首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Litopenaeus vannamei juveniles (total length 22+/-2.4 mm) were exposed to different concentrations of ammonia-N (un-ionized plus ionized ammonia as nitrogen), using the static renewal method at different salinity levels of 15 per thousand, 25 per thousand and 35 per thousand at pH 8.05 and 23 degrees C. The 24, 48, 72, 96 h LC50 values of ammonia-N on L. vannamei juveniles were 59.72, 40.58, 32.15, 24.39 mg l(-1) at 15 per thousand; 66.38, 48.83, 43.17, 35.4 mg l(-1) at 25 per thousand; 68.75, 53.84, 44.93, 39.54 mg l(-1) at 35 per thousand, respectively. The 24, 48, 72, 96 h LC50 values of NH(3)-N (un-ionized ammonia as nitrogen) were 2.95, 2.00, 1.59, 1.20 mg l(-1) at 15 per thousand; 2.93, 2.16, 1.91, 1.57 mg l(-1) at 25 per thousand; 2.78, 2.18, 1.82, 1.60 mg l(-1) at 35 per thousand, respectively. As the salinity decreased from 35 per thousand to 15 per thousand, susceptibility of ammonia-N increased by 115%, 132%, 140% and 162% after 24, 48, 72 and 96 h exposure, respectively. The "safety level" for rearing L. vannamei juveniles was estimated to be 2.44, 3.55, 3.95 mg l(-1) for ammonia-N and 0.12, 0.16, 0.16 mg l(-1) for NH(3)-N in 15 per thousand, 25 per thousand and 35 per thousand, respectively.  相似文献   

2.
温度和盐度对蒙古裸腹Sou种群内禀增长能力的影响   总被引:17,自引:5,他引:12  
报道了蒙古裸腹Sou(Moina mongolica)在20℃-33℃温度和5-40ppt盐度条件下和种群内禀增长率(rm),结果表明,20℃-30℃范围内蒙古裸腹Sourm随温度升高,超过30℃后继续升高,rm显著降低,在低盐度下蒙古裸腹Sou的种群增长能力相对较强,盐度为10ppt时rm最高,20-40ppt范围内Sou的rm差别不明显,本实验表明,25℃-30℃和10ppt分别是蒙古裸腹Sou种群增长较快的温度和盐度条件,在海水中长期培养对蒙古裸腹Sou的种群增长能力不会产生明显的不良影响。  相似文献   

3.
Penaeus japonicus (15.7 ± 1.4 g) were exposed individually in 30 ppt seawater to 0.01 (control), 5, 10, 20 and 50 mg/l nitrite-N for 24 hr. Haemolymph ammonia, urea, nitrite and whole shrimp ammonia-N excretion and nitrite-N uptake were then determined. Ammonia excretion of P. japonicus increased with increased ambient nitrite, and with a concomitant decrease of haemolymph ammonia, as occurring increased concentrations of nitrite. Concentrations of nitrite-N and urea-N in the haemolymph of shrimp increased with increased ambient nitrite-N. However, no urea-N excretion was observed for shrimp exposed to any nitrite treatments.  相似文献   

4.
中华绒螯蟹在不同pH值环境下的氮排泄   总被引:2,自引:0,他引:2  
于敏  卢韫  王顺昌 《生物学杂志》2007,24(6):30-33,4
研究不同pH值环境对中华绒螯蟹(Eriocheir sinensis)氮排泄的影响。本研究采用直接浸浴法测定中华绒螯蟹在pH值4.5,6.0,7.5,9.0和10.5条件下的氮排泄。结果表明,在pH值9.0及其以下时,氨氮排泄无显著变化,当pH值升高到10.5时,氨氮排泄急剧下降,其排泄过程具有不连续性;亚硝酸氮、尿素氮和有机氮的排泄随pH值的升高而增加;硝酸氮的排泄同亚硝酸氮类似,但在pH值10.5时,呈下降状态;总氮的排泄随pH值升高而降低。在pH值4.5时,中华绒螯蟹的氨氮排泄量占总氮排泄量的91.0%,随着pH值上升,氨氮占总氮排泄的比例下降,而包括有机氮在内的其它形式的含氮化合物的排泄比例上升。因此.我们认为当环境pH值在9.0以下的范围波动时,不会对中华绒螯蟹的氨氮排泄带来不利影响,但过高的pH值可能会阻碍氮排泄。  相似文献   

5.

This study assesses the effect of temperature and fluctuations in salinity on the nitrogen excretion and osmoregulation of Penaeus vannamei juveniles to determine the lowest stress combination so that these can be used to optimize production of the Mexican strain in culture. The ammonium excretion rate of juveniles acclimated to 20, 24, 28 and 32°C was measured. Fluctuating salinity levels were applied to these animals in a sequence of 40%o, 33, 25, 18, 11, 18, 25, 33 and back to 40%o. The results indicate that when the salinity was reduced from 40 to 11%> the ammonium excretion of the shrimp was reduced. The osmotic concentration of the animals was hyposmotic as the salinity decreased from 40 to 25%o, hyperosmotic during the 18–11–18 in %> interval and hyposmotic as the salinity increased from 25 to 40%> again. The range of isomotic points over this range of salinity was 712–777mmol Kg‐1. The ammonium excretion of P. vannamei exposed to these experimental conditions can be attributed to the process of osmoregulation because excretion was increased when the shrimp were hyper‐regulating and reduced when they were hypo‐regulating. Based on our results, the animals experience the lowest stress in a temperature between 27 to 30°C and a salinity close to the isosmotic point between 25 ‐ 27%o. We propose that this should prove to be the optimal temperature and salinity regime for culturing the Mexican strain of P. vannamei.  相似文献   

6.
The horseshoe crab Limulus polyphemus spawns in the mid- to upper intertidal zone where females deposit eggs in nests below the sediment surface. Although adult crabs generally inhabit subtidal regions of estuaries with salinities from 5 to 34 ppt, developing embryos and larvae within nests are often exposed to more extreme conditions of salinity and temperature during summer spawning periods. To test whether these conditions have a negative impact on early development and survival, we determined development time, survival, and molt cycle duration for L. polyphemus embryos and larvae raised at 20 combinations of salinity (range: 30-60 ppt) and temperature (range: 25-40 degrees C). Additionally, the effect of hyperosmotic and hypoosmotic shock on the osmolarity of the perivitelline fluid of embryos was determined at salinities between 5 and 90 ppt. The embryos completed their development and molted at salinities below 60 ppt, yet failed to develop at temperatures of 35 degrees C or higher. Larval survival was high at salinities of 10-70 ppt but declined significantly at more extreme salinities (i.e., 5, 80, and 90 ppt). Perivitelline fluid remained nearly isoosmotic over the range of salinities tested. Results indicate that temperature and salinity influence the rate of crab development, but only the extremes of these conditions have an effect on survival.  相似文献   

7.
Swimming endurance of whiteleg shrimp, Litopenaeus vannamei exposed to various temperatures (15, 20, and 25 degrees C) and salinities (15, 32, and 40 per thousand) was determined in a swimming channel against one of five flow velocities (5.41, 6.78, 8.21, 10.11, and 11.47 cm s(-1)) for up to 9000 s. No shrimp swam the full 9000 s throughout the experiment. The swimming endurance decreased as swimming speed was increased at any of the temperatures and salinities tested and was significantly affected by temperature and salinity (P<0.05). The power model (nu x t(b) = a) showed a better fit to the relationship between swimming endurance (t, in s) and swimming speed (nu, in cm s(-1)) at any of the temperatures and salinities tested. The swimming ability index (SAI), defined as SAI = integral(0)(9000) vdt x 10(-4) (cm), was found to be temperature- and salinity-dependent in L. vannamei. The optimum temperature and salinity and corresponding maximum SAI were Topt = 21.3 degrees C and SAI(max21.3) = 7.37 cm; Sopt = 27.6 per thousand and SAI(max27.6) = 7.47 cm, respectively. The range of temperatures and salinities within which SAI is >90% of the maximum was estimated between 17.6 and 24.9 degrees C and between 18.5 and 36.7 per thousand, respectively. The results suggest that the power model fits well to the observed endurance estimates and the SAI is a good index to quantitatively describe the overall swimming ability of L. vannamei. Furthermore, temperature and salinity can limit the swimming performance of L. vannamei.  相似文献   

8.
This study describes the effects of different salinities on oxygen consumption, ammonia excretion, osmotic pressure, apparent heat increment, postprandial nitrogen excretion, and oxygen:nitrogen ratio in juvenile common snook Centropomus undecimalis. Oxygen consumption of fish fasting and fish feeding was statistically different in relation with salinity. Fish maintained at 0, 25, and 35 ppt invested more energy processing feed than fish maintained at 12 ppt. Fasting fish had lower ammonia excretion than feeding fish and excretion was reduced at high salinities. Snook can change the energetic substrate in function with salinity, from a mixture of protein and lipids and carbohydrates at 35 ppt to a more acute preference for proteins at lower salinities. This species changes osmotic plasma concentrations at extreme experimental salinities. The different salinities were the snook inhabits (0-36 ppt), have a direct effect on the physiology, inducing changes on the oxygen consumption, nitrogen excretion, changes on the energetic substrate and plasma osmotic pressure.  相似文献   

9.
栉孔扇贝耗氧率和排氨率的研究   总被引:36,自引:0,他引:36  
1999年 4~ 6月 ,采用室内实验生态学方法对栉孔扇贝的耗氧率和排氨率进行了研究 .结果表明 ,在适宜的温度范围内 ,栉孔扇贝的耗氧率和排氨率均与温度成正比 ,而与体重呈负相关关系 .在实验室温度 (8~ 2 8℃ )条件下 ,栉孔扇贝的耗氧率为 0 .48~ 9.0 9mg·g-1·h-1,排氨率为 0 .0 5~ 1 0 1mg·g-1·h-1.其中耗氧率在 2 3℃时达到最高值 ,2 8℃时开始下降 ,而排氨率则呈持续升高趋势 .栉孔扇贝的日常代谢明显高于标准代谢 ,耗氧率和排氨率平均值分别提高约 35 .8%和 75 .9% .  相似文献   

10.
This study investigates the physiological responses in the hermatypic coral Galaxea fascicularis exposed to salinity stress (from 37 ppt to 15 ppt) for 12 h, combined effects of reduced salinity (from 37 ppt to 20 ppt) and two temperatures (26 °C and 32 °C) for 12 h and combined effects of reduced salinity (from 37 ppt to 25 ppt) and two temperatures (26 °C and 29.5 °C) for 10 d. The results demonstrate that the coral is tolerant to 12 h exposure to extremely low salinity (15 ppt). The study also shows that combined effects of temperature and low salinity aggravate the damage on the photosynthesis of the symbiotic dinoflagellates in 12 h exposure to 20 ppt sea water. This study suggests that high temperature (29.5 °C) aggravates the damage of trivially low salinity (30 ppt) on the holobiont (the coral and its symbiotic dinoflagellates) in 10 d exposure. However, high temperature (29.5 °C) may have an antagonistic effect between temperature and low salinity (25 ppt) on metabolism of the holobiont. Based on the above results, we suggest that (1) the true mechanism of corals exposed to combined effects of low salinity and high temperature is complicated. This calls for more studies on different corals. Future studies should aim at investigating long-term low-level stress in order to simulate in situ conditions more accurately; (2) when corals exposed to extremely severe combined stressors for short-term or trivially severe stressors for relative long-term, the combined effects of two stressors (such as low salinity and high temperature) may be negative, otherwise, the effects may be additive.  相似文献   

11.
AIMS: To determine the effect of interacting conditions of water activity (aw, 0.99-0.85), temperature (15, 25 degrees C) and time (40 days) on growth and production of the mycotoxins deoxynivalenol (DON) and nivalenol (NIV) by Fusarium culmorum on a wheat-based agar medium. METHODS AND RESULTS: Fusarium culmorum grew optimally at 0.995aw and minimally at 0.90 at both 15 and 25 degrees C. No growth was observed at <0.90aw. Overall, temperature, aw and their interaction had a statistically significant effect on the growth rate of F. culmorum. Production of both DON and NIV were over a much narrower range (0.995-0.95aw) than that for growth. The highest concentrations of DON and NIV levels were produced at 0.995aw and 0.981aw at 25 degrees C, respectively, after 40 days of incubation. Statistically, aw, temperature and incubation time, and aw x temperature and temperature x incubation time had a statistically significant effect on DON/NIV production. CONCLUSIONS: This is the first detailed report on the two-dimensional environmental profiles for DON/NIV production by F. culmorum in the UK. SIGNIFICANCE AND IMPACT OF THE STUDY: As part of a hazard analysis critical control point (HACCP) approach, this type of information is critical in monitoring critical control points for prevention of DON/NIV entering the wheat production chain.  相似文献   

12.
This study investigates the physiological responses in the hermatypic coral Galaxea fascicularis exposed to salinity stress (from 37 ppt to 15 ppt) for 12 h, combined effects of reduced salinity (from 37 ppt to 20 ppt) and two temperatures (26 °C and 32 °C) for 12 h and combined effects of reduced salinity (from 37 ppt to 25 ppt) and two temperatures (26 °C and 29.5 °C) for 10 d. The results demonstrate that the coral is tolerant to 12 h exposure to extremely low salinity (15 ppt). The study also shows that combined effects of temperature and low salinity aggravate the damage on the photosynthesis of the symbiotic dinoflagellates in 12 h exposure to 20 ppt sea water. This study suggests that high temperature (29.5 °C) aggravates the damage of trivially low salinity (30 ppt) on the holobiont (the coral and its symbiotic dinoflagellates) in 10 d exposure. However, high temperature (29.5 °C) may have an antagonistic effect between temperature and low salinity (25 ppt) on metabolism of the holobiont. Based on the above results, we suggest that (1) the true mechanism of corals exposed to combined effects of low salinity and high temperature is complicated. This calls for more studies on different corals. Future studies should aim at investigating long-term low-level stress in order to simulate in situ conditions more accurately; (2) when corals exposed to extremely severe combined stressors for short-term or trivially severe stressors for relative long-term, the combined effects of two stressors (such as low salinity and high temperature) may be negative, otherwise, the effects may be additive.  相似文献   

13.
AIMS: Comparisons were made of the effect of water activity (a(w) 0.99-0.85), temperature (15 and 25 degrees C) and time (40 days) on growth/production of the trichothecene mycotoxin deoxynivalenol (DON) by Fusarium culmorum and Fusarium graminearum on wheat grain. METHODS AND RESULTS: Studies examined colonization of layers of wheat grain for 40 days. Fusarium culmorum grew optimally at 0.98 a(w) and minimally at 0.90 a(w) at 15 and 25 degrees C. Colonization by F. graminearum was optimum at 0.99 a(w) at 25 and 0.98 a(w) at 15 degrees C. Overall, temperature, a(w) and their interactions significantly affected growth of both species. Production of DON occurred over a much narrower range (0.995-0.96 a(w)) than that for growth. Optimum DON was produced at 0.97 and 0.99 a(w) at 15 and 25 degrees C, respectively, by F. culmorum, and at 0.99 a(w) and 15 degrees C and 0.98 a(w) at 25 degrees C for F. graminearum. Statistically, one-, two- and three-way interactions were significant for DON production by both species. CONCLUSIONS: This suggests that the ecological requirements for growth and mycotoxin production by such species differ considerably. The two-dimensional profiles on grain for DON production by these two species have not been examined in detail before. SIGNIFICANCE AND IMPACT OF THE STUDY: This type of information is essential for developing climate-based risk models for determining the potential for contamination of cereal grain with this trichothecene mycotoxin. It will also be useful information for monitoring critical control points in prevention of such toxins entering the wheat production chain.  相似文献   

14.
Juvenile shrimp were individually exposed during 24 h to 0.007 (control), 0.36, 1.07, and 2.14 mmol/l total ammonia-N at 28 degrees C and 39 ppt salinity. After 22 h of ammonia-N exposure, oxygen consumption was measured for 2 h, and then hemolymph, hepatopancreas, and muscle tissues were sampled. Oxygen consumption, and levels of lactate and glycogen in the hepatopancreas increased significantly at the highest ammonia-N concentration. Concentration of oxyhemocyanin, acylglycerol, and cholesterol in hemolymph, and lactate in muscle decreased significantly in the group exposed to the highest ammonia levels. The changes observed in hemolymph and tissue metabolic fuels suggest a reduced use of carbohydrate through anaerobic metabolism and an increase in the use of lipids to satisfy the metabolic demand.  相似文献   

15.
Arginase specific activity, hemolymph ammonia, urea and uric acid levels and nitrogenous excretion were measured in Kuruma shrimp Marsupenaeus japonicus (7.29±1.16 g) acclimated to different salinities of 18‰, 26‰, 34‰ and 42‰. Arginase activity in the gill, midgut, hepatopancreas and muscle were higher and lower for the shrimp in 42‰ and 18‰, respectively. Arginase specific activity of hemolymph was higher at 34‰. Hemolymph ammonia, urea and uric acid increased directly with salinity, and excretions of total nitrogen (total-N), organic nitrogen (organic-N) and urea-N increased directly with salinity. However, ammonia-N excretion and nitrite-N excretion were inversely related to salinity. Ammonia-N accounted for 90.9%, 75.0%, 67.9% and 38.5% of total-N, whereas urea-N accounted for 3.1%, 4.5%, 7.9% and 10.9%, and organic accounted for 4.2%, 19.8%, 23.1% and 50.4% of total-N excreted by the shrimp in 18‰, 26‰, 34‰ and 42‰, respectively. Significantly higher levels of hemolymph urea and uric acid together with an increase in arginase activity indicated that ureogenesis and uricogenesis are activated for M. japonicus in hyperosmotic conditions.  相似文献   

16.
Osmoregulation in Litopenaeus vannamei was studied in a factorial experiment at four temperatures (20, 24, 28 and 32 degrees C) and six salinities (10, 16, 22, 28, 34 and 40 per thousand). The isosmotic related points for 20, 24, 28, and 32 degrees C were 754, 711, 822, and 763 mmol/kg, respectively. This species hyperregulates between at salinities of 10 and 20 per thousand and hyporegulates between 20 and 40 per thousand. The isosmotic point in L. vannamei exposed to constant salinities changed in relation to temperature from 717 to 823 mmol/kg. For these experimental conditions, the T-S combination of 32 degrees C and 28 per thousand produced the best growth.  相似文献   

17.
Subadult Penaeus monodon (21.03±3.19 g) were exposed individually in sea water (30 mg·ml-1) to 0.02 (control), 1.04, 5.02, 10.11 and 20.06 mg·l-1 nitrite-N for 24h. Hemolymph pH, partial pressures of oxygen and carbon dioxide, bicarbonate concentration, oxyhemocyanin and protein levels, and whole animal ammonia-N excretion and nitrite-N uptake were determined. Ammonia-N excretion and hemolymph oxygen partial pressure increased, whereas hemolymph pH, HCO 3 - , oxyhemocyanin, protein and the ratio of oxyhemocyanin/protein levels decreased with increasing ambient nitrite-N. It is suggested that accumulated nitrite of P. monodon following exposure to ambient nitrite causes reduction of oxyhemocyanin, protein and the ratio of oxyhemocyanin/protein in the hemolymph, and affects nitrogen metabolism and acid-base balance at low hemolymph pH.Abbreviations bw body weight - EC50 concentration reducing growth rate by 50% that of controls - LC50 median lethal concentration - nitrite-N nitrite concentration measured as nitrogen - PO2 partial pressure of O2 in hemolymph - PCO2 partial pressure of CO2 in hemolymph - sw sea water - ww wet weight  相似文献   

18.
1. Nonfaecal and faecal losses of Lichia amia were determined under controlled laboratory conditions at 15, 20 and 25 degrees C. 2. Ammonia-N was the major form of nonfaceal nitrogen excreted by L. amia and excretion rates were temperature-dependent. 3. The mass component b of the mass/ammonia-N excretion equation was temperature-independent and ranged from 0.63-0.65 and from 0.66-0.73 for starved and fed fish, respectively. 4. Mean nonfaecal energy loss (exogenous plus endogenous) was 3.78 +/- 1.99% of the ingested energy. 5. Assimilation efficiencies varied between individual fish and ranged from 61.24-93.79% (mean 80.76 +/- 7.14%) for dry matter and 87.52-98.22% (mean 94.09 +/- 2.22%) for energy. 6. The mean nonfaecal and faecal energy loss was 23.11 +/- 1.67% of the ingested energy.  相似文献   

19.
Apoptosis plays a critical role in development and maintenance of multicellular organisms. It has also been described as an anti-viral mechanism in both insects and vertebrates. In fact, to escape the immune system and to increase their spread, some viruses such as baculovirus produce anti-apoptotic molecules. Conversely, a recent report showing a positive correlation between the number of apoptotic cells and the severity of white spot syndrome virus (WSSV) infection in Penaeus monodon suggested that apoptosis might be the cause of death in viral-infected shrimp. Searching for the mechanisms involved in the beneficial effect of hyperthermia for WSSV-infected Litopenaeus vannamei (also called Penaeus vannamei) and considering that hyperthermia increases apoptosis in other experimental models, we investigated the presence of apoptosis by Tdt-mediated dUTP nick-end label (TUNEL), from 4 of 168 h in 3 groups of 50 L. vannamei juveniles. Group 1 consisted of experimentally infected shrimp (intramuscular injection of 3 x 10(7) viral copies) kept at 25 degrees C, Group 2 of similarly infected shrimp kept at 32 degrees C and Group 3 of uninjected shrimp kept at 32 degrees C. Apoptosis was found only in WSSV-infected individuals. Shrimp at 25 degrees C were positive for apoptotic cells in 48 (16%) of their examined tissues or organs, compared to 62 (21%) for those at 32 degrees C. Moreover, shrimp at 32 degrees C also had a significantly higher overall mean apoptotic index (AI) than shrimp at 25 degrees C (p < 0.05). Comparison of mean AI at 72, 96 and 120 h post-infection showed that individuals at 32 degrees C presented a significantly higher values than those at 25 degrees C. These results suggested that hyperthermia might facilitate apoptosis in WSSV-infected L. vannamei and might be one of the mechanisms responsible for increased survival of infected shrimp maintained at 32 degrees C.  相似文献   

20.
The effects of temperature, pH, and NaCl concentrations on the infectivity of zoospores of Leptolegnia chapmanii (Argentine isolate) were determined for Aedes aegypti and Culex pipiens under laboratory conditions. Zoospores of L. chapmanii were infectious at temperatures between 10 and 35 degrees C but not at 5 or 40 degrees C. At the permissive temperatures, mortality rates in young instars were much higher than in older instars and larvae of Ae. aegypti were more susceptible to L. chapmanii than larvae of Cx. pipiens. At 25 degrees C, Ae. aegypti larvae challenged with L. chapmanii zoospores resulted in 100% infection at pH levels ranging from 4 to 10. Larvae of Cx. pipiens exposed to similar pH and zoospore concentrations resulted in increasing mortality rates from 62% to 99% at pH 4 to 7, respectively, and then decreased to 71% at pH 10. Aedes aegypti larvae exposed to L. chapmanii zoospores in NaCl concentrations ranging from 0 to 7 parts per thousand (ppt) at 25 degrees C resulted in 100% mortality while mortality rates for Cx. pipiens decreases from 96% in distilled water to 31.5% in water with 6 ppt NaCl. Control Cx. pipiens larvae died when exposed at a NaCl concentration of 7 ppt. Vegetative growth of L. chapmanii was negatively affected by NaCl concentrations. These results have demonstrated that the Argentinean isolate of L. chapmanii tolerated a wide range of temperatures, pH, and salinity, suggesting that it has the potential to adapt to a wide variety of mosquito habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号