首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factor receptor substrate 2 (FRS2α) is a signaling adaptor protein that regulates downstream signaling of many receptor tyrosine kinases. During signal transduction, FRS2 can be both tyrosine and threonine phosphorylated and forms signaling complexes with other adaptor proteins and tyrosine phosphatases. We have here identified flotillin-1 and the cbl-associated protein/ponsin (CAP) as novel interaction partners of FRS2. Flotillin-1 binds to the phosphotyrosine binding domain (PTB) of FRS2 and competes for the binding with the fibroblast growth factor receptor. Flotillin-1 knockdown results in increased Tyr phosphorylation of FRS2, in line with the inhibition of ERK activity in the absence of flotillin-1. CAP directly interacts with FRS2 by means of its sorbin homology (SoHo) domain, which has previously been shown to interact with flotillin-1. In addition, the third SH3 domain in CAP binds to FRS2. Due to the overlapping binding domains, CAP and flotillin-1 appear to compete for the binding to FRS2. Thus, our results reveal a novel signaling network containing FRS2, CAP and flotillin-1, whose successive interactions are most likely required to regulate receptor tyrosine kinase signaling, especially the mitogen activated protein kinase pathway.  相似文献   

2.
The C2 domain of PKCdelta is a phosphotyrosine binding domain   总被引:5,自引:0,他引:5  
Benes CH  Wu N  Elia AE  Dharia T  Cantley LC  Soltoff SP 《Cell》2005,121(2):271-280
In eukaryotic cells, the SH2 and PTB domains mediate protein-protein interactions by recognizing phosphotyrosine residues on target proteins. Here we make the unexpected finding that the C2 domain of PKCdelta directly binds to phosphotyrosine peptides in a sequence-specific manner. We provide evidence that this domain mediates PKCdelta interaction with a Src binding glycoprotein, CDCP1. The crystal structure of the PKCdelta C2 domain in complex with an optimal phosphopeptide reveals a new mode of phosphotyrosine binding in which the phosphotyrosine moiety forms a ring-stacking interaction with a histidine residue of the C2 domain. This is also the first example of a protein Ser/Thr kinase containing a domain that binds phosphotyrosine.  相似文献   

3.
Src homology 2 (SH2) domains mediate phosphotyrosine (pY)-dependent protein:protein interactions involved in signal transduction pathways. We have found that the SH2 domains of the 85-kDa alpha subunit (p85) of phosphatidylinositol 3-kinase (PI3 kinase) bind directly to the serine/threonine kinase A-Raf. In this report we show that the p85 SH2:A-Raf interaction is phosphorylation-independent. The affinity of the p85 C-SH2 domain for A-Raf and phosphopeptide pY751 was similar, raising the possibility that a p85:A-Raf complex may play a role in the coordinated regulation of the PI3 kinase and Raf-MAP kinase pathways. We further show that the p85 C-SH2 domain contains two distinct binding sites for A-Raf; one overlapping the phosphotyrosine-dependent binding site and the other a separate phosphorylation-independent site. This is the first evidence for a second binding site on an SH2 domain, distinct from the phosphotyrosine-binding pocket.  相似文献   

4.
Src kinase regulation by phosphorylation and dephosphorylation   总被引:10,自引:0,他引:10  
Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPalpha, PTPepsilon, and PTPlambda. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.  相似文献   

5.
Proteins with Src homology 2 (SH2) domains play major roles in tyrosine kinase signaling. Structures of many SH2 domains have been studied, and the regions involved in their interactions with ligands have been elucidated. However, these analyses have been performed using short peptides consisting of phosphotyrosine followed by a few amino acids, which are described as the canonical recognition sites. Here, we report the solution structure of the SH2 domain of C-terminal Src kinase (Csk) in complex with a longer phosphopeptide from the Csk-binding protein (Cbp). This structure, together with biochemical experiments, revealed the existence of a novel binding region in addition to the canonical phosphotyrosine 314-binding site of Cbp. Mutational analysis of this second region in cells showed that both canonical and novel binding sites are required for tumor suppression through the Cbp-Csk interaction. Furthermore, the data indicate an allosteric connection between Cbp binding and Csk activation that arises from residues in the βB/βC loop of the SH2 domain.  相似文献   

6.
p62Dok, the rasGAP-binding protein, is a common target of protein-tyrosine kinases. It is one of the major tyrosine-phosphorylated molecules in v-Src-transformed cells. Dok consists of an amino-terminal Pleckstrin homology domain, a putative phosphotyrosine binding domain, and a carboxyl-terminal tail containing multiple tyrosine phosphorylation sites. The importance and function of these sequences in Dok signaling remain largely unknown. We have demonstrated here that the expression of Dok can inhibit cellular transformation by the Src tyrosine kinase. Both the phosphotyrosine binding domain and the carboxyl-terminal tail of Dok (in particular residues 336-363) are necessary for such activity. Using a combinatorial peptide library approach, we have shown that the Dok phosphotyrosine binding domain binds phosphopeptides with the consensus motif of Y/MXXNXL-phosphotyrosine. Furthermore, Dok can homodimerize through its phosphotyrosine binding domain and Tyr(146) at the amino-terminal region. Mutations of this domain or Tyr(146) that block homodimerization significantly reduce the ability of Dok to inhibit Src transformation. Our results suggest that Dok oligomerization through its multiple domains plays a critical role in Dok signaling in response to tyrosine kinase activation.  相似文献   

7.
Reelin is a large secreted signaling protein that binds to two members of the low density lipoprotein receptor family, the apolipoprotein E receptor 2 and the very low density lipoprotein receptor, and regulates neuronal positioning during brain development. Reelin signaling requires activation of Src family kinases as well as tyrosine phosphorylation of the intracellular adaptor protein Disabled-1 (Dab1). This results in activation of phosphatidylinositol 3-kinase (PI3K), the serine/threonine kinase Akt, and the inhibition of glycogen synthase kinase 3beta, a protein that is implicated in the regulation of axonal transport. Here we demonstrate that PI3K activation by Reelin requires Src family kinase activity and depends on the Reelin-triggered interaction of Dab1 with the PI3K regulatory subunit p85alpha. Because the Dab1 phosphotyrosine binding domain can interact simultaneously with membrane lipids and with the intracellular domains of apolipoprotein E receptor 2 and very low density lipoprotein receptor, Dab1 is preferentially recruited to the neuronal plasma membrane, where it is phosphorylated. Efficient Dab1 phosphorylation and activation of the Reelin signaling cascade is impaired by cholesterol depletion of the plasma membrane. Using a neuronal migration assay, we also show that PI3K signaling is required for the formation of a normal cortical plate, a step that is dependent upon Reelin signaling.  相似文献   

8.
pp54 microtubule-associated protein-2 (MAP-2) kinase, a recently discovered protein serine/threonine kinase (Kyriakis, J., and Avruch, J. (1990) J. Biol. Chem. 265, 17355-17363), is shown to contain immunoreactive phosphotyrosine residues. Treatment with recombinant rat brain protein tyrosine phosphatase-1 deactivates pp54 MAP-2 kinase, concomitant with the removal of phosphotyrosine residues. Protein (serine/threonine) phosphatase-1 also deactivates pp54 MAP-2 kinase in a specific fashion. pp54 MAP-2 kinase joins pp42 MAP-2 kinase and cdc2/maturation-promoting factor as one of only three serine/threonine protein kinases known to be regulated by phosphorylation at both tyrosine and, independently, at serine/threonine residues. In view of these shared regulatory properties, a role for pp54 MAP-2 kinase in the control of cell division is likely.  相似文献   

9.
We have isolated a novel protein based on its association with Drosophila APP-like protein (APPL), a homolog of the beta-amyloid precursor protein (APP) that is implicated in Alzheimer's disease. This novel APPL-interacting protein 1 (APLIP1) contains a Src homology 3 domain and a phosphotyrosine interaction domain and is expressed abundantly in neural tissues. The phosphotyrosine interaction domain of APLIP1 interacts with a sequence containing GYENPTY in the cytoplasmic domain of APPL. APLIP1 is highly homologous to the carboxyl-terminal halves of mammalian c-Jun NH(2)-terminal kinase (JNK)-interacting protein 1b (JIP1b) and 2 (JIP2), which also contain Src homology 3 and phosphotyrosine interaction domains. The similarity of APLIP1 to JIP1b and JIP2 includes interaction with component(s) of the JNK signaling pathway and with the motor protein kinesin and the formation of homo-oligomers. JIP1b interacts strongly with the cytoplasmic domain of APP (APPcyt), as APLIP1 does with APPL, but the interaction of JIP2 with APPcyt is weak. Overexpression of JIP1b slightly enhances the JNK-dependent threonine phosphorylation of APP in cultured cells, but that of JIP2 suppresses it. These observations suggest that the interactions of APP family proteins with APLIP1, JIP1b, and JIP2 are conserved and play important roles in the metabolism and/or the function of APPs including the regulation of APP phosphorylation by JNK. Analysis of APP family proteins and their associated proteins is expected to contribute to understanding the molecular process of neural degeneration in Alzheimer's disease.  相似文献   

10.
11.
Transmembrane receptors with intrinsic serine/threonine or tyrosine kinase domains regulate vital functions of cells in multicellular eukaryotes, e.g., differentiation, apoptosis, and proliferation. Here, we show that bone morphogenetic protein type II receptor (BMPR-II) which has a serine/threonine kinase domain, and stem cell factor receptor (c-kit) which contains a tyrosine kinase domain form a complex in vitro and in vivo; the interaction is induced upon treatment of cells with BMP2 and SCF. Stem cell factor (SCF) modulated BMP2-dependent activation of Smad1/5/8 and phosphorylation of Erk kinase. SCF also enhanced BMP2-dependent differentiation of C2C12 cells. We found that BMPR-II was phosphorylated at Ser757 upon co-expression with and activation of c-kit. BMPR-II phosphorylation required intact kinase activity of BMPR-II. Abrogation of the c-kit/SCF-dependent phosphorylation of BMPR-II at the Ser757 interfered with the cooperative effect of BMP2 and SCF. Our data suggest that the complex formation between c-kit and BMPR-II leads to phosphorylation of BMPR-II at Ser757, which modulates BMPR-II-dependent signaling.  相似文献   

12.
The mechanism of outside-in signaling by integrins parallels that for growth factor receptors. In both pathways, phosphorylation of a cytoplasmic segment on tyrosine generates a docking site for proteins containing Src homology 2 (SH2) and phosphotyrosine binding domains. We recently observed that phosphorylation of a threonine (Thr-753), six amino acids proximal to tyrosine 759 in beta(3) of the platelet specific integrin alpha(IIb)beta(3), inhibits outside-in signaling through this receptor. We hypothesized that the presence of phosphothreonine 753 either renders beta(3) a poor substrate for tyrosine kinases or inhibits the docking capabilities of the tyrosyl-phosphorylated form of beta(3.) The first alternative was tested by comparing the phosphorylation of beta(3) model peptides by the tyrosine kinase pp60(c-src) and we found that the presence of a phosphate group on a residue corresponding to Thr-753 did not detectably alter the kinetics of tyrosine phosphorylation. However, the presence of phosphate on this threonine inhibited the binding of Shc to tyrosyl-phosphorylated beta(3) peptide. The inhibitory effect of the phosphate group could be mimicked by substituting an aspartic acid for Thr-753, suggesting that a negative charge at this position modulates the binding of Shc and possibly other phosphotyrosine binding domain- and SH2-containing proteins. A survey of several protein kinases revealed that Thr-753 was avidly phosphorylated by PDK1 and Akt/PKB in vitro. These observations suggest that activation of PDK1 and/or Akt/PKB in platelets may modulate the binding activity and/or specificity of beta(3) for signaling molecules.  相似文献   

13.
The tumor suppressor phosphatase PTEN is a key regulator of cell growth and apoptosis that interacts with PDZ domains from regulatory proteins, including MAGI-1/2/3, hDlg, and MAST205. Here we identified novel PTEN-binding PDZ domains within the MAST205-related proteins, syntrophin-associated serine/threonine kinase and MAST3, characterized the regions of PTEN involved in its interaction with distinctive PDZ domains, and analyzed the functional consequences on PTEN of PDZ domain binding. Using a panel of PTEN mutations, as well as PTEN chimeras containing distinct domains of the related protein TPTE, we found that the PTP and C2 domains of PTEN do not affect PDZ domain binding and that the C-terminal tail of PTEN (residues 350-403) provides selectivity to recognize specific PDZ domains from MAGI-2, hDlg, and MAST205. Binding of PTEN to the PDZ-2 domain from MAGI-2 increased PTEN protein stability. Furthermore, binding of PTEN to the PDZ domains from microtubule-associated serine/threonine kinases facilitated PTEN phosphorylation at its C terminus by these kinases. Our results suggest an important role for the C-terminal region of PTEN in the selective association with scaffolding and/or regulatory molecules and provide evidence that PDZ domain binding stabilizes PTEN and targets this tumor suppressor for phosphorylation by microtubule-associated serine/threonine kinases.  相似文献   

14.
SH2 domains are protein modules which bind tyrosine phosphorylated sequences in many signaling pathways. These domains contain two regions with specialized functions: residues in one region form a deep pocket into which the phosphotyrosine of the target inserts, while the other region contains the so-called "specificity determining residues" which interact with the three residues C-terminal to the phosphotyrosine in the target. Here, titration calorimetry and site-directed mutagenesis have been used to probe the importance of eight specificity determining residues of the SH2 domain of the Src kinase involved in contacts with its tyrosine phosphorylated consensus peptide target (sequence pYEEI where pY indicates a phosphotyrosine). Mutating six of these eight residues to Ala individually, resulted in a threefold or less loss in binding affinity; hence the majority of the residues in the specificity determining region are by themselves of minimal importance for binding. Two residues were found to have significant effects on binding: Tyr betaD5 and Lys betaD3. Tyr betaD5 was the most crucial residue as evidenced by the 30-fold loss in affinity when Tyr betaD5 is mutated to Ile. However, while this mutation eliminated the specificity of the Src SH2 domain for the pYEEI peptide sequence, it was not sufficient to switch the specificity of the Src SH2 domain to that of a related SH2 domain which has an Ile at the betaD5 position. Mutation of Lys betaD3 to an Ala residue resulted in a modest reduction in binding affinity (sevenfold). It is interesting that this mutation resulted in a change of specificity affecting the selection of the +1 position residue C-terminal to the phosphotyrosine. Except for the Lys betaD3-+1 Glu interaction which is significantly coupled, only weak energetic coupling was observed across the binding interface, as assessed using double mutant cycles. The results of this study suggest that interactions involving the specificity determining region of SH2 domains may be insufficient by themselves to target single SH2 domains to particular phosphorylated sites.  相似文献   

15.
The regulation of kinase activity associated with insulin receptor by phosphorylation and dephosphorylation has been examined using partially purified receptor immobilized on insulin-agarose. The immobilized receptor preparation exhibits predominately tyrosine but also serine and threonine kinase activities toward insulin receptor beta subunit and exogenous histone. Phosphorylation of the insulin receptor preparation with increasing concentrations of unlabeled ATP, followed by washing to remove the unreacted ATP, results in a progressive activation of the receptor kinase activity when assayed in the presence of histone and [gamma-32P]ATP. A maximal 4-fold activation is achieved by prior incubation of receptor with concentrations of ATP approaching 1 mM. High pressure liquid chromatographic analysis of tryptic hydrolysates of the 32P-labeled insulin receptor beta subunit reveals three domains of phosphorylation (designated peaks 1, 2, and 3). Phosphotyrosine and phosphoserine residues are present in these three domains while peak 2 contains phosphothreonine as well. Thus, at least seven sites are available for phosphorylation on the beta subunit of the insulin receptor. Incubation of the phosphorylated insulin receptor with alkaline phosphatase at 15 degrees C results in the selective dephosphorylation of the phosphotyrosine residues on the beta subunit of the receptor while the phosphoserine and phosphothreonine contents are not affected. The dephosphorylation of the receptor is accompanied by a marked 65% inhibition of the receptor kinase activity. Almost 90% of the decrease in [32P]phosphate content of the receptor after alkaline phosphatase treatment is accounted for by a decrease in phosphotyrosine content in peak 2, while very small decreases are observed in peaks 1 and 3, respectively. These results demonstrate that the extent of phosphorylation of tyrosine residues in receptor domain 2 closely parallels the receptor kinase activity state, suggesting phosphorylation of this domain may play a key role in regulating the insulin receptor tyrosine kinase.  相似文献   

16.
Angiogenesis is a tightly controlled process in which signaling by the receptors for vascular endothelial growth factor (VEGF) plays a key role. In order to define signaling pathways downstream of VEGF receptors (VEGFR), the kinase domain of VEGFR2 (Flk-1) was used as a bait to screen a human fetal heart library in the yeast two-hybrid system. One of the signaling molecules identified in this effort was HCPTPA, a low molecular weight, cytoplasmic protein tyrosine phosphatase. Although HCPTPA possesses no identifiable phosphotyrosine binding domains (i.e. SH2 or phosphotyrosine binding domains), it bound specifically to active, autophosphorylated VEGFR2 but not to a mutated, kinase-inactive VEGFR2. Recombinant VEGFR2 and endogenous VEGFR2 were substrates for recombinant HCPTPA, and HCPTPA was co-expressed with VEGFR2 in endothelial cell lines, suggesting that HCPTPA may be a negative regulator of VEGFR2 signal transduction. To pursue this possibility, an adenovirus directing the expression of HCPTPA was constructed. When used to infect cultured endothelial cells, this adenovirus directed high level expression of HCPTPA that resulted in impairment of VEGF-mediated VEGFR2 autophosphorylation and mitogen-activated protein kinase activation. Adenovirus-mediated overexpression of HCPTPA also inhibited VEGF-induced cellular responses (endothelial cell migration and proliferation) and inhibited angiogenesis in the rat aortic ring assay. Taken together, these findings indicate that HCPTPA may be an important regulator of VEGF-mediated signaling and biological activity. Potential interactions with other signaling pathways and possible therapeutic implications are discussed.  相似文献   

17.
BCR-ABL is a chimeric oncogene implicated in the pathogenesis of Philadelphia chromosome-positive human leukemias. BCR first exon sequences specifically activate the tyrosine kinase and transforming potential of BCR-ABL. We have tested the hypothesis that activation of BCR-ABL may involve direct interaction between BCR sequences and the tyrosine kinase regulatory domains of ABL. Full-length c-BCR as well as BCR sequences retained in BCR-ABL bind specifically to the SH2 domain of ABL. The binding domain has been localized within the first exon of BCR and consists of at least two SH2-binding sites. This domain is essential for BCR-ABL-mediated transformation. Phosphoserine/phosphothreonine but not phosphotyrosine residues on BCR are required for interaction with the ABL SH2 domain. These findings extend the range of potential SH2-protein interactions in growth control pathways and suggest a function for SH2 domains in the activation of the BCR-ABL oncogene as well as a role for BCR in cellular signaling pathways.  相似文献   

18.
The tyrosine kinase Janus kinase 2 (JAK2) transduces signaling for the majority of known cytokine receptor family members and is constitutively activated in some cancers. Here we examine the mechanisms by which the adapter proteins SH2-Bbeta and APS regulate the activity of JAK2. We show that like SH2-Bbeta, APS binds JAK2 at multiple sites and that binding to phosphotyrosine 813 is essential for APS to increase active JAK2 and to be phosphorylated by JAK2. Binding of APS to a phosphotyrosine 813-independent site inhibits JAK2. Both APS and SH2-Bbeta increase JAK2 activity independent of their N-terminal dimerization domains. SH2-Bbeta-induced increases in JAK2 dimerization require only the SH2 domain and only one SH2-Bbeta to be bound to a JAK2 dimer. JAK2 mutations and truncations revealed that amino acids 809 to 811 in JAK2 are a critical component of a larger regulatory region within JAK2, most likely including amino acids within the JAK homology 1 (JH1) and JH2 domains and possibly the FERM domain. Together, our data suggest that SH2-Bbeta and APS do not activate JAK2 as a consequence of their own dimerization, recruitment of an activator of JAK2, or direct competition with a JAK2 inhibitor for binding to JAK2. Rather, they most likely induce or stabilize an active conformation of JAK2.  相似文献   

19.
Src homology 2 (SH2) regions are short (approximately 100 amino acids), non-catalytic domains conserved among a wide variety of proteins involved in cytoplasmic signaling induced by growth factors. It is thought that SH2 domains play an important role in the intracellular response to growth factor stimulation by binding to phosphotyrosine containing proteins. In this paper we apply the techniques of multiple sequence alignment, secondary structure prediction and conservation analysis to 67 SH2 domain amino acid sequences. This combined approach predicts seven core secondary structure regions with the pattern beta-alpha-beta-beta-beta-beta-alpha, identifies those residues most likely to be buried in the hydrophobic core of the native SH2 domain, and highlights patterns of conservation indicative of secondary structural elements. Residues likely to be involved in phosphotyrosine binding are shown and orientations of the predicted secondary structures suggested which could enable such residues to cooperate in phosphate binding. We propose a consensus pattern that encapsulates the principal conserved features of the SH2 domains. Comparison of the proposed SH2 domain of akt to this pattern shows only 12/40 matches, suggesting that this domain may not exhibit SH2-like properties.  相似文献   

20.
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) kinases (MEKKs) are serine/threonine kinases that are upstream regulators of MAPKs. Here, the role of the amino-terminal (N-terminal) domain of MEKK1-4 on the regulation of different intracellular signaling pathways, apoptosis, and cell proliferation has been assessed by comparing the responses induced by the full-length (FL) MEKKs to those induced by the kinase domains only. For each MEKK, the pattern of activation of NF kappa B, the ERK MAPK pathway, and the c-Jun N-terminal kinase (JNK) MAPK pathway markedly differed between the kinase domain and the FL form. Similarly, cell proliferation and apoptosis were differently regulated by the FL MEKK and the corresponding kinase domain. Our data show that the N-terminal domain of the MEKKs determines the specificity and the strength of activation of various intracellular signaling pathways and cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号