species growing in the forest understory. We tested the ability of Carex communis and C. platyphylla to germinate and establish at plots where adult individuals of one of these two species, or one of two other Carex species (C. backii and C. plantaginea), occurred in an old-growth forest in southern Québec, Canada. We also tested for effects of leaf litter on germination and establishment of these sedges. From a series of experiments in the field and in a lath house, we found no evidence of home-site advantage with respect to germination or seedling establishment. Leaf litter had a negative effect on germination and establishment. The results emphasize the importance of dispersal and colonization events in determining local diversity and distribution of Carex species in upland forests. High frequency of occurrence of C. communis at our study site may result from relatively wide dispersal provided by ants, and a suite of traits associated with ant dispersal in some understory Carex species.  相似文献   

2.
Seedling survival plays an important role in the maintenance of species diversity and forest dynamics. Although substantial gains have been made in understanding the factors driving patterns of seedling survival in forests, few studies have considered the simultaneous contribution of understory light availability and the local biotic neighborhood to seedling survival in temperate forests at different successional stages. Here, we used generalized linear mixed models to assess the relative importance of understory light availability and biotic neighborhood variables on seedling survival in secondary and old-growth temperate forest in north eastern China at two levels (community and guild). At the community level, biotic neighborhood effects on seedling survival were more important than understory light availability in both forests. In both the old-growth and secondary forests, conspecific basal area had a negative effect on seedling survival, consistent with negative conspecific density dependence. At guild levels, the relative importance of light and biotic neighborhood on seedling survival showed considerable variation among guilds in both forests. Available understory light tended to have positive effects on seedling survival for shrub and light-demanding species in the old-growth forest, but negative effects on survival of shade-tolerant seedlings in the secondary forest. For tree species and shade-tolerant species, the best fit models included neighborhood variables, but that was not the case for shrubs, light-demanding, or mid shade-tolerant species. Overall, our results demonstrate that the relative importance of understory light availability and biotic factors on seedling survival vary with species life-history strategy and forest successional stage.  相似文献   

3.
Sierra Nevada forests have high understory species richness yet we do not know which site factors influence herb and shrub distribution or abundance. We examined the understory of an old-growth mixed-conifer Sierran forest and its distribution in relation to microsite conditions. The forest has high species richness (98 species sampled), most of which are herbs with sparse cover and relatively equal abundance. Shrub cover is highly concentrated in discrete patches. Using overstory tree cover and microsite environmental conditions, four habitats were identified; tree cluster, partial canopy, gap, and rock/shallow soil. Herb and shrub species were strongly linked with habitats. Soil moisture, litter depth and diffuse light were the most significant environmental gradients influencing understory plant distribution. Herb cover was most strongly influenced by soil moisture. Shrub cover is associated with more diffuse light, less direct light, and sites with lower soil moisture. Herb richness is most affected by conditions which influence soil moisture. Richness is positively correlated with litter depth, and negatively correlated with direct light and shrub cover. Disturbance or management practices which change forest floor conditions, shallow soil moisture and direct light are likely to have the strongest effect on Sierran understory abundance and richness.  相似文献   

4.
Polar and Gaussian ordination applied to data collected from 37 forest sites in central Illinois resulted in a continuous and gradual change in species composition along a moisture gradient. A series of overlapping species success curves formed by plotting Importance Values over stands ordered along the gradient varied continuously in modal location and habitat width. Blackjack oak and black oak dominated upland sandy sites. Black oak, white oak, and shagbark hickory were the most important species on exposed, upper slope positions or ridge tops with silt-loam soils. Red oak, sugar maple, American elm, and bur oak dominated sheltered locations on lower slope positions and stream terraces. Sycamore, silver maple, and cottonwood were leading tree species in floodplain forests. Conversion of black, white, and red oak forests on silt-loam sites to sugar maple, white ash, and red elm dominance is evident by high densities of these shade tolerant species in the understory. Composition of forests at the extreme ends of the moisture gradient is more stable than the mesic sites. Maximum tree diversity occurred on mesic sites and decreased toward the extreme ends of the moisture gradient. However, competitive exclusion of shade intolerant species by sugar maple and other species has caused a decrease in understory diversity on mesic sites. Diversity decreased from canopy to understory strata in lowland forests and increased on xeric sites.  相似文献   

5.
The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.  相似文献   

6.
Aims and Methods Mostly due to land use changes, European heathlands have become increasingly rare. In addition, the increasing amount of atmospheric nitrogen deposition has resulted in an encroachment of grasses and a loss in species diversity. Despite many investigations, information about the precise environmental parameters that determine the development and maintenance of heathland vegetation is still insufficient. In order to determine the environmental factors that control heath succession and grass encroachment, and to develop appropriate management schemes, we studied the influence of several soil and microclimate parameters on species composition and vegetation characteristics in five successional stages in a coastal heathland on the island of Hiddensee, north-east Germany, where the encroachment of Carex arenaria has become a major problem.Important findings We recorded the highest plant species richness in grey dune and birch forest plots, while the encroachment of C. arenaria let to a significant decline in plant species richness. The most important environmental factors influencing species richness and distribution of single species were microclimate, soil moisture, soil pH and the C/N ratio. While many studies reported the importance of differences in nutrient availability, we found no significant correlations between soil nutrient availability and vegetation pattern. Environmental conditions in dense C. arenaria stands, especially soil properties (e.g. soil pH), showed great differences in comparison to the other successional stages. However, no correlations between the encroachment of C. arenaria and single environmental factors were found. Our results show that not only soil nutrients are important abiotic factors in heaths but that also microclimate and soil moisture play an important role and that many factors are involved in heath succession and in the promotion of grass encroachment. Management plans for the conservation and restoration of heathlands should therefore focus on the specific site conditions and should take several abiotic and biotic factors into account.  相似文献   

7.
Aims

A century of atmospheric deposition of sulfur and nitrogen has acidified soils and undermined the health and recruitment of foundational tree species in the northeastern US. However, effects of acidic deposition on the forest understory plant communities of this region are poorly documented. We investigated how forest understory plant species composition and richness varied across gradients of acidic deposition and soil acidity in the Adirondack Mountains of New York State.

Methods

We surveyed understory vegetation and soils in hardwood forests on 20 small watersheds and built models of community composition and richness as functions of soil chemistry, nitrogen and sulfur deposition, and other environmental variables.

Results

Community composition varied significantly with gradients of acidic deposition, soil acidity, and base cation availability (63% variance explained). Several species increased with soil acidity while others decreased. Understory plant richness decreased significantly with increasing soil acidity (r?=?0.60). The best multivariate regression model to predict richness (p?<?0.001, adjusted-R2?=?0.60) reflected positive effects of pH and carbon-to-nitrogen ratio (C:N).

Conclusions

The relationship we found between understory plant communities and a soil-chemical gradient, suggests that soil acidification can reduce diversity and alter the composition of these communities in northern hardwood forests exposed to acidic deposition.

  相似文献   

8.
Efforts to understand species distributions and predict responses to environmental changes depend on specifying how the abiotic environment determines distributions. At landscape scales, it is critical to distinguish effects of environmental factors from other mechanisms such as competition and dispersal limitation. We examined how environmental factors affect the distribution and performance of the sedge Carex prasina across a 10-km2 old-growth forest in southern Québec. We isolated the effects of soil characteristics by conducting a greenhouse experiment that assessed the performance of C. prasina on soils from a range of wetland habitats where it could potentially occur. This allowed us to compare how the species’ performance and its distribution across the landscape relate to the same soil characteristics. In the experiment, the biomass and leaf chlorophyll content of C. prasina increased with increasing soil organic matter (OM). Across the landscape, however, the species’ probability of occurrence and abundance decreased with increasing soil OM. C. prasina had similar biomass on soils from sites where it did and did not occur, but it had higher leaf chlorophyll content on soils from sites where it did not occur. We found no evidence that differential performance across environments determines the distribution of this species, as C. prasina tended to occur on soils where it showed reduced performance. Rather, other processes such as competition or dispersal limitation likely override any direct effects of the soil environment on distribution. Our results caution against the common assumption that the environments where a species tends to occur or be most abundant are the environments where it performs best. C. prasina presents a clear example of a species whose performance, at least along edaphic gradients, cannot explain its distribution. This example highlights the importance of distinguishing the relative roles of biotic and abiotic factors that shape species distributions across landscapes.  相似文献   

9.
Amazonian Dark Earths (ADE) are the result of human modification of the Amazonian landscape since pre‐Columbian times. ADE are characterized by increased soil fertility compared to natural soils. In the Amazonian forest, soil fertility influences understory herb and fern species composition. However, little research has been done to evaluate the effect of ADE on the composition of the understory community. We evaluated the effects of ADE and soil in 36 plots (150 m × 4 m) established in a Bolivian moist forest (La Chonta). For each plot, we determined soil nutrients, and the composition, richness, and abundance of terrestrial fern, angiosperm herb, and understory palm species. We found that the presence of ADE created a gradient in soil nutrients and pH that affected the understory species composition especially of ferns and palms. Additionally, the higher nutrient concentration and more neutral soil pH on ADE soils caused a decrease of ferns species richness. We therefore conclude that the current composition of the understory community in this particular Bolivian forest is a reflection of past human modifications of the soil.  相似文献   

10.
The precise relationship between species diversity and spatial heterogeneity has not often been investigated using quantitative and repeatable measures of environmental variation. In this study, we map the metre-level distribution of fern species in one hectare of old-growth forest and test for a relationship between diversity and heterogeneity of physical features and soil conditions. The nineteen species recorded in the hectare were non-randomly distributed and varied greatly in abundance and spatial aggregation. Different. Species distributions were not independent of one another: three groups were formed with species which occurred together significantly more often than random expectation. Physical and soil conditions were highly variable and spatially auto correlated from the 5 m scale up to the extent of the whole hectare. Based on the sites where they grew, species differed in their references for soil moisture, fertility and pH. Fern diversity was highest at sites with high soil moisture and low soil fertility: however, there was no relationship between diversity and the environmental variance within quadrats. Unpredictable spatial distribution patterns produced by processes of dispersal and immigration may obscure any relationship between diversity and spatial heterogeneity at this fine scale.  相似文献   

11.
Abstract. We studied plant diversity of the understory vascular vegetation in 40 yr-old plantations (immature stands) and old-growth forest stands on southwestern Vancouver Island, British Columbia, Canada. Site-specific comparisons using several indices of species diversity were made between: (1) immature stands segregated according to the canopy cover and dominant canopy tree species; and (2) immature and old-growth stands. There were no significant differences (P < 0.05) among immature stands in species richness (S) and the Shannon-Wiener index (H′), in relation to the canopy cover or in S, H′ and evenness (E) in relation to the dominant canopy tree species. Using the same indices, the plant diversity varied with edaphic conditions (represented by five site associations) and time (represented by two developmental stages). At both stand- and site levels, plant diversity increased with increasing soil moisture, from slightly dry to moist sites, and with increasing plant-available soil nitrogen in both immature and old-growth stands; and the plant diversity of immature stands across the sites studied was considerably lower than in old-growth stands, regardless of site association. The indices of plant diversity, floristic similarity indices, and species turnover rates indicated that the immature stands had their plant diversity at a minimum, but a drastic loss of diversity expected in the stem exclusion stage had not materialized. We attributed decline in plant diversity to the absence of old-growth structural features in immature stands. Several measures to foster the stand-level diversity were proposed.  相似文献   

12.
Improved sampling designs are needed to detect, monitor, and predict plant migrations and plant diversity changes caused by climate change and other human activities. We propose a methodology based on multi-scale vegetation plots established across forest ecotones which provide baseline data on patterns of plant diversity, invasions of exotic plant species, and plant migrations at landscape scales in Rocky Mountain National Park, Colorado, USA. We established forty two 1000-m2 plots in relatively homogeneous forest types and the ecotones between them on 14 vegetation transects. We found that 64% of the variance in understory species distributions at landscape scales were described generally by gradients of elevation and under-canopy solar radiation. Superimposed on broad-scale climatic gradients are small-scale gradients characterized by patches of light, pockets of fertile soil, and zones of high soil moisture. Eighteen of the 42 plots contained at least one exotic species; monitoring exotic plant invasions provides a means to assess changes in native plant diversity and plant migrations. Plant species showed weak affinities to overstory vegetation types, with 43% of the plant species found in three or more vegetation types. Replicate transects along several environmental gradients may provide the means to monitor plant diversity and species migrations at landscape scales because: (1) ecotones may play crucial roles in expanding the geophysiological ranges of many plant species; (2) low affinities of understory species to overstory forest types may predispose vegetation types to be resilient to rapid environmental change; and (3) ecotones may help buffer plant species from extirpation and extinction.  相似文献   

13.
In tropical forests, regional differences in annual rainfall correlate with differences in plant species composition. Although water availability is clearly one factor determining species distribution, other environmental variables that covary with rainfall may contribute to distributions. One such variable is light availability in the understory, which decreases towards wetter forests due to differences in canopy density and phenology. We established common garden experiments in three sites along a rainfall gradient across the Isthmus of Panama in order to measure the differences in understory light availability, and to evaluate their influence on the performance of 24 shade-tolerant species with contrasting distributions. Within sites, the effect of understory light availability on species performance depended strongly on water availability. When water was not limiting, either naturally in the wetter site or through water supplementation in drier sites, seedling performance improved at higher light. In contrast, when water was limiting at the drier sites, seedling performance was reduced at higher light, presumably due to an increase in water stress that affected mostly wet-distribution species. Although wetter forest understories were on average darker, wet-distribution species were not more shade-tolerant than dry-distribution species. Instead, wet-distribution species had higher absolute growth rates and, when water was not limiting, were better able to take advantage of small increases in light than dry-distribution species. Our results suggest that in wet forests the ability to grow fast during temporary increases in light may be a key trait for successful recruitment. The slower growth rates of the dry-distribution species, possibly due to trade-offs associated with greater drought tolerance, may exclude these species from wetter forests.  相似文献   

14.
Understanding the processes that shape biodiversity patterns is essential for ecosystem management and conservation. Local environmental conditions are often good predictors of species distribution and variations in habitat quality usually positively correlate to species richness. However, beside habitat limitation, species presence-absence may be constrained by dispersal limitation. We tested the relative importance of both limitations on saproxylic beetle diversity, using forest continuity as a surrogate for dispersal limitation and stand maturity as a surrogate for habitat limitation. Forest continuity relies on the maintenance of a forest cover over time, while stand maturity results in the presence of old-growth habitat features. Forty montane beech-fir forests in the French pre-Alps were sampled, under a balanced sampling design in which forest continuity and stand maturity were crossed. A total of 307 saproxylic beetle species were captured using flight-interception traps and Winkler–Berlese extractors. We explored the response of low- versus high-dispersal species groups to forest continuity and stand maturity. Saproxylic beetle diversity increased significantly with stand maturity and was mostly influenced by variables related to deadwood diversity at the stand scale and suitable habitat availability at the landscape scale. Surprisingly, no evidence of dispersal limitation was found, as diversity patterns were not influenced by forest continuity and associated variables, even for low-dispersal species. Our study demonstrates that in an unfragmented forest landscape, saproxylic beetles are able to colonize recent forests, as long as local deadwood resources are sufficiently diversified (e.g. tree species, position, diameter and/or decay stage).  相似文献   

15.
Seedling and sapling dynamics in a Puerto Rican rain forest were compared between forest understory and soil pits created by the uprooting of 27 trees during Hurricane Hugo. Soil N and P, organic matter, and soil moisture were lower and bulk densities were higher in the disturbed mineral soils of the pits than in undisturbed forest soils ten months after the hurricane. No differences in N and P levels were found in pit or forest soils under two trees with N–fixing symbionts (Inga laurina and Ormosia krugii) compared to soils under a tree species without N–fixing sym–bionts (Casearia arborea), but other soil variables (Al, Fe, K) did vary by tree species. Forest plots had greater species richness of seedlings (<10 cm tall) and saplings (10–100 cm tall) than plots in the soil pits (and greater sapling densities), but seedling densities were similar between plot types. Species richness and seedling densities did not vary among plots associated with the three tree species, but some saplings were more abundant under trees of the same species. Pit size did not affect species richness or seedling and sapling densities. Recruitment of young Cecropia schreberiana trees (>5 m tall) 45 months after the hurricane was entirely from the soil pits, with no tree recruitment from forest plots. Larger soil pits had more tree recruitment than smaller pits. Defoliation of the forest by the hurricane created a large but temporary increase in light availability. Recruitment of C. schreberiana to the canopy occurred in gaps created by the treefall pits that had lower soil nutrients but provided a longer–term increase in light availability. Treefall pits also significantly altered the recruitment and mortality of many understory species in the Puerto Rican rain forest but did not alter species richness.  相似文献   

16.
Core-satellite theory predicts that, via the “rescue effect”, widespread, abundant species should have reduced risk of local extinctions. We test this hypothesis in southeastern Malagasy littoral forest using data on distribution and abundance of trees and woody understory vegetation in tropical forest fragments along a disturbance gradient. We partition the mortality risk into two kinds of extinction factors, separately operating at demographic (local) and landscape (regional) scales, contrary to core-satellite predictions, for both trees and woody understory vegetation, that the relative number of core (abundant) species declined significantly with increasing disturbance. In the least-degraded forest fragments there was a strong mode of core species, while in the moderately- and severely-degraded fragments the species distributions were essentially log-normal, lacking a substantial core mode. While the rescue effect mitigates one kind of extinction risk, namely local environmental and demographic stochasticity, it may not counterbalance widespread pervasive sources of mortality. The amount of internal forest fragmentation appears to have a much greater effect on species richness and diversity than either fragment size or shape.  相似文献   

17.
? Premise of the study: Quantifying variation in functional traits associated with shifts in the species composition of plant communities along resource gradients helps identify environmental attributes important for community assembly. Stomates regulate the balance between carbon assimilation and water status in plants. If environmental attributes affecting photosynthetic water-use efficiency govern species distribution along an edaphic gradient, then adaptive variation in stomatal traits of plant species specializing on different soils should reflect belowground resource availability. ? Methods: We tested this hypothesis by quantifying stomatal trait variation in understory saplings of 28 Bornean tree species in relation to gas exchange and water-use efficiency (WUE). ? Key results: Comparisons between congeneric specialists of the more fertile, moister clay and the less fertile, well-drained sandy loam revealed little evidence of similar shifts in stomatal traits across genera, nor was stomatal pore index correlated with g(max), A(max), or WUE (A(max)/g(max) or Δ(13)C), suggesting that stomates may be overbuilt in these shaded juveniles. A(max) was higher on sandy loam, likely due to higher understory irradiance there, but there were no other significant differences in gas exchange or WUE. ? Conclusions: Despite substantial diversity in stomatal anatomy, there were few strong relationships between stomatal, photosynthetic, and WUE traits in relation to soil resources. Routine differences in water availability therefore may not exert a dominant control on the distributions of these Bornean tree species. Furthermore, the clades represented by these 12 genera may possess alternative functional designs enabling photosynthetic WUE that is sufficient to these humid, understory environments, due to whole plant-functional integration of stomatal traits with other, unmeasured traits influencing gas exchange.  相似文献   

18.
One of the most important drivers for the coexistence of plant species is the resource heterogeneity of a certain environment, and several studies in different ecosystems have supported this resource heterogeneity–diversity hypothesis. However, to date, only a few studies have measured heterogeneity of light and soil resources below forest canopies to investigate their influence on understory plant species richness. Here, we aim to determine (1) the influence of forest stand structural complexity on the heterogeneity of light and soil resources below the forest canopy and (2) whether heterogeneity of resources increases understory plant species richness. Measures of stand structural complexity were obtained through inventories and remote sensing techniques in 135 1‐ha study plots of temperate forests, established along a gradient of forest structural complexity. We measured light intensity and soil chemical properties on six 25 m² subplots on each of these 135 plots and surveyed understory vegetation. We calculated the coefficient of variation of light and soil parameters to obtain measures of resource heterogeneity and determined understory plant species richness at plot level. Spatial heterogeneity of light and of soil pH increased with higher stand structural complexity, although heterogeneity of soil pH did not increase in conditions of generally high levels of light availability. Increasing light heterogeneity was also associated with increasing understory plant species richness. However, light heterogeneity had no such effects in conditions where soil resource heterogeneity (variation in soil C:N ratios) was low. Our results support the resource heterogeneity–diversity hypothesis for temperate forest understory at the stand scale. Our results also highlight the importance of interaction effects between the heterogeneity of both light and soil resources in determining plant species richness.  相似文献   

19.
Biodiversity conservation of forest ecosystems strongly relies on effective dead wood management. However, the responses of saproxylic communities to variations in dead wood characteristics remains poorly documented, a lack of knowledge that may impede the development of efficient management strategies. We established the relationship between saproxylic beetles—at the species and community levels—and attributes of black spruce and balsam fir in old-growth boreal forests. The relationship was first evaluated for individual snag bole segments, and then for forest stands. A total of 168 bole sections were collected in summer 2006 along a compositional gradient ranging from black spruce-dominated stands to balsam fir-dominated ones, in a boreal forest dominated by >90-year-old stands. A total of 16,804 beetles belonging to 47 species emerged from bole segments, with 21% of the species being found exclusively in black spruce snags and 36% exclusively in balsam fir snags. Black spruce and balsam fir snags thus contributed differently to forest biodiversity by being inhabited by different saproxylic communities. Wood density was an important attribute in the host-use patterns for several species of saproxylic beetles, but no relationship was found between snag availability within stands and abundance of beetles strongly linked to either black spruce or balsam fir. Our study outlines the relative contribution of tree compositional diversity to saproxylic species, while highlighting the contribution of black spruce and balsam fir to animal diversity in old-growth boreal forests.  相似文献   

20.
Little is known about the importance of the forest overstorey relative to other factors in controlling the spatial variability in understorey species composition in near-natural temperate broadleaved forests. We addressed this question for the 19 ha ancient forest Suserup Skov (55°22′ N, 11°34′ E) in Denmark, one of the few old-growth temperate broadleaved forest remnants in north-western Europe, by inventorying understorey species composition and environmental conditions in 163 100 m2 plots. We use unconstrained and constrained ordinations, variation partitioning, and Indicator Species Analysis to provide a quantitative assessment of the importance of the forest overstorey in controlling understorey species composition. Comparison of the gradients extracted by unconstrained and constrained ordinations showed that the main gradients in understorey species composition in our old-growth temperate broadleaved forest remnant are not caused by variability in the forest overstorey, but are related to topography and soil, edge effects, and unknown broad-scale factors. Nevertheless, overstorey-related variables uniquely accounted for 15% of the total explained variation in understorey species composition, with the pure overstorey-related (Rpo), topography and soil (Rpt), edge and anthropogenic disturbance effects (Rpa), and spatial (Rps) variation fractions being of equal magnitude. The forward variable selection showed that among the overstorey-related variables understorey light availability and to a lesser extent vertical forest structure were most important for understorey species composition. No unique influence of overstorey tree species identity could be documented. There were many indicator species for high understorey light levels and canopy gap centres, but none for medium or low light or closed canopy. Hence, no understorey species behaved as obligate shade plants. Our study shows that, the forest overstorey has a weak control of understorey species composition in near-natural broadleaved forest, in contrast to results from natural and managed forests comprising both conifer and broadleaved species. Nevertheless, >20% of the understorey species found were indicators of high light conditions or canopy openings. Hence, variability in canopy structure and understorey light availability is important for maintaining understorey species diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号