首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of ethanol ingestion on aldehyde dehydrogenase activity in the subcellular fractions of livers from 14 pair-fed male Sprague-Dawley rats was tested. Enzymatic assays were performed at two different concentrations of propionaldehyde (0.068 and 13.6 mM) sufficient to saturate enzymes with high and low affinities for propionaldehyde, respectively. The effect of alcohol ingestion varied depending on the subcellular fraction tested and the propionaldehyde concentration used in the assay. There was a 60% increase in the activity of aldehyde dehydrogenase with high affinity for propionaldehyde in the mitochondrial membranes. Conversely there was a 50% decrease in the activity of aldehyde dehydrogenases with high affinity for propionaldehyde in the microsomal fraction. There was also a 58% decrease in the activity of enzymes from the mitochondrial matrix with low affinity for propionaldehyde. The results suggest that differences in the assay systems employed may account for the conflicting results obtained by previous investigators of the effect of ethanol feeding.  相似文献   

2.
The free-living protist Euglena gracilis showed an enhanced growth when cultured in the dark with high concentrations of ethanol as carbon source. In a medium containing glutamate/malate plus 1% ethanol, E. gracilis reached a density of 3 x 10(7) cells/ml after 100 h of culture, which was 5 times higher than that attained with glutamate/malate or ethanol separately. This observation suggested the involvement of a highly active aldehyde dehydrogenase in the metabolism of ethanol. Purification of the E. gracilis aldehyde dehydrogenase from the mitochondrial fraction by affinity chromatography yielded an enrichment of 34 times and recovery of 33% of the total mitochondrial activity. SDS-PAGE and molecular exclusion chromatography revealed a native tetrameric protein of 160 kDa. Kinetic analysis showed Km values of 5 and 50 microM for propionaldehyde and NAD(+), respectively, and a Vm value of 1,300 nmol (min x mg protein)(-1). NAD(+) and NADH stimulated the esterase activity of the purified aldehyde dehydrogenase. The present data indicated that the E. gracilis aldehyde dehydrogenase has kinetic and structural properties similar to those of human aldehyde dehydrogenases class 1 and 2.  相似文献   

3.
1. The properties and distribution of the NAD-linked unspecific aldehyde dehydrogenase activity (aldehyde: NAD+ oxidoreductase EC 1.2.1.3) has been studied in isolated cytoplasmic, mitochondrial and microsomal fractions of rat liver. The various types of aldehyde dehydrogenase were separated by ion exchange chromatography and isoelectric focusing. 2. The cytoplasmic fraction contained 10-15, the mitochondrial fraction 45-50 and the microsomal fraction 35-40% of the total aldehyde dehydrogenase activity, when assayed with 6.0 mM propionaldehyde as substrate. 3. The cytoplasmic fraction contained two separable unspecific aldehyde dehydrogenases, one with high Km for aldehydes (in the millimolar range) and the other with low Km for aldehydes (in the micromolar range). The latter can, however, be due to leakage from mitochondria. The high-Km enzyme fraction contained also all D-glucuronolactone dehydrogenase activity of the cytoplasmic fraction. The specific formaldehyde and betaine aldehyde dehydrogenases present in the cytoplasmic fraction could be separated from the unspecific activities. 4. In the mitochondrial fraction there was one enzyme with a low Km for aldehydes and another with high Km for aldehydes, which was different from the cytoplasmic enzyme. 5. The microsomal aldehyde dehydrogenase had a high Km for aldehydes and had similar properties as the mitochondrial high-Km enzyme. Both enzymes have very little activity with formaldehyde and glycolaldehyde in contrast to the other aldehyde dehydrogenases. They are apparently membranebound.  相似文献   

4.
Freshly obtained human term placentae were subjected to subcellular fractionation to study the localization of NAD-dependent aldehyde dehydrogenases. Optimal conditions for the cross-contamination-free subcellular fractionation were standardized as judged by the presence or the absence of appropriate marker enzymes. Two distinct isozymes, aldehyde dehydrogenase I and II, were detected in placental extracts after isoelectric focusing on polyacrylamide gels. Based on a placental wet weight, about 80% of the total aldehyde dehydrogenase activity was found in the cytosolic acid and about 10% in the mitochondrial fraction. The soluble fraction (cytosol) contained predominantly aldehyde dehydrogenase II which has a relatively high Km (9 mmol/l) for acetaldehyde and is strongly inhibited by disulfiram. The results indicate that cytosol is the main site for acetaldehyde oxidation, but the enzyme activity is too slow to prevent the placental passage of normal concentrations of blood acetaldehyde (less than 1 mumol/l) produced by maternal ethanol metabolism.  相似文献   

5.
p-Hydroxyacetophenone was coupled to epoxy-activated Sepharose 6B to generate an affinity chromatographic matrix to purify aldehyde dehydrogenase. Purified beef liver mitochondrial aldehyde dehydrogenase specifically bound to the support and could be eluted with p-hydroxyacetophenone. A post-ammonium sulfate (30-55%) fraction of bovine liver was applied to the affinity gel column and aldehyde dehydrogenase was effectively purified, although not to complete homogeneity, indicating the potential selectivity of the matrix. Both beef liver cytosolic and mitochondrial aldehyde dehydrogenase bound to the column. A post-Cibacron blue Sepharose Cl-6B affinity-fractionated liver mitochondrial aldehyde dehydrogenase was purified to complete homogeneity by p-hydroxyacetophenone-Sepharose, thus eliminating the need for the isoelectric focusing step often employed. p-Hydroxyacetophenone was found to be a competitive inhibitor against propionaldehyde and noncompetitive against NAD. Escherichia coli lysates of recombinantly expressed aldehyde dehydrogenase were purified from E. coli lysates with one major 25-kDa protein contaminant also binding to the column, as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The 25-kDa contaminant was found to be chloramphenicol acetyl transferase from sequence analysis and binding studies.  相似文献   

6.
1. Aldehyde dehydrogenase subcellular distribution studies were performed in a heterogeneous stock (HS) of male and female mice (Mus musculus) with propionaldehyde (5 mM and 50 microM) and formaldehyde (1 mM) and NAD+ or NADP+. 2. The relative percents of distribution were: cytosolic 55-68%, mitochondrial 12-20%, microsomal 9-18% and lysosomal 3-15% for both propionaldehyde concentrations and NAD+. 3. Kinetic experiments using propionaldehyde and acetaldehyde with NAD+ revealed two separate enzymes, Enzyme I (low Km) and Enzyme II (high Km) in the cytosolic and mitochondrial fractions. 4. The kinetic data also indicated a spectrum of cytosolic low Km values that exhibited a bimodal distribution with one congruent to 40 microM and one congruent to 5 microM. 5. It was concluded that there was no significant difference in aldehyde-metabolizing capability between male and female HS mice, compared on a per gram of liver basis. The cytosolic low Km enzyme plays a major role in aldehyde oxidation at moderate to low aldehyde concentrations.  相似文献   

7.
Ethanol or acetaldehyde orally administered (15% and 2% respectively in drinking water) to male Wistar rats for three months induced alterations in the main liver enzymes responsible for ethanol metabolism, aspartate and alanine aminotransferases and NAD glutamate dehydrogenase. Ethanol produced a significant decrease in the activity of soluble alcohol dehydrogenase, while acetaldehyde induced alterations both in soluble and mitochondrial aldehyde dehydrogenases: soluble activity was significantly higher than in the control and ethanol-treated groups, and mitochondrial activity was significantly diminished. Both soluble aspartate and alanine aminotransferases showed pronounced increases by the chronic effect of acetaldehyde, while mitochondrial activities were practically unchanged by the effect of ethanol or acetaldehyde. Mitochondrial NAD glutamate dehydrogenase showed a rise in its activity both by the effect of chronic ethanol and acetaldehyde consumption. The level of metabolites assayed in liver extracts showed marked differences between ethanol and acetaldehyde treatment which indicates that ethanol produced a remarkable increase in glutamate, aspartate and free ammonia together with marked decrease in pyruvate and 2-oxoglutarate concentrations. Acetaldehyde consumption induced a significant decrease in 2-oxoglutarate and pyruvate concentrations. These observations suggest that ethanol has an important effect on the urea cycle enzymes, while the effect of acetaldehyde contributes to the impairment of the citric acid cycle.  相似文献   

8.
Subcellular Distribution of Human Brain Aldehyde Dehydrogenase   总被引:4,自引:4,他引:0  
Abstract: Two human brain surgery biopsies and one autopsy sample were subjected to subcellular fractionation. With either 0.12 or 6 mM-acetaldehyde as substrate, about half of the total aldehyde dehydrogenase activity was found in the mitochondrial (+ synaptosomal) fraction and less activity in the cytosolic, nuclear, and microsomal fractions. High-affinity activity was found only in the mitochondrial fraction. The enzyme in all fractions had a higher affinity for indole-3-acetaldehyde than for acetaldehyde. The kinetic data indicate the presence of several distinct aldehyde dehydrogenase isozymes that have ample capacity to oxidize both aliphatic and aromatic aldehydes in human brain.  相似文献   

9.
Abstract: The nuclear mitochondrial and synaptosomal fractions of rat brain were each found to contain some 25–30% of the total aldehyde dehydrogenase activity. The cytoplasmic fraction had a very low total aldehyde dehydrogenase activity. There were differences in the distribution of the activity when different aldehydes were used as substrates, suggesting the presence of isoenzymes in the various subcellular compartments. When rats were treated intra-cisternally with 6-hydroxydopamine there was no change in brain aldehyde dehydrogenase activity, although the noradrenaline content and the activities of tyrosine hydroxylase and dopamine-β-hydroxylase were markedly decreased. Treatment with 6-hydroxydopamine also had no significant effect on the aldehyde dehydrogenase activity in retinal homogenates. The results suggest that the aldehyde dehydrogenase activity in rat brain is predominantly outside the catecholaminergic nerve terminals.  相似文献   

10.
Abstract: NAD-dependent aldehyde dehydrogenases (EC 1.2.1.3) were isolated from various subcellular organelles as well as from different regions of rat brain. The mitochondrial, microsomal, and cytosolic fractions were found to contain 40%, 28%, and 12%, respectively, of the total aldehyde dehydrogenase (5.28 ± 0.44 nmol NADH/min/g tissue) found in rat brain homogenate when assayed with 70 μ. M propionaldehyde at pH 7.5. The total activity increased to 17.3 ± 2.7 nmol NADH/min/g tissue when assayed with 5 m M propionaldehyde. Under these conditions the three organelles contained 49%, 23%, and 9%, respectively, of the activity. The enzyme isolated from cytosol possessed the lowest K m. The molecular weight of the enzyme isolated from all three subcellular organelles was ∼100,000. Four activity bands were found by electrophoresis of crude homogenates, isolated mitochondria, or microsomes on cellulose acetate strips. Cytosol possessed just two of the forms. The total activity was essentially the same in homogenates obtained from cortex, subcortex, pons-medulla, or cerebellum. Further, the enzyme had the same molecular distribution and total activity in each of these four brain regions. Disulfiram was found to be an in vivo and in vitro inhibitor of the enzymes obtained from these brain regions. Mercaptoethanol, required for the stability of the enzyme, reversed the inhibition produced by disulfiram. The effect was greater for enzyme isolated from cytosol than from mitochondria. Calculations led to the prediction that aldehydes such as acetaldehyde are oxidized in cytosol.  相似文献   

11.
NAD-dependent succinic semialdehyde dehydrogenase (EC 1.2.1.24) has been purified to homogeneity from human brain via ion-exchange chromatography and affinity chromatography employing Blue Sepharose and 5'-AMP Sepharose. Succinic semialdehyde dehydrogenase was never previously purified to homogeneity from any species; this preparation therefore allows the determination of its molecular weight, subunit molecular weight, subunit composition, isoelectric points, and substrate specificity for the first time. The enzyme is a tetramer of Mr230,000 to 245,000 and consists of weight-nonidentical subunits (Mr 61,000 and 63,000). On isoelectric focusing the enzyme separates into five bands with the following isoelectric points: 6.3, 6.6, 6.8, 6.95, and 7.15. Its substrates include glutaric semialdehyde, nitrobenzaldehyde, and short chain aliphatic aldehydes in addition to succinic semialdehyde which is the best substrate. The Km values for succinic semialdehyde, acetaldehyde, and propionaldehyde are 1,875, and 580 microM, respectively. The enzyme is inactive with 3,4-dihydroxyphenylacetaldehyde and indole-3-acetaldehyde as substrates. Its subcellular localization is in the mitochondrial fraction. Succinic semialdehyde dehydrogenase is sensitive to inhibition by disulfiram (a drug used therapeutically to produce alcohol aversion) resembling, in this respect, aldehyde dehydrogenase (EC 1.2.1.3). It does not, however, interact with the antibody developed in the rabbit vs aldehyde dehydrogenase, suggesting that the two enzymes are structurally distinct.  相似文献   

12.
T Koivula 《Life sciences》1975,16(10):1563-1569
The subcellular distribution of human liver aldehyde dehydrogenases (E.C. 1.2.1.3) have been studied and the different types have been separated by ion exchange chromatography. The cytoplasmic fraction contained at least two chromatographically separable aldehyde dehydrogenases, which accounted for about 30% of the total activity. One of the cytoplasmic aldehyde dehydrogenases had a high Km for aldehydes (in the millimolar range). A considerable part of the activity found in this fraction was due to an enzyme with a low Km for aldehydes (in the micromolar range). It had properties similar to those of the mitochondrial main enzyme fraction, from where it may have originated as a contamination during subcellular fractionation. Specific betaine aldehyde and formaldehyde dehydrogenases were separated from these unspecific activities in the cytoplasmic fraction. In mitochondria, where more than 50% of the total aldehyde dehydrogenase activity was found, there was also evidence for slight high-Km activity. The microsomal fraction contained only a high-Km aldehyde dehydrogenase, which accounted for about 10% of the total activity.  相似文献   

13.
1. Hepatic aldehyde dehydrogenase (ALDH) activity was measured in two strains of deer-mouse, Peromyscus maniculatus. 2. There is no difference in the subcellular distribution of ALDH activity in the two strains. Animals of AdhN/AdhN genotype, lacking liver alcohol dehydrogenase (ADH), had 90% of total ALDH activity in the mitochondrial fraction compared to 94% for the AdhF/AdhF animals with normal ADH activity. Almost all of the remaining ALDH activity was in the hepatic cytosol with less than 1% in the microsomal fraction. 3. By contrast, in mice (Mus musculus) 43% of total hepatic ALDH activity was found in the cytosolic fraction and 55% in the mitochondrial. 4. It was concluded that the subcellular distribution of hepatic ALDH activity in Peromyscus does not vary with the presence or absence of ADH and that this ALDH distribution is not similar to that reported for other rodents.  相似文献   

14.
An in vitro expression plasmid (pGRAP) that contained the cDNA coding for the rat mitochondrial aldehyde dehydrogenase precursor was constructed, mRNA was synthesized then translated, and the in vitro synthesized precursor of aldehyde dehydrogenase was used in an in vitro import assay. As expected the 19 amino acid signal peptide of the precursor allowed import of the precursor into rat liver mitochondria. This in vitro system was used to examine the effect of alcohols on import. It was found that the alcohols (ethyl, butyl, hexyl, and octyl) tested inhibited the import of the aldehyde dehydrogenase precursor. Pretreatment of the mitochondria with alcohol was responsible for the inhibition. The inhibition appeared to be relatively specific for pre-aldehyde dehydrogenase as the precursor of ornithine transcarbamylase was still imported in the presence of alcohols. Of potential physiological significance was finding that ethanol inhibited import in a dose-response fashion; 50% inhibition occurred at 75 mM, a concentration achievable during the ingestion of alcohol. In addition, the concentrations of alcohols required to produce an inhibitory effect on import decreased as the hydrocarbon chain length of alcohols increased. The inhibitory effect of alcohols appeared to be specific as other solvents examined did not inhibit import. We postulate that alcohols may perturb the mitochondrial membrane and affect the receptor-translocator necessary for the import of the aldehyde dehydrogenase precursor.  相似文献   

15.
In normal rat liver, aldehyde dehydrogenase (Aldehyde:NAD+ oxidoreductase, EC 1.2.1.3; ALDH) is found primarily in mitochondrial and microsomal fractions. During hepatocarcinogenesis, an additional tumor-associated aldehyde dehydrogenase (T-ALDH) is detectable in the cytosol of preneoplastic and neoplastic cells. We report here differences in the ALDH distribution pattern in different rat hepatoma cell lines compared to normal rat hepatocytes. Of the four basal ALDH enzymes, one mitochondrial ALDH and one microsomal ALDH account for 96% of total ALDH molecules detectable with our probes in normal hepatocytes. The other two mitochondrial and microsomal ALDH enzymes are only detectable in the appropriate subcellular fraction from large populations of cells. The tumor-associated ALDH is not detectable in normal hepatocytes. In addition to varying amounts of T-ALDH in the six different rat hepatoma cell lines examined, differences in the amounts of mitochondrial and microsomal ALDHs also occur in both high and low T-ALDH activity hepatoma cell lines. Each of five ALDH enzymes examined has a characteristic half-life varying from 45 min to 95 h.  相似文献   

16.
Intracellular localization of aldehyde dehydrogenase in rat liver   总被引:9,自引:9,他引:0       下载免费PDF全文
1. Distribution of aldehyde dehydrogenase activity in rat liver was studied by measuring the rate of disappearance of acetaldehyde in the presence of each of the subcellular fractions. These were obtained by rough separation of particulate fractions from the soluble portion of the cell, by differential centrifugation, and by isopycnic gradient centrifugation. 2. The maximal rate of acetaldehyde oxidation was 3.7 mumol/min per g, with an apparent K(m) value below 10(-5)m. The highest rate of activity was observed in phosphate buffers of high P(i) concentration (above 60mm). 3. The activity measured was completely dependent on NAD(+). 4. The microsomal fraction and the nuclei were inactive in the assay. Of the total activity 80% was found in the mitochondrial fraction and the remaining 20% in the cytoplasm. 5. The distribution pattern is important from the point of view of acetaldehyde oxidation during ethanol metabolism. The apparent discrepancy of the results obtained by different workers and the localization of acetaldehyde oxidation in vivo is discussed.  相似文献   

17.
The subcellular distribution of aldehyde dehydrogenase activity was determined in human liver biopsies by analytical sucrose density-gradient centrifugation. There was bimodal distribution of activity corresponding to mitochondrial and cytosolic localizations. At pH 9.6 cytosolic aldehyde dehydrogenase had a lower apparent Kappm for NAD (0.03 mmol l-1), than the mitochondrial enzyme (Kappm NAD = 1.1 mmol l-1). Also, the pH optimum for cytosolic aldehyde dehydrogenase activity (pH 7.5) was lower than that for the mitochondrial enzyme activity (pH 9.0), and the cytosolic enzyme activity was more sensitive to inhibition by disulfiram in vitro. Disulfiram (40 mumol l-1) caused a 70% reduction in cytosolic aldehyde dehydrogenase activity, but only a 30% reduction in mitochondrial enzyme activity after 10 min incubation. The liver cytosol may therefore be the major site of acetaldehyde oxidation in vivo in man.  相似文献   

18.
The subcellular distribution and properties of four aldehyde dehydrogenase isoenzymes (I-IV) identified in 2-acetylaminofluorene-induced rat hepatomas and three aldehyde dehydrogenases (I-III) identified in normal rat liver are compared. In normal liver, mitochondria (50%) and microsomal fraction (27%) possess the majority of the aldehyde dehydrogenase, with cytosol possessing little, if any, activity. Isoenzymes I-III can be identified in both fractions and differ from each other on the basis of substrate and coenzyme specificity, substrate K(m), inhibition by disulfiram and anti-(hepatoma aldehyde dehydrogenase) sera, and/or isoelectric point. Hepatomas possess considerable cytosolic aldehyde dehydrogenase (20%), in addition to mitochondrial (23%) and microsomal (35%) activity. Although isoenzymes I-III are present in tumour mitochondrial and microsomal fractions, little isoenzyme I or II is found in cytosol. Of hepatoma cytosolic aldehyde dehydrogenase activity, 50% is a hepatoma-specific isoenzyme (IV), differing in several properties from isoenzymes I-III; the remainder of the tumour cytosolic activity is due to isoenzyme III (48%). The data indicate that the tumour-specific aldehyde dehydrogenase phenotype is explainable by qualitative and quantitative changes involving primarily cytosolic and microsomal aldehyde dehydrogenase. The qualitative change requires the derepression of a gene for an aldehyde dehydrogenase expressed in normal liver only after exposure to potentially harmful xenobiotics. The quantitative change involves both an increase in activity and a change in subcellular location of a basal normal-liver aldehyde dehydrogenase isoenzyme.  相似文献   

19.
R Kramar  K Kremser 《Enzyme》1984,31(1):17-20
Treatment over a 3-week period of male rats with the hypolipidemic drug clofibrate results in a more than twofold increase of aldehyde dehydrogenase activity in liver homogenate and mitochondrial fraction. As a comparable rise is also found in the postmitochondrial fraction, it is suggested that not only the mitochondrial but also the microsomal moiety of aldehyde dehydrogenase is induced by clofibrate. Possibly the known enhancement of ethanol catabolism and some protective effect on the liver of clofibrate-treated animals is due, at least in part, to the increased acetaldehyde oxidation by liver aldehyde dehydrogenase.  相似文献   

20.
An attempt has been made to determine the location of the site at which the metabolism of ethanol interacts with that of choline to produce an increase in the oxidation of choline. The first enzyme in the oxidation pathway for choline, choline dehydrogenase, was assayed using a newly developed spectrophotometric assay and freshly isolated intact rat liver mitochondria. No changes were observed in either 'apparent' V or the 'apparent' Km values of choline dehydrogenase for choline after ethanol ingestion. However, when the choline oxidase system was assayed, a 28% decrease in 'apparent' Km for choline and a 53% increase in 'apparent' V was observed. The effects of ATP on choline oxidase were studied further, and a 29.4% decrease was observed in mitochondrial ATP levels from freshly isolated mitochondria from the ethanol-treated rats. In vitro aging of mitochondria further decreased the level of ATP, and the rate of decrease was considerably faster during the first hour in the mitochondria from the ethanol-treated animals. The decreases in ATP from both control and experimental mitochondria were accompanied by increases in choline oxidase activity. The initial decrease in ATP was correlated with an increase in mitochondrial ATPase activity which may be related to an increase in mitochondria Mg2+. Because chronic ethanol ingestion has resulted in decreased oxidation rates of succinate and beta-hydroxybutyrate while at the same time increasing the oxidation rates of choline, the studies reported here suggest that the effect of chronic ethanol ingestion is primarily on a step that is unique to choline and which probably exists prior to the electron transport chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号