首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two subspecies of the predatory aquatic salamanderNotophthalmus, N. viridescens viridescens andN. v. dorsalis, differ in adult body size and geographic distribution. We tested whether experimental populations of the two predator subspecies differed in their effects on prey populations ofB. americanus, and whether observed differences in predator body size were genetic and/or environmentally induced. We compared the effects of predation by bothNotophthalmus subspecies on larvalBufo americanus by experimentally manipulating the densities (0, 2, or 4 newts/m3) and subspecies ofNotophthalmus (N. v. viridescens orN. v. dorsalis) added to artificial ponds. BothNotophthalmus subspecies significantly reducedB. americanus survival, but differed significantly in this effect. FewerBufo survived with the larger subspecies,N. v. viridescens, than with the smallerNotophthalmus subspecies,N. v. dorsalis. TheNotophthalmus subspecies differed in their patterns of adult and larval growth. Adults of the smaller subspecies,N. v. dorsalis, had a significantly higher growth rate than the larger subspecies,N. v. viridescens, under common environmental conditions, suggesting that differences in predator size were partly genetic, rather than entirely environmentally induced. LarvalN. v. dorsalis metamorphosed significantly later in the season than larvae ofN. v. viridescens, suggesting that larvalN. v. dorsalis had a lower growth rate than larvalN. v. viridescens. Differences in adult and larval growth, together with differences in the minimum adult size observed in natural populations, suggest that differences in the rate or duration of pre-adult growth may contribute substantially to observed differences in size.  相似文献   

3.
We studied the joint evolution of predator body size and prey-size preference based on dynamic energy budget theory. The predators’ demography and their functional response are based on general eco-physiological principles involving the size of both predator and prey. While our model can account for qualitatively different predator types by adjusting parameter values, we mainly focused on ‘true’ predators that kill their prey. The resulting model explains various empirical observations, such as the triangular distribution of predator–prey size combinations, the island rule, and the difference in predator–prey size ratios between filter feeders and raptorial feeders. The model also reveals key factors for the evolution of predator–prey size ratios. Capture mechanisms turned out to have a large effect on this ratio, while prey-size availability and competition for resources only help explain variation in predator size, not variation in predator–prey size ratio. Predation among predators is identified as an important factor for deviations from the optimal predator–prey size ratio.  相似文献   

4.
Food web structure and dynamics depend on relationships between body sizes of predators and their prey. Species‐based and community‐wide estimates of preferred and realized predator–prey mass ratios (PPMR) are required inputs to size‐based size spectrum models of marine communities, food webs, and ecosystems. Here, we clarify differences between PPMR definitions in different size spectrum models, in particular differences between PPMR measurements weighting prey abundance in individual predators by biomass (rbio) and numbers (rnum). We argue that the former weighting generates PPMR as usually conceptualized in equilibrium (static) size spectrum models while the latter usually applies to dynamic models. We use diet information from 170,689 individuals of 34 species of fish in Alaskan marine ecosystems to calculate both PPMR metrics. Using hierarchical models, we examine how explained variance in these metrics changed with predator body size, predator taxonomic resolution, and spatial resolution. In the hierarchical analysis, variance in both metrics emerged primarily at the species level and substantially less variance was associated with other (higher) taxonomic levels or with spatial resolution. This suggests that changes in species composition are the main drivers of community‐wide mean PPMR. At all levels of analysis, relationships between weighted mean rbio or weighted mean rnum and predator mass tended to be dome‐shaped. Weighted mean rnum values, for species and community‐wide, were approximately an order of magnitude higher than weighted mean rbio, reflecting the consistent numeric dominance of small prey in predator diets. As well as increasing understanding of the drivers of variation in PPMR and providing estimates of PPMR in the north Pacific Ocean, our results demonstrate that that rbio or rnum, as well as their corresponding weighted means for any defined group of predators, are not directly substitutable. When developing equilibrium size‐based models based on bulk energy flux or comparing PPMR estimates derived from the relationship between body mass and trophic level with those based on diet analysis, weighted mean rbio is a more appropriate measure of PPMR. When calibrating preference PPMR in dynamic size spectrum models then weighted mean rnum will be a more appropriate measure of PPMR.  相似文献   

5.
Defenses protect prey, while offenses arm predators. Some defenses and offenses are constitutive (e.g. tortoise shells), while others are phenotypically plastic and not always expressed (e.g. neckteeth in water fleas). All of them are costly and only adaptive at certain prey densities. Here, I analyse such density-dependent effects, applying a functional response model to categorize defenses and offenses and qualitatively predict at which prey densities each category should evolve (if it is constitutive) or be expressed (if it is phenotypically plastic). The categories refer to the step of the predation cycle that a defense or offense affects: (1) search, (2) encounter, (3) detection, (4) attack, or (5) meal. For example, prey warning signals such as red coloration prevent predator attacks and are hence step 4 defenses, while sharp predator eyes enhance detection and are step 3 offenses. My theoretical analyses predict that step 1 defenses, which prevent predators from searching for their next meal (e.g. toxic substances), evolve or are expressed at intermediate prey densities. Other defenses, however, should be most beneficial at low prey densities. Regarding predators, step 1 offenses (e.g. immunity against prey toxins) are predicted to evolve or be expressed at high prey densities, other offenses at intermediate densities. I provide evidence from the literature that supports these predictions.  相似文献   

6.
The temperature dependence of predation rates is a key issue for understanding and predicting the responses of ecosystems to climate change. Using a simple mechanistic model, we demonstrate that differences in the relative performances of predator and prey can cause strong threshold effects in the temperature dependence of attack rates. Empirical data on the attack rate of northern pike (Esox lucius) feeding on brown trout (Salmo trutta) confirm this result. Attack rates fell sharply below a threshold temperature of +11°C, which corresponded to a shift in relative performance of pike and brown trout with respect to maximum attack and escape swimming speeds. The average attack speed of pike was an order of magnitude lower than the escape speed of brown trout at 5°C, but approximately equal at temperatures above 11°C. Thresholds in the temperature dependence of ecological rates can create tipping points in the responses of ecosystems to increasing temperatures. Thus, identifying thresholds is crucial when predicting future effects of climate warming.  相似文献   

7.
Experimental ponds were used as a model system of habitat patches to study the effect of habitat size on the relative growth performance of tadpoles of Bufo americanus and Pseudacris triseriata, and on colonization by predatory insects. Three pond depths and surface areas were habitat size treatments in a replicated, factorial experiment. Tadpoles of both species were astablished together at a single density and ponds were left open to natural colonization by aquatic insects. Pond area had a significant effect on the multivariate response of P. triseriata larval period, survival, and metamorphic mass. P. triseriata survived better relative to B. americanus in larger ponds. However, increasing pond area led to greater incidence of predacious beetle larvae (Dytiscus, Coleoptera: Dytiscidae). Dytiscus larvae had a significant negative effect on the survival of P. triseriata and led to reduced P. triseriata survival relative to B. americanus in colonized ponds. The results suggest that habitat size can influence community structure by altering the distribution of predation among habitat patches.  相似文献   

8.
Intraguild (IG) predator density can alter its effects on intraguild prey populations through several mechanisms, including density-dependent processes that affect IG predator traits such as size or growth that enhance or limit its predatory abilities. We examined whether intraspecific density-dependence altered IG predator traits, as well as the subsequent interspecific effects among its intraguild prey within a larval salamander guild. Four densities of ringed salamanders (Ambystoma annulatum), the IG predator, were combined with the presence/absence of spotted salamanders (A. maculatum), the IG prey, within experimental mesocosms. We modeled the effects of A. annulatum density on both conspecific and heterospecific responses that would be indicative of density-dependent competition and predation, respectively. We also modeled the reciprocal interspecific effects of A. maculatum on A. annulatum. We found that increasing intraspecific density negatively affected morphological traits but not survival of A. annulatum. No interspecific effects of A. maculatum on A. annulatum were observed. Alternatively, traits of A. maculatum showed nonlinear relationships with increasing A. annulatum density. Thinning effects of A. annulatum on A. maculatum were observed, as survival was positively and size negatively related for A. maculatum with IG predator density. The temporal overlap of the IG predator and prey also increased nonlinearly with IG predator density, intensifying the potential encounter rate of the two species. Overall, this study shows that density-dependent processes in IG predators can significantly affect traits of both themselves, as well as IG prey, which could ultimately change whether competition or predation occurs between the two groups.  相似文献   

9.
Reef fish abundances were sampled at 11 shallow reef localities extending over 1000 km of coastline in northern New Zealand. Sampling was restricted to the 4–10-m depth stratum and included six coastal and five island localities. These were either coralline reef flats dominated by echinoids, or algal reefs with high densities of laminarian and fucoid algae. Reefs dominated by macroscopic algae supported large numbers of small fishes, mainly labrids, and few large benthic-feeding fishes. Echinoid-dominated reefs supported a different fish fauna with more large benthic-feeding species. Additional sampling of echinoiddominated reefs and algal stands in deeper water provided confirmation of these findings. A second sampling programme was carried out at a series of eight sites within a single locality covering 5 km of coastline. These spanned a moderate exposure gradient and ranged from algal dominated reefs to typical coralline reef flats with high densities of grazing invertebrates. The relationship between habitat structure and reef fish species composition and size frequency was similar to that of the large-scale sampling programme. Thirdly, observations on reef fish foraging and feeding patterns within a single reef site suggested that larger benthic-feeding reef fishes were less likely to feed within macroscopic algal stands. Experimental reductions of grazing invertebrates designed to produce brown algal stands on echinoid-dominated reef flats supported these observations. Larger individuals capable of removing echinoids and grazing gastropods did not frequent or feed in laminarian and fucoid algal stands. This pattern is discernible at several spatial scales. Our conclusion is that the type of shallow reef habitat, echinoid- as opposed to algal-dominated, will have an important rôle in determining the associated reef fish fauna.  相似文献   

10.
为了解唐鱼两性异形及其与游泳能力关系,检测了性成熟阶段唐鱼躯干部和鱼鳍形态特征以及爆发游泳速度(Uburst)和临界游泳速度(Ucrit)在雌雄之间的差异,旨在从形态适应角度探究长期进化中雌雄唐鱼各自面对选择压力所产生的游泳能力差异及其机制,从而为野生唐鱼保护提供基础数据.结果表明: 雌性唐鱼的体长、头高、头宽、尾鳍面积以及吻端至枕骨后末端、腹鳍起点至背鳍末端等长度均与雄性无显著差异.而体高、体宽、腹鳍起点至背鳍起点等反映腹腔大小的形态参数以及吻端至背鳍起点、吻端至臀鳍起点、枕骨后末端至背鳍起点等反映躯干部大小的形态参数均显示为雌性显著大于雄性,但头长以及胸鳍面积、腹鳍面积、背鳍面积和臀鳍面积均显示为雄性显著大于雌性.对所有数据进行主成分分析,结果显示第1主成分贡献率为74.2%,负载量较大的是体长、头长、头高、体高、头宽、体宽以及各鳍之间距离等主要反映唐鱼躯干整体特征的参数;第2主成分贡献率为15.7%,负载量较大的是胸鳍面积、腹鳍面积、背鳍面积和臀鳍面积等主要反映鱼鳍特征的参数.唐鱼性别在第1主成分上无法区分,但在第2主成分却可以明显区分.根据体宽、胸鳍面积、腹鳍面积、背鳍面积和臀鳍面积等建立的性别判别方程对雌雄判断准确率达到91.8%~92.5%.唐鱼游泳能力测定结果显示,雌性Uburst与雄性无显著差异,但Ucrit显著小于雄性.以上结果表明,雌雄唐鱼两性异形主要集中在与游泳能力相关的鱼鳍特征上.相比雄性,雌性唐鱼虽然胸鳍等鱼鳍面积较小导致其Ucrit小于雄性,却具有更长的躯干部以保证其同样具有较高的爆发游泳能力,从而有利于在流速波动很大的溪流中躲避捕食和进行其他应急活动;相比雌性,雄性唐鱼则具有较大的鱼鳍面积保证其Ucrit高于雌性,以利于日常活动及在繁殖过程中追逐雌性等相对持久性游泳运动.  相似文献   

11.
This study compared the critical swimming speed (Ucrit) and endurance performance of three Australian freshwater fish species in different swim‐test apparatus. Estimates of Ucrit measured in a large recirculating flume were greater for all species compared with estimates from a smaller model of the same recirculating flume. Large differences were also observed for estimates of endurance swimming performance between these recirculating flumes and a free‐surface swim tunnel. Differences in estimates of performance may be attributable to variation in flow conditions within different types of swim chambers. Variation in estimates of swimming performance between different types of flumes complicates the application of laboratory‐based measures to the design of fish passage infrastructure.  相似文献   

12.
Predator density, refuge availability, and body size of prey can all affect the mortality rate of prey. We assume that more predators will lead to an increase in prey mortality rate, but behavioral interactions between predators and prey, and availability of refuge, may lead to nonlinear effects of increased number of predators on prey mortality rates. We tested for nonlinear effects in prey mortality rates in a mesocosm experiment with different size classes of western mosquitofish (Gambusia affinis) as the prey, different numbers of green sunfish (Lepomis cyanellus) as the predators, and different levels of refuge. Predator number and size class of prey, but not refuge availability, had significant effects on the mortality rate of prey. Change in mortality rate of prey was linear and equal across the range of predator numbers. Each new predator increased the mortality rate by about 10% overall, and mortality rates were higher for smaller size classes. Predator–prey interactions at the individual level may not scale up to create nonlinearity in prey mortality rates with increasing predator density at the population level.  相似文献   

13.
The ability to determine the prey-specific biomass intake of large predators is fundamental to their conservation. In the absence of actual prey data, researchers generally use a “unit mass” method (estimated as 3/4 adult female mass) to calculate the biomass intake of predators. However, differences in prey preference and range across geographic regions are likely to have an influence on biomass calculations. Here we investigate the influence of estimated prey mass on leopard biomass calculations, and subsequent carrying capacity estimates, in an understudied mountain population. Potential leopard feeding sites were identified using global positioning system (GPS) location clusters obtained from GPS collars. We investigated 200 potential leopard feeding sites, of which 96 were actual feeding sites. Jaw bones, horns, hooves, and other indicative bones were used to determine gender and age of prey items, which were subsequently used to calculate mass of each prey item based on previously published values. There were significant differences in the biomass values calculated using the traditional unit mass method and the calculated prey masses obtained from leopard feeding sites. However, there were no considerable differences in the carrying capacity estimates using the preferred prey species model and leopard density estimates calculated using a non-biased spatial approach, which suggests that estimating carnivore carrying capacity based on 3/4 adult female masses is a reliable method also for the mountain population in this study.  相似文献   

14.
Summary Spot size in descendants from the Goodale white-spotted stock of mice responded to selection for increased spot size. The realized heritability estimate was 0.52. However, no correlated response of reproduction to spot size selection was found in the present study, nor was there any correlated response among body weight variables.Joint project of Purdue University and USDA-SEA-ARS, North Central Region. Journal paper number 8279 from the Purdue Agricultural Experiment Station  相似文献   

15.
We tested the relative and combined effects of prey density and patch size on the functional response (number of attacks per unit time and duration of attacks) of a predatory reef fish (Cheilodactylus nigripes (Richardson)) to their invertebrate prey. Fish attacked prey at a greater rate and for longer time in large than small patches of prey, but large patches had naturally greater densities of prey. We isolated the effects of patch size and prey density by reducing the density of prey in larger patches to equal that of small patches; thereby controlling for prey density. We found that the intensity at which fish attacked prey (combination of attack rate and duration) was primarily a response to prey density rather than the size of patch they occupied. However, there was evidence that fish spent more time foraging in larger than smaller patches independent of prey density; presumably because of the greater total number of prey available. These experimental observations suggest that fish can distinguish between different notions of prey abundance in ways that enhance their rate of consumption. Although fish may feed in a density dependent manner, a critical issue is whether their rate of consumption outstrips the rate of increase in prey abundance to cause density dependent mortality of prey.  相似文献   

16.
It is widely held that when predator avoidance conflicts with other activities, such as feeding, avoidance of predators often takes precedence. In this study, we examine how predation risk and food distribution interact to influence the schooling behavior and swimming speed of foraging juvenile walleye pollock, Theragra chalcogramma. Fish were acclimated to either spatially and temporally clumped, or spatially and temporally dispersed food for 3 weeks. Fish were then monitored while feeding in the absence and presence of predatory sablefish, Anoplopoma fimbria. Fish foraging for clumped food swam rapidly in a loose school when predators were absent, but swam more slowly and adopted more cohesive schooling in the presence of predators, trading-off foraging opportunity for decreased vulnerability to predators. Fish foraging for dispersed food swam about slowly and did not engage in cohesive schooling in either the absence or presence of predators. These fish accepted greater predation risk in order to continue foraging, suggesting that the cost of schooling, in terms of decreased foraging opportunity, was greater when food was dispersed than when it was clumped. This lower responsiveness to predators among fish receiving dispersed food demonstrates that predator avoidance does not always take precedence over other activities, but rather, that a balance is maintained between predator avoidance and feeding, which shifts as food distribution changes.  相似文献   

17.
Age at maturation is a key life history trait influencing individual fitness, population age structure, and ecological interactions. We investigated the evolution of age at maturity through changes in the von Bertalanffy growth constant for organisms with a simple juvenile-adult life history. We used Gillespie eco-evolutionary models to uncover the role of predation in driving the evolution of the growth constant when eco-evolutionary dynamics are present. We incorporated both size-independent and size-dependent predation into our models to generate differences in selection and dynamics in the system. Our results generally support the idea that faster ontogenetic growth is beneficial when populations are growing but that predation tends to have little effect on age at maturity unless there are trade-offs with other life history traits. In particular, if faster ontogenetic growth comes at the cost of fecundity, our results suggest that predation selects for intermediate levels of growth and fecundity. Eco-evolutionary dynamics influenced the nature of selection only when growth was linked to fecundity. We also found that predators that increasingly consume larger prey tend to have higher population sizes due to the greater energy intake from larger prey, but the growth rate-fecundity trade-off reversed this pattern. Overall, our results suggest an important role for interactions between size-dependent foraging and life-history trade-offs in generating varying selection on age at maturity through underlying growth traits.  相似文献   

18.
The relationships between a predator population's mortality rate and its population size and stability are investigated for several simple predator-prey models with stage-structured prey populations. Several alternative models are considered; these differ in their assumptions about the nature of density dependence in the prey's population growth; the nature of stage-transitions; and the stage-selectivity of the predator. Instability occurs at high, rather than low predator mortality rates in most models with highly stage-selective predation; this is the opposite of the effect of mortality on stability in models with homogeneous prey populations. Stage-selective predation also increases the range of parameters that lead to a stable equilibrium. The results suggest that it may be common for a stable predator population to increase in abundance as its own mortality rate increases in stable systems, provided that the predator has a saturating functional response. Sufficiently strong density dependence in the prey generally reverses this outcome, and results in a decrease in predator population size with increasing predator mortality rate. Stability is decreased when the juvenile stage has a fixed duration, but population increases with increasing mortality are still observed in large areas of stable parameter space. This raises two coupled questions which are as yet unanswered; (1) do such increases in population size with higher mortality actually occur in nature; and (2) if not, what prevents them from occurring? Stage-structured prey and stage-related predation can also reverse the 'paradox of enrichment', leading to stability rather than instability when prey growth is increased.  相似文献   

19.
20.
  1. Variation in predator diet is a critical aspect of food web stability, health, and population dynamics of predator/ prey communities. Quantifying diet, particularly among cryptic species, is extremely challenging, however, and differentiation between demographic subsets of populations is often overlooked.
  2. We used prey remains and data taken postmortem from otter Lutra lutra to determine the extent to which dietary variation in a top predator was associated with biotic, spatial, and temporal factors.
  3. Biotic data (e.g., sex, weight, and length) and stomach contents were taken from 610 otters found dead across England and Wales between 1994 and 2010. Prey remains were identified to species where possible, using published keys and reference materials. Multi‐model inference followed by model prediction was applied to test for and visualize the nature of associations.
  4. Evidence for widespread decline in the consumption of eels (Anguilla anguilla) reflected known eel population declines. An association between eel consumption and otter body condition suggested negative consequences for otter nutrition. Consumption of Cottus gobio and stickleback spp. increased, but was unlikely to compensate (there was no association with body condition). More otters with empty stomachs were found over time. Otter sex, body length, and age‐class were important biotic predictors of the prey species found, and season, region, and distance from the coast were important abiotic predictors.
  5. Our study is unique in its multivariate nature, broad spatial scale, and long‐term dataset. Inclusion of biotic data allowed us to reveal important differences in costs and benefits of different prey types, and differences between demographic subsets of the population, overlaid on spatial and temporal variation. Such complexities in otter diet are likely to be paralleled in other predators, and detailed characterization of diet should not be overlooked in efforts to conserve wild populations.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号