共查询到20条相似文献,搜索用时 0 毫秒
1.
Irina V. Balyasnikova Sergei M. Danilov Vladimir R. Muzykantov Aron B. Fisher 《In vitro cellular & developmental biology. Animal》1998,34(7):545-554
Summary Previous work has suggested that not all immunoreactive angiotensin-converting enzyme (ACE) in tissues or cells is in a biologically
active state. We have explored this possibility in cultured human umbilical vein endothelial cells (HUVEC), one of the most
widely studied in vitro endothelial cell systems. Our approach included characterization of the effect of increasing passage number on ACE activity
and expression of immunoreactive ACE at the single cell level, the subcellular compartmentalization of active ACE, and the
effect of phorbol ester (PMA) treatment. We found that both ACE activity and expression of ACE antigen were downregulated
by cultivation (30% of ACE-positive cells at seventh passage vs. 90% in primary culture). ACE downregulation is specific (number
of CD31-positive cells did not change with cultivation) and correlated with downregulation of factor VIII-antigen. The percentage
of ACE-positive cells in permeabilized HUVEC at third passage was almost twice that in nonpermeabilized HUVEC (90% vs. 50%),
indicating that HUVEC contain intracellular immunoreactive ACE. ACE activity, however, was similar when measured in intact
cells and in cell lysates. Moreover, diazonium salt of sulfanilic acid (DASA), a membrane-impermeable ACE inhibitor, inhibited
ACE activity in intact cells and in cell lysates at the same extent, thus implying that intracellular ACE is inactive. PMA
(100 nM) treatment increased the percentage of ACE-positive cells at third passage from 57 to 96%. ACE activity was increased 3-fold
in cell and 1.5-fold in the culture medium of PMA-treated cells. Analysis of ACE activity in intact monolayers and cell lysates
of control and PMA-treated cells revealed that all enzymatically active ACE in PMA-treated cells is localized on the plasma
membrane and acts as an ectoenzyme. We conclude that expression of ACE by HUVEC is downregulated by repeated passage in culture
but can be restored by PMA treatment. In addition, ACE expression is heterogeneous between neighboring cells, and total immunoreactive
ACE protein associated with HUVEC includes an inactive pool of the enzyme. 相似文献
2.
Calcium ionophore A23187 elevates angiotensin-converting enzyme in cultured bovine endothelial cells 总被引:1,自引:0,他引:1
Calcium ionophore A23187 (0.3-0.4 microM) elevated cellular angiotensin-converting enzyme activity (ACE) 2-7-fold after 48 h incubation with bovine pulmonary artery endothelial cells in culture. Cycloheximide (0.1 micrograms/ml) blocked the elevation in ACE produced by A23187. The increase in ACE was inhibited by 0.2 mM EGTA, 50 microM verapamil and 50 microM nifedipine, and was not associated with changes in cellular cAMP. Melittin, a phospholipase A2 activator, or addition of exogenous arachidonic acid failed to reproduce the elevation, and indomethacin only partially blocked the A23187 effect. The elevation of ACE was also inhibited by the calcium-calmodulin inhibitor, calmidazolium. Thus, we postulate that the ionophore A23187 elevates ACE in endothelial cells through a calcium-dependent mechanism other than phospholipase A2 activation. The elevation depends on new protein synthesis and involves calcium-calmodulin-dependent cellular mechanisms. 相似文献
3.
4.
Calf pulmonary artery (CPA) endothelial cells synthesize and secrete soluble elastin when incubated in medium conditioned by arterial smooth muscle cells. Endothelial cell tropoelastin cross-reacts with antiserum to bovine ligamentum nuchae elastin and comigrates on SDS-PAGE with tropoelastins from fetal bovine ligamentum nuchae fibroblasts, aortic smooth muscle cells, and ear chondroblasts at an apparent molecular weight of 70,000. Endothelial cells synthesize only one-third as much elastin as these other cell types, however. Approximately 80% of the elastin synthesized by endothelial cells in confluent culture is released into the culture medium. The remaining 20% remains associated with the cell layer and is readily extractable with dilute acetic acid as un-cross-linked, 70,000-dalton tropoelastin. The addition of beta-aminopropionitrile to culture medium did not alter the ratio of tropoelastin in the medium and cell layer, suggesting that cross-linking of tropoelastin does not occur in culture. Immunofluorescent staining of confluent endothelial cell cultures with antielastin serum demonstrated elastin occurring as a web-like network of fine filaments extending throughout the extracellular space. The fibrous elastin was different in organization and distribution from fibers stained with antifibronectin serum, which were localized primarily beneath the cell layer and in regions of cell-cell contact. Extracellular matrix remaining after solubilization of cellular material with Triton X-100 stained positive for fibronectin, but not for elastin. 相似文献
5.
In this study, we examined the effects of streptokinase on arachidonic acid release and prostacyclin biosynthesis in cultured bovine pulmonary artery endothelial cells. When intact cells were incubated with streptokinase, a significant stimulatory effect on prostacyclin biosynthetic activity in cells was evident without any cellular damage at all concentrations used (1-10,000 units/ml). Streptokinase also caused a marked release of arachidonic acid. It induced rapid phospholipid hydrolysis, resulting in the release of up to 15% of incorporated [3H]arachidonic acid into the medium. After the addition of streptokinase, degradation of phosphatidylcholine and phosphatidylethanolamine was observed and lysophosphatidylcholine and lysophosphatidylethanolamine were produced. We also observed a transient rise in diacylglycerol after the addition of streptokinase. To test for phospholipase C activity, the release of incorporated [3H]choline, [3H]inositol and [3H]ethanolamine into the culture medium was determined. The level of radioactive inositol showed an increase, but the changes in choline and ethanolamine were comparatively small. An increase in inositol was detectable within 1 min after streptokinase addition and peaked after 15 min. Inositol phosphate and inositol trisphosphate were released, and these releases were suppressed by the addition of neomycin (50 microM). These results suggest that streptokinase stimulates phospholipase A2 and C activity, and that prostacyclin biosynthesis is subsequently increased in cultured endothelial cells. 相似文献
6.
Zharikov S Krotova K Hu H Baylis C Johnson RJ Block ER Patel J 《American journal of physiology. Cell physiology》2008,295(5):C1183-C1190
Elevated levels of serum uric acid (UA) are commonly associated with primary pulmonary hypertension but have generally not been thought to have any causal role. Recent experimental studies, however, have suggested that UA may affect various vasoactive mediators. We therefore tested the hypothesis that UA might alter nitric oxide (NO) levels in pulmonary arterial endothelial cells (PAEC). In isolated porcine pulmonary artery segments (PAS), UA (7.5 mg/dl) inhibits acetylcholine-induced vasodilation. The incubation of PAEC with UA caused a dose-dependent decrease in NO and cGMP production stimulated by bradykinin or Ca(2+)-ionophore A23187. We explored cellular mechanisms by which UA might cause reduced NO production focusing on the effects of UA on the l-arginine-endothelial NO synthase (eNOS) and l-arginine-arginase pathways. Incubation of PAEC with different concentrations of UA (2.5-15 mg/dl) for 24 h did not affect l-[(3)H]arginine uptake or activity/expression of eNOS. However, PAEC incubated with UA (7.5 mg/dl; 24 h) released more urea in culture media than control PAEC, suggesting that arginase activation might be involved in the UA effect. Kinetic analysis of arginase activity in PAEC lysates and rat liver and kidney homogenates demonstrated that UA activated arginase by increasing its affinity for l-arginine. An inhibitor of arginase (S)-(2-boronoethyl)-l-cysteine prevented UA-induced reduction of A23187-stimulated cGMP production by PAEC and abolished UA-induced inhibition of acetylcholine-stimulated vasodilation in PAS. We conclude that UA-induced arginase activation is a potential mechanism for reduction of NO production in PAEC. 相似文献
7.
在培养的牛肺动脉内皮细胞(bovine pulmonary artery endothelial cells,BPAECs)水平上,观察脂多糖(lipopolysaccharide,LPS)对BPAECs诱生过氧亚硝基阴离子(peroxynitrite,ONOO~-)能力及内皮源性ONOO~-在LPS致BPAECs损伤中的作用。结果显示:(1)LPS剂量依赖性地引起BPAECs诱生ONOO~-生成标志物硝基酪氨酸(nitrotyrosine,NT)的荧光强度(即ONOO~-)明显增多,NT阳性细胞数和百分率也明显增多或增高(P<0.05);iNOS选择性抑制剂氨基胍(AG)明显抑制LPS诱生ONOO~-增多(P<0.05),而NT阳性细胞数和百分率分别减少或降低,但无明显差异。(2)在LPS作用下BPAECs培养上清中的MDA含量和LDH活性明显增多和增高,呈现剂量依赖性效应。加AG后MDA含量明显降低(P<0.001),LDH活性呈降低趋势。(3)LPS可诱导BPAECs凋亡明显增多,用EB荧光染色后可见细胞染色质浓集、核变小等凋亡征象。AG可导致LPS引起的BPAECs凋亡明显减少,但仍明显高于溶剂组。LPS可导致BPAECs线粒体呼吸抑制及膜电位下降。上述结果表明,LPS可引起BPAECs生成ONOO~-增多,ONOO~-参与介导LPS所致BPAECs过氧化损伤与细胞凋亡。 相似文献
8.
We studied adherence between 'luminal' surfaces of pulmonary artery endothelial cells by standard aggregometry techniques, widely used for measuring aggregation of platelets and granulocytes. Using suspensions of bovine pulmonary artery endothelial cells cultured on microcarrier beads, in an aggregometer, we found that trypsin caused endothelial aggregation. The aggregation response occurred at trypsin concentrations as low as 0.001%. The degree of trypsin-induced aggregation indicated by the magnitude of the change in light transmission through the endothelial suspensions was related to the trypsin concentration, reaching a maximum level at trypsin concentrations of 0.01%. We conclude that trypsin, even in very low concentrations, causes adherence between 'luminal' surfaces of pulmonary endothelial cells probably because the enzyme destroys cell surface proteins which are necessary to prevent intercellular adherence. The method we describe may be useful for studying cell-cell interactions of endothelium. 相似文献
9.
Orfanos SE Parkerson JB Chen X Fisher EL Glynos C Papapetropoulos A Gerrity RG Catravas JD 《American journal of physiology. Lung cellular and molecular physiology》2000,278(6):L1280-L1288
We investigated pulmonary endothelial function in vivo in 12- to 18-mo-old male Watanabe heritable hyperlipidemic (WHHL; n = 7) and age- and sex-matched New Zealand White (n = 8) rabbits. The animals were anesthetized and artificially ventilated, and the chest was opened and put in total heart bypass. The single-pass transpulmonary utilizations of the angiotensin-converting enzyme (ACE) substrate [(3)H]benzoyl-Phe-Ala-Pro (BPAP) and the 5'-nucleotidase (NCT) substrate [(14)C]AMP were estimated, and the first-order reaction parameter A(max)/K(m), where A(max) is the product of enzyme mass and the catalytic rate constant and K(m) is the Michaelis-Menten constant, was calculated. BPAP transpulmonary utilization and A(max)/K(m) were reduced in WHHL (1.69 +/- 0.16 vs. 2.9 +/- 0.44 and 599 +/- 69 vs. 987 +/- 153 ml/min in WHHL and control rabbits, respectively; P < 0.05 for both). No differences were observed in the AMP parameters. BPAP K(m) and A(max) values were estimated separately under mixed-order reaction conditions. No differences in K(m) values were found (9.79 +/- 1 vs. 9.9 +/- 1.31microM), whereas WHHL rabbit A(max) was significantly decreased (5.29 +/- 0.88 vs. 7. 93 +/- 0.8 micromol/min in WHHL and control rabbits, respectively; P < 0.05). We conclude that the observed pulmonary endothelial ACE activity reduction in WHHL rabbits appears related to a decrease in enzyme mass rather than to alterations in enzyme affinity. 相似文献
10.
Lipopolysaccharides decrease angiotensin converting enzyme activity expressed by cultured human endothelial cells. 总被引:2,自引:0,他引:2
Angiotensin converting enzyme (ACE) is present on endothelial cells and plays a role in regulating blood pressure in vivo by converting angiotensin I to angiotensin II and metabolizing bradykinin. Since ACE activity is decreased in vivo in sepsis, the ability of lipopolysaccharide (LPS) to suppress endothelial cell ACE activity was tested by culturing human umbilical vein endothelial cells (HUVEC) for 0-72 hr with or without LPS and then measuring ACE activity. ACE activity in intact HUVEC monolayers incubated with LPS (10 micrograms/ml) decreased markedly with time and was inhibited by 33%, 71%, and 76% after 24 hr, 48 hr, and 72 hr, respectively, when compared with control, untreated cells. The inhibitory effect of LPS was partially reversible upon removal of the LPS and further incubation in the absence of LPS. The LPS-induced decrease in ACE activity was dependent on the concentrations of LPS (IC50 = 15 ng/ml at 24 hr) and was detectable at LPS concentrations as low as 1 ng/ml. That LPS decreased the Vmax of ACE in the absence of cytotoxicity and without a change in Km suggests that LPS decreased the amount of ACE present on the HUVEC cell membrane. While some LPS serotypes (Escherichia coli 0111:B4 and 055:B5, S. minnesota) were more potent inhibitors of ACE activity than others (E. coli 026:B6 and S. marcescens), all LPS serotypes tested were inhibitory. These finding suggest that LPS decreases endothelial ACE activity in septic patients; in turn, this decrease in ACE activity may decrease angiotensin II production and bradykinin catabolism and thus play a role in the pathogenesis of septic shock. 相似文献
11.
Although the signaling pathways leading to hydrogen peroxide (H2O2)-induced endothelial monolayer permeability remain ambiguous, cytoskeletal proteins are known to be essential for maintaining endothelial integrity and regulating solute flux through the monolayer. We have recently demonstrated that thrombin-induced actin reorganization in bovine pulmonary artery endothelial cells (BPAEC) requires activation of both myosin light chain kinase (MLCK) and protein kinase C (PKC). Therefore, the present study was designed to investigate the effects of H2O2 on actin reorganization in BPAEC. H2O2 initiated sustained recruitment of actin to the cytoskeleton and transient myosin recruitment in a time- and concentration-dependent manner. The H2O2-induced actin recruitment was significantly inhibited by the calmodulin antagonists, W7 and TFP, but not by the MLCK inhibitor, KT5926, nor the PKC inhibitors, H7 and calphostin C. H2O2 also caused actin filament rearrangement in BPAEC with disruption of the dense peripheral bands and formation of stress fibers. These alterations occurred prior to actin translocation to the cytoskeleton and are prevented by inhibition of either MLCK or PKC. High concentrations of H2O2 transiently attenuated PKC activity but slightly increased the phosphorylation of the prominent PKC substrate and actin-binding protein, myristoylated alanine-rich C kinase substrate (MARCKS), by 5 min. However, MARCKS phosphorylation was reduced to below basal levels by 30 min. On the other hand, H2O2 induced a time- and dose-dependent phosphorylation of myosin light chains which was eliminated by both MLCK and PKC inhibitors. These data suggest that MLCK contributes to H2O2-induced myosin light chain phosphorylation and actin rearrangement and that PKC may play a permissive role. Neither of these enzymes appears to be involved in the H2O2-induced recruitment of actin to the cytoskeleton. J. Cell. Physiol. 174:370–379, 1998. © 1998 Wiley-Liss, Inc. 相似文献
12.
The effects of oxidant stress and inhibition of glutathione reductase on the bradykinin-stimulated changes in cytosolic free Ca2+ concentration ([Ca2+]i) of calf pulmonary artery endothelial cells were determined using the intracellular fluorescent probe, fura-2. Changes in [Ca2+]i upon stimulation with bradykinin were measured after incubation of cells with the chemical oxidant tert-butyl hydroperoxide (0.4 mM) for various times. After 60 min, bradykinin-stimulated Ca2+ influx was significantly decreased. With more prolonged incubations with the peroxide, bradykinin had little effect on cytosolic calcium concentration. Preincubation of cells with the glutathione reductase inhibitor, carmustine, led to elevated basal [Ca2+]i, yet the cells remained responsive to bradykinin. However, incubation of carmustine-treated cells with tert-butyl hydroperoxide for 30 min dramatically reduced both bradykinin-stimulated release of Ca2+ from internal stores and influx of Ca2+ from the extracellular space. These results suggest that inhibition of glutathione reductase alters cytosolic Ca2+ homeostasis and enhances the effects of oxidative stress on signal transduction in vascular endothelial cells. 相似文献
13.
缺氧对培养的肺动脉内皮细胞血管紧张素Ⅱ分泌的影响 总被引:2,自引:0,他引:2
缺氧是否通过影响血管内皮细胞的分泌功能而参与缺氧性肺动脉高压的发生尚不清楚。本实验动态观察了缺氧对培养的新生小牛内皮细胞(PAEC)的血管紧张素Ⅱ(ATⅡ)分泌的影响。结果发现:2.5%O2缺氧早期(1.5h),PAEC的ATⅡ分泌增加(P<0.01vs常氧组),缺氧后期与常氧组无明显差别;0%O2缺氧早期(1.5-6h),ATⅡ分泌明显降低(P<0.01vs常氧组及2.5%O2组),后期ATⅡ分泌明显增高(P<0.01vs常氧组及2.5%O2组);无论缺氧还是常氧条件下,NO供体SIN1显著抑制ATⅡ的分泌(P<0.01),而内源性NO抑制剂硝基精氨酸则明显促进ATⅡ分泌(P<0.01);0%O2缺氧24h后,PAEC细胞内cGMP含量明显降低(P<0.05)。上述结果表明缺氧可通过抑制PAEC的内源性NO产生而促进ATⅡ的分泌,PAEC自分泌的改变可能参与缺氧性肺动脉高压的发生过程。 相似文献
14.
Phosphoramidon-sensitive endothelin-converting enzyme in the cytosol of cultured bovine endothelial cells 总被引:4,自引:0,他引:4
J Takada K Okada T Ikenaga K Matsuyama M Yano 《Biochemical and biophysical research communications》1991,176(2):860-865
Neutral metalloproteases with endothelin-1 (ET-1) converting activity were detected in membranous and cytosolic fractions of cultured endothelial cells (EC) from bovine carotid artery in a ratio of 5:1, respectively. The cytosolic enzyme specifically and quantitatively converts big ET-1 to ET-1 (Km = 10.7 microM), but does not convert big ET-3. Like the membranous enzyme, the cytosolic enzyme is only active at pH 6.5-7.5, and is competitively inhibited by phosphoramidon (Ki = 0.79 microM). The apparent molecular weight of the cytosolic enzyme is about 540 kD, which is 5-6 times greater than that of the membranous enzyme. These results indicate the presence of two types of phosphoramidon-sensitive neutral ET-converting enzyme in vascular EC. 相似文献
15.
Joseph S. Makarski 《In vitro cellular & developmental biology. Plant》1981,17(5):450-458
Summary The ability of selected vasoactive agents to influence cyclic AMP levels of confluent, early-passaged bovine calf aortic and
pulmonary artery endothelial cells was investigated. Among the agents tested, only the catecholamines (isoproterenol, epinephrine,
nonrepinephrine) and prostaglandins (PGE1, PGE2, PGF2a) resulted consistently in increased cyclic AMP production in both cell populations. The degree of cyclic AMP stimulation
obtained with other vasoactive compounds (angiotensins I and II, bradykinin, and serotonin) tended to be either very small
or difficult to reproduce. Isoproterenol stimulation was blocked completely by propanolol, a β-blocking agent, but not by
phentolamine, an α-blocking agent. These results reveal that bovine calf aortic and pulmonary artery endothelial cells are
responsive to catecholamines and prostaglandins, and therefore presumably possess both sensitive adenylate cyclases and plasma
membrane receptors for these compounds.
This work was supported by a Young Investigator Grant HL-21189 from the National Institutes of Health, United States Public
Health Service. 相似文献
16.
J S Makarski 《In vitro》1981,17(5):450-458
The ability of selected vasoactive agents to influence cyclic AMP levels of confluent, early-passaged bovine calf aortic and pulmonary artery endothelial cells was investigated. Among the agents tested, only the catecholamines (isoproterenol, epinephrine, norepinephrine) and prostaglandins (PGE1, PGE2, PGF2 alpha) resulted consistently in increased cyclic AMP production in both cell populations. The degree of cyclic AMP stimulation obtained with other vasoactive compounds (angiotensins I and II, bradykinin, and serotonin) tended to be either very small or difficult to reproduce. Isoproterenol stimulation was blocked completely by propanolol, a beta-blocking agent, but not by phentolamine, and alpha-blocking agent. These results reveal that bovine calf aortic and pulmonary artery endothelial cells are responsive to catecholamines and prostaglandins, and therefore presumably possess both sensitive adenylate cyclases and plasma membrane receptors for these compounds. 相似文献
17.
Bobilya DJ Reynolds JT Faia KL Briske-Anderson M Reeves PG 《The Journal of nutritional biochemistry》1999,10(3):139-145
Bovine pulmonary artery endothelial cells (BPAEC) were cultured in vitro under a variety of conditions to investigate how metallothionein (MT) might participate in zinc homeostasis. Experimental conditions included 10% serum to ensure that the in vitro environment would be a better reflection of the in vivo situation than with protein-free medium. MT was increased by acutely high zinc concentrations (100-200 micromol/L) in the extracellular environment. MT was relatively insensitive to moderate changes in zinc concentration (2-50 micromol/L), even after prolonged exposure for 7 to 12 days. BPAEC had reduced MT content when grown in medium containing serum that had been dialyzed to remove components with a molecular mass of less than 1,000, including zinc. Because the principal source of the major minerals in the experimental medium was not the serum, their concentrations in the final medium were not significantly influenced by serum dialysis. Restoring the zinc concentration in the medium containing the dialyzed serum did not restore MT content in BPAEC, suggesting that some small molecular weight molecule other than zinc established their basal MT content. This study did not identify these putative factors in serum, but hormones are likely candidates. Forty-eight-hour incubations of BPAEC with interleukin (IL-6) or dexamethasone increased cellular MT; however, 17beta-estradiol decreased MT, and IL-1 and adenosine 3',5'-cyclic phosphate (cAMP) had no discernible effect. We conclude that extracellular zinc concentrations have relatively little impact on the cellular concentrations of MT and zinc of BPAEC in vitro. Zinc homeostasis by BPAEC is not maintained by changing the MT concentration in response to changes in the extracellular zinc environment. (J. Nutr. Biochem. 10:00-00, 1999). 相似文献
18.
Cutaia M Black AD Cohen I Cassai ND Sidhu GS 《Apoptosis : an international journal on programmed cell death》2005,10(6):1457-1467
The effect of alkaline stress, or an increase in extracellular pH (pHext), on cell viability is poorly defined. Human pulmonary
artery endothelial cells (HPAEC) were subjected to alkaline stress using different methods of increasing pHext. Viability
and mode of cell death following alkaline stress were determined by assessing nuclear morphology, ultrastructural features,
and caspase-3 activity. Incubation of monolayers in media set to different pHext values (7.4–8.4) for 24-h induced morphological
changes suggesting apoptosis (35–45% apoptotic cells) following severe alkaline stress. The magnitude of apoptosis was related
to the severity of alkaline stress. These findings were confirmed with an assessment of ultrastructural changes and caspase-3
activation. While there was no difference in the intracellular calcium level ([Ca2+]i) in monolayers set to pHext 7.4 versus 8.4 following the first hour of alkaline stress, blockade of calcium uptake with the
chelator, EGTA, potentiated the magnitude of apoptosis under these conditions. Potentiation of apoptosis was reduced by calcium
supplementation of the media. Finally, alkaline stress was associated with an increase in intracellular pH. This is the first
report of apoptosis following alkaline stress in endothelial cells in the absence of other cell death stimuli. 相似文献
19.
20.
E J Macarak 《Journal of cellular physiology》1984,119(2):175-182
Pulmonary artery endothelial cells were isolated from bovine fetal blood vessels and used for biosynthetic studies. At confluence, cultures were incubated in minimal essential medium (MEM) without serum containing [U-14C]proline. After 24 hours, medium was removed and labeled proteins were precipitated by the addition of ammonium sulfate and fractionated by diethylaminoethyl (DEAE)-cellulose chromatography. The elution profile showed four major peaks and one minor peak. Fractions within each peak were pooled, subjected to digestion by chymotrypsin and/or collagenase, and analyzed by polyacrylamide gel electrophoresis. Peak l contained a collagen which contained approximately 6% of the 3-hydroxyproline isomer while total hydroxyproline content was approximately 45%. This material was digested by purified bacterial collagenase and had a mobility slightly slower than that of alpha 1(III) which did not change under conditions that reduce disulfide bonds. Upon digestion with chymotrypsin under conditions where native procollagens are converted to alpha-chains, this material was digested. These properties suggest that this material is type VIII or EC (endothelial cell) collagen. Peak 2 contained substantial fibronectin while peak 3 contained primarily type III procollagen. The last major peak contained a mixture of collagenous and noncollagenous material. Upon digestion with chymotrypsin, several peptides were generated which were sensitive to bacterial collagenases. The two major chymotrypsin-resistant components had mobilities slower than that of alpha(III) and were not disulfide-bonded. 相似文献