首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual expression in andromonoecious species—those in which a single individual can bear both staminate and hermaphroditic flowers—may vary among reproductive events in the same plant, among individuals and across populations. This variation influences, in turn, the individual contribution of hermaphroditic plants via male and female fitness functions (i.e., Lloydʼs phenotypic gender). However, temporal variation in sexual expression in andromonoecious species and its relationship with seasonal changes in climatic conditions remain poorly understood. Here we analyze floral attributes, visitors and variation in sexual expression in three populations of Solanum lycocarpum A. St. -Hil. Seasonality in the production of floral types, the mating system and floral visitors were also investigated. Hermaphroditic flowers produced more pollen grains, but the pollen of staminate flowers had higher viability. Only hermaphroditic flowers produced fruits, and ovules in staminate flowers were sterile. Solanum lycocarpum is mainly pollinated by large bees with the ability to vibrate flowers. Phenotypic gender varied throughout the year, and the seasonal production of staminate flowers is associated with the local climate. We suggest that the higher and seasonally variable relative abundance of staminate flowers compared to the low and uniform production of hermaphroditic flowers may be explained by (a) the very high energetic costs incurred in producing large fruits, which in turn make hermaphroditic flower production very costly, and (b) the potentially lower energy expenditure of the smaller staminate flowers with reduced pistils and non-viable ovules that allow them to rapidly respond to climate variability.  相似文献   

2.
Ren Y  Li HF  Zhao L  Endress PK 《Annals of botany》2007,100(2):185-193
BACKGROUND AND AIMS: Based on molecular phylogenetic studies, the unigeneric family Eupteleaceae has a prominent phylogenetic position at or near the base of Ranunculales, which, in turn, appear at the base of eudicots. The aim of the present paper is to reveal developmental features of the flowers and to put the genus in a morphological context with other basal eudicots. METHODS: Flowers in all developmental stages of Euptelea pleiosperma were collected in the wild at intervals of 7-10 d in the critical stages and studied with a scanning electron microscope. KEY RESULTS: Remnants of a perianth are lacking throughout flower development. Floral symmetry changes from monosymmetric to asymmetric to disymmetric during development. Asymmetry is expressed in that the sequence of stamen initiation is from the centre to both lateral sides on the adaxial side of the flower but starting from one lateral side and proceeding to the other on the abaxial side. Despite the pronounced floral disymmetry, a dimerous pattern of floral organs was not found. The carpel primordia arise between the already large stamens and alternate with them. Stamens and carpels each form a somewhat irregular whorl. The carpels are ascidiate from the beginning. The stigma differentiates as two crests along the ventral slit of the ovary. The few lateral ovules alternate with each other. CONCLUSIONS: Although the flowers have some unusual autapomorphies (wind pollination, lack of a perianth, pronounced disymmetry of the floral base, long connective protrusion, long temporal gap between androecium and gynoecium initiation, small space for carpel initiation), they show some plesiomorphies at the level of basal eudicots (free carpels, basifixed anthers, whorled phyllotaxis), and thus fit well in Ranunculales.  相似文献   

3.
Woonyoungia septentrionalis (Dandy) Law is aceae. The floral morphology and structure of the species a dioecious species with unisexual flowers in Magnoliare conspicuously different from other species and are important to the study of floral phylogeny in this family. The floral anatomy and ontogeny were investigated to evaluate the systematic position of W. septentrionalis, using scanning electron microscopy and light microscopy. All of the floral organs are initiated acropetally and spirally. The carpels are of conduplicated type without the differentiation of stigma and style. The degenerated stamens in the female flowers have the same structures as the normal stamens at the earlier developmental stages, but they do not undergo successive development and eventually degenerate. The male floral apex was observed to have the remnants of carpels in a few investigated samples. As the bisexual flower features could be traced both in the male and female flowers in W. septentrionalis, it suggests that the flower sex in Magnoliaceae tends toward unisexual. As well as the unisexual flowers, the reduced tepals and carpels and concrescence of carpels conform to the specialized tendency in Magnoliaceae, which confirms the derived position of W. septentrionalis in this family. As the initiation pattern of floral parts of W. septentrionalis is very similar to other species in this family, it needs further investigation and especially comparison with species in Kmeria to evaluate the separation of Woonyoungia.  相似文献   

4.
Sex expression (the proportions of hermaphrodite and staminate flowers produced) of the andromonoecious species Solatium hirtum is labile, and this lability of whole plant sex expression is due to labile sex expression of individual floral buds. In this paper I examine the developmental processes that underlie the differences in floral sex expression of hermaphrodite and staminate flowers of Solarium hirtum, focusing particularly on the processes responsible for the observed lability of floral sex expression. Differences in bud growth rate and relative growth of floral organs in these buds are evident at about the time of megasporocyte meiosis (11–12 days before anthesis). However, gynoecial sterility in staminate buds does not occur until just 6–7 days before anthesis. At this time, abnormalities in ovule development occur in staminate buds: the ovules begin to appear necrotic, the integumentary tapetum collapses, and the megagametophytes of many ovules cease normal development. These observations are consistent with the predictions of labile floral development.  相似文献   

5.
The development of staminate and pistillate flowers in the dioecious tree species Pistacia vera L. (Anacardiaceae) was studied by scanning electron microscopy with the objective of determining organogenetic patterns and phenology of floral differentiation. Flower primordia are initiated similarly in trees of both sexes. Stamen and carpel primordia are initiated in both male and female flowers, and the phenology of organ initiation is essentially identical for flowers of both sexes. Vestigial stamen primordia arise at the flanks of pistillate flower apices at the same time functional stamens are initiated in the staminate flowers. Similarly, a vestigial carpel is initiated in staminate flowers at the same time the primary, functional carpel is initiated in pistillate flower primordia. Differences between the two sexes become apparent early in development as, in both cases, development of organs of the opposite sex becomes arrested at the primordial stage. Male flowers produce between four and six mature functional stamens and female flowers produce a gynoecium with one functional and two sterile carpels.  相似文献   

6.
The degree of sexual dimorphism in flowers and inflorescences can be evaluated early in flower development through the study of floral organ size co-variation. In the present work, the gynoecium-androecium size relationship was studied to assess the degree of sexual expression in flowers and inflorescences of the andromonoecious shrub Caesalpinia gilliesii. The co-variation pattern of floral organ sizes was compared between small and large inflorescences, under the hypothesis that inflorescence size reflected differential resource availability. Also, staminate and perfect flowers were collected from three populations and compared on the basis of gynoecium, ovule length, filament length, pollen size and number. The obtained results indicated that staminate and perfect flowers differed only in the gynoecium and ovule length, whereas filament length, pollen size, and number varied across populations. The gynoecium size was smaller and its variability was much higher in staminate than in perfect flowers, as explained by a recent hypothesis about pollinator-mediated gynoecium size selection acting upon perfect flowers. The analysis of the gynoecium-androecium size relationship during flower development, revealed a dissociation of gynoecium growth relative to other floral structures in some buds. Lower gynoecium-androecium regression slopes and smaller gynoecia length characterized smaller inflorescences, thus reflecting the fact that sexual expression was more male-biased. This trend is in agreement with a differential resource-related response at the inflorescence level, however, post-mating resource allocation and the inclusion of other modular levels may also help us to understand the variation in sexual dimorphism in this species.  相似文献   

7.
Ochnaceae s.l. (Ochnaceae, Quiinaceae and Medusagynaceae), one of the well‐supported subclades of the large order Malpighiales retrieved so far in molecular phylogenetic studies, were comparatively studied with regard to floral structure using microtome section series and scanning electron microscopy (SEM). Floral morphology, anatomy and histology also strongly reflect this close relationship. Potential synapomorphies of the subclade include: flowers nectarless, sepals of different sizes within a flower, petals not retarded in development and forming the protective organs of advanced floral buds, petal aestivation contort, petals with three vascular traces, petals reflexed over the sepals and directed toward the pedicel, polystemony, anthers almost or completely basifixed, gynoecium often with more than five carpels, short gynophore present, styles separate for at least their uppermost part and radiating outwards, suction‐cup‐shaped stigmas, vasculature forming a dorsal band of bundles in the upper stylar region, gynoecium epidermis with large, radially elongate cells, ovules either weakly crassinucellar or incompletely tenuinucellar with an endothelium, abundance of tanniferous tissues and sclerenchyma in floral organs. The most strongly supported subclade of two of the three families in molecular analyses, Quiinaceae and Medusagynaceae, is also particularly well supported by floral structural features, including the presence of functionally and morphologically unisexual flowers, a massive thecal septum that persists after anther dehiscence, styles radiating outward from the ovary, two lateral ovules per carpel, positioned one above the other, conspicuous longitudinal ribs on the ovary wall at anthesis, and a ‘false endothelium’ on the nucellus at anthesis. Additionally, the group fits well in Malpighiales and further emphasizes the relationship of Malpighiales with Celastrales and Oxalidales, and thus the unity of the COM clade. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 299–392.  相似文献   

8.
Insects use floral signals to find rewards in flowers, transferring pollen in the process. In unisexual plants, the general view is that staminate (male) and pistillate (female) flowers obtain conspecific pollen transfers by advertising their rewards with similar floral signals. For female plants lacking food rewards, this can lead to floral mimicry and pollination by deceit. In this study, we challenge this view by presenting evidence for different rewards offered by flowers on females and males, as a mechanism promoting sexual dimorphism in Leucadendron xanthoconus (Proteaceae), a clearly sexually dimorphic shrub. The tiny beetle pollinators Pria cinerascens (Nitidulidae) depend entirely on the plants they pollinate for survival and reproduction. Male flowers provide mating and egglaying sites, and food for adults and larvae. Female flowers lack nectar and function to shelter pollinators from rain. Their flower heads have cup‐shaped display leaves, and are more closed than are those in males. On rainy days, flowers on females received 30% more visits than did flowers on males, and 90% more than they did on sunny days. When we removed display leaves in females, intact flower heads received 14 times more P. cinerascens visits than did manipulated flower heads, indicating that the cup shape attracts the beetles. In both sexes, having many flowers increased the probability of visits and the number of P. cinerascens visiting a plant. In males, the number of larvae was positively correlated with floral‐display size, while in females, seed set (pollen transfers) showed no relationship with floral‐display size. Ninety‐five per cent of the ovules received pollen and 52% matured into seeds. We explain the sexual dimorphism in L. xanthoconus as a result of an intimate partnership with P. cinerascens pollinators, in conjunction with a rainy climate. Pollinators favour large male floral displays, because they offer a reliable food source for adults and larvae. Frequent rains drive the P. cinerascens to leave males in search of the protection offered by females. Because females offer shelter, an essential resource that is not offered by male plants, they receive sufficient pollen independent of their floral‐display size. This pollination system promotes the evolution of sexually dimorphic floral signals, guiding pollinators to different rewards in male and female flowers. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85 , 97–109.  相似文献   

9.
花对称性的研究进展   总被引:1,自引:0,他引:1  
花对称性(floral symmetry)是被子植物花部结构的典型特性之一,主要有辐射对称和两侧对称两种形式。被子植物初始起源的花为辐射对称,而两侧对称的花则是由辐射对称的花演变而来。两侧对称的花部结构是被子植物进化过程中的一个关键的革新,被认为是物种形成和分化的关键推动力之一。近年来有关花对称性的形成和进化机制的研究在植物学科的不同领域均取得了长足的进展。本文综述了花对称性在发育生物学、传粉生物学、生殖生态学及分子生物学等方面的研究进展。两侧对称形成于被子植物花器官发育的起始阶段,随后贯穿整个花器官发育过程或者出现在花器官发育后期的不同阶段。花器官发育过程中一种或多种类型器官的败育以及特异性花器官结构的形成是两侧对称形成的主要原因。研究表明,在传粉过程的不同阶段,花对称性均会受到传粉昆虫介导的选择作用。相比辐射对称的花,两侧对称的花提高了特异性传粉者的选择作用,增加了花粉落置的精确性,进而确保了其生殖成功。花对称性的分子机理已经在多种双子叶植物中进行了深入的研究。现有的证据表明,CYC同源基因在花对称性的分子调控方面起着非常重要的作用。花对称性在被子植物进化过程中是如何起源,与其他花部构成之间是否协同作用,一些不符合一般模式的科属其花对称性的形成机制等都是今后要进一步研究的命题。  相似文献   

10.
The breeding system and the embryology of Consolea spinosissima, a tree-like opuntioid endemic to Jamaica, were investigated. Morphological and embryological studies revealed that the species is subdioecious, with three sexual morphs present in the 150 × 120 m plot studied at Hellshire Hills, Jamaica. The female morph has pistillate flowers with open stigma lobes, no pollen grains, and sets fruit. The male morph has cryptic staminate flowers with closed stigma lobes, viable pollen grains, and a nonfunctional gynoecium that does not set seed. The weak hermaphrodite morph has low fruit set and "perfect" flowers that superficially resemble the functionally staminate flowers of the male morph. These perfect flowers reach anthesis with viable pollen grains, with no or only a few functional ovules, and with the style supporting pollen tube growth. Embryological studies showed that the critical stage for sex determination occurs earlier in pistillate than in staminate and perfect flowers. Anthers of pistillate flowers abort prior to microspore tetrad formation, whereas ovules of the staminate and perfect flowers degenerate after the complete maturation of the embryo sac. Based on flower structure and embryological data, we hypothesize that the ancestor of C. spinosissima is/was hermaphroditic.  相似文献   

11.
The floral longevity of unpollinated, hand self-, and hand cross-pollinated flowers was compared in two varieties of Impatiens hypophylla, which contrasts with their mating systems. When flowers were emasculated and hand-pollinated every day after anthesis, their longevity was reduced. In the absence of emasculation and hand pollination, the staminate phase of the flowers of both varieties was 1 d longer. After the staminate phase, flowers of the outcrossing variety dropped their androecium, exposing the stigma and initiating the pistillate phase, which lasted for ~2 d. In contrast, flowers of the mixed-mating variety self-pollinated autonomously and then terminated their flowering. Under great seasonal variation in the pollinator visitation rate, which was observed in their natural populations, the outcrossing variety should maximize expected outcross success through the phenology of floral sex phases, whereas the mixed-mating variety self-pollinated ovules that were not outcrossed within the staminate phase. Based on these results, I suggest that the autonomous self-pollination in I. hypophylla induced differences both in the selfing coefficient and in floral longevity between the varieties.  相似文献   

12.
Background and AimsFloral developmental studies are crucial for understanding the evolution of floral structures and sexual systems in angiosperms. Within the monocot order Poales, both subfamilies of Eriocaulaceae have unisexual flowers bearing unusual nectaries. Few previous studies have investigated floral development in subfamily Eriocauloideae, which includes the large, diverse and widespread genus Eriocaulon. To understand floral variation and the evolution of the androecium, gynoecium and floral nectaries of Eriocaulaceae, we analysed floral development and vasculature in Eriocaulon and compared it with that of subfamily Paepalanthoideae and the related family Xyridaceae in a phylogenetic context.MethodsThirteen species of Eriocaulon were studied. Developmental analysis was carried out using scanning electron microscopy, and vasculature analysis was carried out using light microscopy. Fresh material was also analysed using scanning electron microscopy with a cryo function. Character evolution was reconstructed over well-resolved phylogenies.Key ResultsPerianth reductions can occur due to delayed development that can also result in loss of the vascular bundles of the median sepals. Nectariferous petal glands cease development and remain vestigial in some species. In staminate flowers, the inner stamens can emerge before the outer ones, and carpels are transformed into nectariferous carpellodes. In pistillate flowers, stamens are reduced to staminodes and the gynoecium has dorsal stigmas.ConclusionsFloral morphology is highly diverse in Eriocaulon, as a result of fusion, reduction or loss of perianth parts. The nectariferous carpellodes of staminate flowers originated first in the ancestor of Eriocaulaceae; petal glands and nectariferous branches of pistillate flowers originated independently in Eriocaulaceae through transfer of function. We present a hypothesis of floral evolution for the family, illustrating a shift from bisexuality to unisexuality and the evolution of nectaries in a complex monocot family, which can contribute to future studies on reproductive biology and floral evolution in other groups.  相似文献   

13.
The sequence of floral events during anthesis was examined in Streptanthus tortuosus to determine the relationship between the male and female floral phases. The flowers are strongly protandrous. In the staminate phase, the anthers mature sequentially over a 3–4-day period. Because pollinators quickly remove pollen from the anthers, sequential anther maturation prolongs the male phase relative to what it would be if anthers did not mature sequentially. Pollen applied to the stigma during the staminate phase does not adhere readily and does not germinate. The length of the pistillate phase depends on pollinator activity, as pollination accelerates the abscission of floral parts. Unpollinated flowers remain pistillate for 3–4 days, during which time stigmatic receptivity declines gradually. In the field, 72% to 80% of flowers are staminate at any time, indicating that the staminate phase is three times longer than the pistillate phase when pollinators have access to the flowers. The consequences of the relative length of the floral phases and the schedule of stigmatic receptivity are discussed in terms of outcrossing mechanism, floral longevity, and sexual selection models.  相似文献   

14.
Individuals of Phoenix dactylifera L. have expanded pistillodes or pseudocarpels in staminate flowers. These pseudocarpels are located in the centre of the male flowers and are surrounded by stamens. The gynoecium has the characteristic three carpellate arrangement commonly found in female date palm flowers. Pseudocarpels from male flower buds can expand into parthenocarpic fruit. Histology of the expanded pistillodes or pseudotarpels is similar to that of normal carpels from pistillate plants. These pseudocarpels lack ovules. Nutrient medium containing 10 mg 1-1 of 2,4-dichlorophenoxyacetic acid or p-chlorophenylacetic acid and 0.3% activated neutralized charcoal enhanced the development and outgrowth of the pseudocarpels of cultured male flowers.  相似文献   

15.
Abstract: The proportions of hermaphrodite to staminate flowers in inflorescences of the andromonoecious species Caesalpinb calycina vary. Analysis of fruit position along the flowering rhachis, and also of the sex of floral buds in inflorescences with fruits set in different positions, indicate that fruiting success influences the sex of flowers in distal positions along the rhachis. Other reports of andromonoecy in caesalpinoid species are examined with reference to floral sex lability and the influence of fruit set.  相似文献   

16.
17.
Ovule development, megasporogenesis, and megagametogenesis were studied in six cryptically dioecious species of Consolea. All species showed uniform development typical for the Opuntioideae. Ovule development proceeds acropetally, but shows developmental asynchrony across floral morphs. At anthesis, female morph ovules are functional and available for fertilization, whereas staminate flower ovules are senescing and incapable of being fertilized. In occasional plants of some species, staminate flowers may reach anthesis with a few functional apical ovules capable of seed formation. Such plants are described as inconstant/leaky males. Ovule fertility differences across morphs are interpreted as resulting from heterochronic ovule development and senescence, although variation in embryo sac longevity cannot be ruled out. Significantly, ovule abortion follows a common pattern and timing in staminate flowers of both male morphs in all species. Thus, on the basis of this uniformity, a common origin for the cryptically dioecious breeding system in Consolea is hypothesized. Furthermore, staminate expression in Consolea appears to be controlled by a common, genetically determined heterochronic ovule developmental programme affecting the relative timing of ovule receptivity and flower opening. This is the first report of heterochrony as a mechanism of male sex determination.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 305–326.  相似文献   

18.
The floral development of staminate and pistillate flowers of Ceratophyllum demersum was observed, with particular focus on the phyllotactic variation in staminate flowers, using scanning electronic microscopy (SEM). We discerned patterns of development of some important new morphological features, e.g., the difference and discontinuity between the organ initiation in stamens and that in bracts (or tepals) and the initial presence of a mucilaginous appendage on each pistil. Female flowers are considered to be very specialized through reduction. In male flowers stamen initiation changes between early and late floral development. The four or five stamens in the outermost whorl initiate first on the abaxial and lateral sides of the floral apex and only later on the adaxial side (unidirectional). Later the inner stamens initiate spirally, and this is the main pattern in the stamen initiation. Members of each whorl differ among themselves in time of initiation and in ultimate size. The phyllotactic variation in staminate flowers of Ceratophyllum, suggested by previous studies, is derived from the variation in stamen number and the difference of stamen initiation between the early and later stages. The development in Ceratophyllum has some similarities to those of ANITA plants except for Nymphaeales.  相似文献   

19.
20.
BACKGROUND AND AIMS: On the basis of molecular evidence Berberidopsidaceae have been linked with Aextoxicaceae in an order Berberidopsidales at the base of the core Eudicots. The floral development of Berberidopsis is central to the understanding of the evolution of floral configurations at the transition of the basal Eudicots to the core Eudicots. It lies at the transition of trimerous or dimerous, simplified apetalous forms into pentamerous, petaliferous flowers. METHODS: The floral ontogeny of Berberidopsis was studied with a scanning electron microscope. KEY RESULTS: Flowers are grouped in terminal racemes with variable development. The relationship between the number of tepals, stamens and carpels is more or less fixed and floral initiation follows a strict 2/5 phyllotaxis. Two bracteoles, 12 tepals, eight stamens and three carpels are initiated in a regular sequence. The number of stamens can be increased by a doubling of stamen positions. CONCLUSIONS: The floral ontogeny of Berberidopsis provides support for the shift in floral bauplan from the basal Eudicots to the core Eudicots as a transition of a spiral flower with a 2/5 phyllotaxis to pentamerous flowers with two perianth whorls, two stamen whorls and a single carpel whorl. The differentiation of sepals and petals from bracteotepals is discussed and a comparison is made with other Eudicots with a similar configuration and development. Depending on the resolution of the relationships among the basalmost core Eudicots it is suggested that Berberidopsis either represents a critical stage in the evolution of pentamerous flowers of major clades of Eudicots, or has a floral prototype that may be at the base of evolution of flowers of other core Eudicots. The distribution of a floral Bauplan in other clades of Eudicots similar to Berberidopsidales is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号