首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extrafloral nectaries: ants,herbivores and fecundity in Cassia fasciculata   总被引:1,自引:0,他引:1  
Carol A. Kelly 《Oecologia》1986,69(4):600-605
Summary Extrafloral nectaries of Cassia fasciculata attract nectar feeding ants which protect the plant against leaf herbivores. High ant visitation in late July coincided with high herbivore densities at two sites in east central Iowa. The highest level of leaf herbivory occurred during the time of flowering and early fruit filling, just after the peak of herbivore and ant activity. Results of ant exclusion experiments at the two sites showed that ant visitation resulted in decreased herbivore numbers, decreased leaf area loss, increased growth, and at one site decreased plant mortality. However, this reduction in leaf area loss and increase in growth did not translate into seed set differences between plants with and without ants at either site. Initial plant size was more important than the presence or absence of ants in determining fecundity for this temperate annual during a year of summer drought.  相似文献   

2.
Galen C 《Oecologia》2005,144(1):80-87
According to the distraction hypothesis, extrafloral nectaries (EFN) evolved under selection to entice ants away from floral nectaries, reducing ant-mediated damage to flowers and/or interference with pollinators. Predator-satiation, through production of nectar in either surplus flowers or EFN, provides an alternative mechanism for reducing the impact of ants as flower visitors. I tested these two hypotheses by experimentally adding EFN to flowering plants of the alpine wildflower, Polemonium viscosum, and by surveying the relationship between ant visitation and nectary number in nature. Plants of P. viscosum lack EFN and experience flower damage by ants of Formica neorufibarbus gelida. Ant behavior was compared on plants with five flowers and three experimental EFN and on controls with equal floral display, but no EFN. Addition of EFN increased flower visitation by ants. The effect of EFN on flower visitation did not depend on proximity of EFN to flowers or attractiveness of EFN to ants. Findings suggest that ants perceived patch quality on a whole plant basis, rather than responding to EFN and flowers as distinct nectar patches. Ant visitation did not keep pace with nectary number in nature. The relationship between ant visitation and nectary number per plant was weak and shallow as predicted under satiation. Ant foraging choices on experimental inflorescences showed that ants bypass flowers avoided by earlier ants, enhancing probability of escape via satiation. Results do not support the idea that EFN evolve to reduce flower visitation by ants, but show instead that nectar in surplus flowers can satiate ants and reduce their negative impacts on flower function and integrity.  相似文献   

3.
F. F. Xu  J. Chen 《Insectes Sociaux》2010,57(3):343-349
In facultative ant–plant interactions, ants may compete with each other for food provided by extrafloral nectar (EFN) plants. We studied resource competition and plant defense in a guild of ants that use the same EFN resource provided by two species of Passiflora in a seasonal rain forest in tropical China. At least 22 ant species were recorded using the EFN resource, although some of those species were rare. Among these ants, Paratrechina sp.1 and Dolichoderus thoracicus were more aggressive than other species. Ant aggressiveness measured as ant behavioral dominance index (BDI) was positively correlated with ant abundance on the Passiflora species studied. Ant BDI was also positively correlated to the protection that ants provided against herbivory. In Passiflora siamica, the number of workers patrolling on the plants did negatively correlate with average leaf loss per plant. We conclude that in this facultative Passiflora–ant system, plant defense upon herbivore was indeed influenced by the total number of ants present on plant and the aggressiveness of these ants.  相似文献   

4.
In the absence of coevolved natural enemies, plants are expected to experience selection away from costly herbivore defenses toward growth and reproduction [evolution of increased competitive ability hypothesis (EICA)], yet no one has demonstrated EICA for an indirect defense trait. Likewise, we have little understanding of how constitutive and induced levels of defense vary among native and invasive plant populations. We conducted a greenhouse experiment in the introduced range to test whether invasive populations have reduced constitutive and induced investment in an indirect defense trait, extrafloral nectar (EFN) production, compared to native populations of Chinese tallow tree, Triadica sebifera, through an experimental leaf damage treatment. Overall, native populations invested more in indirect defense: Native populations had a greater number (+16?%) and percentage of leaves producing EFN (35 vs. 28?%), produced more EFN (63?% greater volume), and produced more sugar (+33?%) compared to invasive populations, independent of damage treatment. Of these traits, number of leaves producing EFN and volume of EFN exhibited a trade-off between constitutive and induced investment but these did not depend on plant origin. Our results are the first to support the EICA hypothesis for an indirect defense trait. This suggests that tri-trophic interactions such as indirect defense are under similar selection as direct defense traits within introduced populations. Despite reduced investment in EFN production, invasive populations still retain the ability to produce EFN, which may enable invasive plants to defend against herbivores in the introduced range.  相似文献   

5.
While nectaries are commonly found in flowers, some plants also form extrafloral nectaries on stems or leaves. For the first time in the family Brassicaceae, here we report extrafloral nectaries in Brassica juncea. The extrafloral nectar (EFN) was secreted from previously amorphic sites on stems, flowering stalks and leaf axils from the onset of flowering until silique formation. Transverse sections at the point of nectar secretion revealed a pocket‐like structure whose opening was surrounded by modified stomatal guard cells. The EFN droplets were viscous and up to 50% of the total weight was sugars, 97% of which was sucrose in the five varieties of B. juncea examined. Threonine, glutamine, arginine and glutamate were the most abundant amino acids. EFN droplets also contained glucosinolates, mainly gluconapin and sinigrin. Nectar secretion was increased when the plants were damaged by chewing above‐ and belowground herbivores and sap‐sucking aphids. Parasitoids of each herbivore species were tested for their preference, of which three parasitoids preferred EFN and sucrose solutions over water. Moreover, the survival and fecundity of parasitoids were positively affected by feeding on EFN. We conclude that EFN production in B. juncea may contribute to the indirect defence of this plant species.  相似文献   

6.
外引植物如何和当地生物建立相互关系是入侵生物学和进化生物学关注的关键科学问题.本实验以西双版纳当地自然分布的长叶西番莲(Passiflora siamica)和近年从南美新引种的红花两番莲(P.coccinea)为材料,探讨两种西番莲植物-蚂蚁-植食昆虫间相互关系系统对变化响应的差异.结果表明,共有24种蚂蚁取食花外蜜液,利用两种西番莲的蚂蚁数量没有显著差异(t=1.30,P=0.20),但在种类组成上存在显著差异(χ~2=14.76,df=4,P<0.01).植食昆虫多为蜗牛、螽斯、鳞翅目幼虫等广适性昆虫.去除蚂蚁处理均未对两种西番莲植物的平均叶面积损失造成显著影响.该研究表明两种两番莲的花外蜜腺-蚂蚁-广适性昆虫的相互作用系统对变化的响应没有显著差异,而与专食性昆虫相互作用系统对变化的响应的差异则有待进一步研究.  相似文献   

7.
Ruhren  Scott 《Plant Ecology》2003,166(2):189-198
There are many examples of mutualistic interactions between ants and plants bearing extrafloral nectaries (EFN). The annual legume Chamaecrista nictitans (Caesalpineaceae) secretes nectar from EFN, specialized structures that attract ants, spiders, and other arthropods. The effects of manipulated C. nictitans patch size and location on plant-ant interactions were tested. Defense from herbivores was not detected; plants with ants did not set significantly more fruit or seed than plants with ants excluded. On the contrary, in one year, plants without ants set more fruit and seed than C. nictitans with ants. The cause of this was not determined. Furthermore, insect herbivore damage was low during three years of observations. Sennius cruentatus (Bruchidae), a specialist seed predator beetle, escaped ant defense despite the presence of numerous ants. Beetle progeny are protected during development by living inside maturing C. nictitans fruit and preventing fruits from dehiscing before emerging as adults. Although ants reduced percent of infestation in 1995, the total number of S. cruentatus per plant was not affected by ants in years of infestation. Overall, larger experimental C. nictitans patches attracted more ants, parasitoid wasps, and percent infestation by S. cruentatus while insect herbivores declined with increasing patch size. Location of patches within fields, however, did not affect numbers of arthropod visitors. Similar to manipulated populations, very little insect herbivory occurred in four reference populations. In contrast to the experimental populations, no S. cruentatus were recovered in reference populations of C. nictitans. Herbivory by insects may not always depress seed set by C. nictitans or may not exceed a threshold level. Thus, herbivory-reduction by ants may not have been detectable in these results. Seed predation may be more influential on C. nictitans reproduction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
We directly evaluated the role of extrafloral nectaries (EFN) in ant attraction and herbivore exclusion by experimental removal of EFN in the laboratory. When EFN of Vicia faba Linnaeus (Leguminosae) were artificially removed, the number of workers of Tetramorium tsushimae Emery (Hymenoptera: Formicidae) visiting the plant decreased, and the efficiency of herbivore exclusion by ants also decreased. Herbivore exclusion by ants was mostly ineffective on a plant when less than four workers visited the plant, but when more than four workers visited, the time a herbivore resided on the plant decreased rapidly with increasing numbers of visiting ants. Therefore, the efficiency of herbivore exclusion from a plant is determined by the number of ants visiting, and EFN play an important role in ant attraction.  相似文献   

9.
Piovia-Scott J 《Oecologia》2011,166(2):411-420
Protective ant–plant mutualisms—where plants provide food or shelter to ants and ants protect the plants from herbivores—are a common feature in many ecological communities, but few studies have examined the effect of disturbance on these interactions. Disturbance may affect the relationship between plants and their associated ant mutualists by increasing the plants’ susceptibility to herbivores, changing the amount of reward provided for the ants, and altering the abundance of ants and other predators. Pruning was used to simulate the damage to buttonwood mangrove (Conocarpus erectus) caused by hurricanes. Pruned plants grew faster than unpruned plants, produced lower levels of physical anti-herbivore defenses (trichomes, toughness), and higher levels of chemical defenses (tannins) and extrafloral nectaries. Thus, simulated hurricane damage increased plant growth and the amount of reward provided to ant mutualists, but did not have consistent effects on other anti-herbivore defenses. Both herbivores and ants increased in abundance on pruned plants, indicating that the effects of simulated hurricane damage on plant traits were propagated to higher trophic levels. Ant-exclusion led to higher leaf damage on both pruned and upruned plants. The effect of ant-exclusion did not differ between pruned and unpruned plants, despite the fact that pruned plants had higher ant and herbivore densities, produced more extrafloral nectaries, and had fewer physical defenses. Another common predator, clubionid spiders, increased in abundance on pruned plants from which ants had been excluded. I suggest that compensatory predation by these spiders diminished the effect of ant-exclusion on pruned plants.  相似文献   

10.
In this study, we evaluate the temporal variation in extrafloral nectaries (EFNs) secretion in different ontogenic stages of Alibertia verrucosa (Rubiaceae) fruits in a Neotropical savanna. We observe greater nectar secretion rate in fruits of intermediate size compared with young or ripe fruit, indicating that they are possibly more protected by ants. In addition, the nectar secretion was higher at night, a pattern that could be associated with an increase of herbivore pressure and water stress during the daylight hours. In fact, due to the high temperature and low humidity during the day in savannas, most herbivores display strong nocturnal activity, and plants can avoid nectar secretion in this period. Our results indicate that A. verrucosa can change the ants' attraction according to EFN secretion during the ontogenic stages of the fruits, probably secreting more nectar when the biotic defense are more necessary for the protection of the fruits and the plant as a whole.  相似文献   

11.
Background and Aims Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies.Methods In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored.Key Results Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent.Conclusions The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence.  相似文献   

12.
Stryphnodendron adstringens is a common Cerrado tree that possesses extrafloral nectaries (EFNs) on its leaves, which are located at the base and apex of the rachis and along the secondary veins. The position of EFNs and their nectar production can be affected by defense strategies because plant organs possess different values and herbivory vulnerability. Here we aimed to elucidate anatomy, histochemistry, nectar composition and EFN number on leaves of S. adstringens in the light of the optimal defense hypothesis. We found a convergence on anatomy and histochemical characterization because the three studied types of EFNs have epidermis, secretory parenchyma and vascular tissue, showing phenolic compounds and polysaccharides in the secretory parenchyma cells. The nectar contained glucose, fructose and sucrose, which attract ants of the Camponotus and Cephalotes genus. We found differences in the number of EFNs along the secondary veins and in the nectar composition between EFNs located at the base and apex of the rachis of the leaf. The number of EFNs on the secondary veins increases from the base to the apex, suggesting a strategy to induce ant patrolling over the entire leaf region. EFNs at the base secreted more nectar, which should be related to the protection of the leaf base, which is the part most vulnerable to herbivore attack and the most valued organ. We concluded that EFNs of S. adstringens are anti‐herbivore defenses whose pattern matches the predictions of the optimal defense hypothesis.  相似文献   

13.
Extrafloral nectar (EFN) plays an important role as plant indirect defence through the attraction of defending ants. Like all rewards produced in the context of a mutualism, however, EFN is in danger of being exploited by non-ant consumers that do not defend the plant against herbivores. Here we asked whether plants, by investing more in EFN, can improve their indirect defence, or rather increase the risk of losing this investment to EFN thieves. We used the obligate plant-ant Acacia-Pseudomyrmex system and examined experimentally in the field during the dry and the rainy seasons how variations in EFN secretion are related to (i) ant activity, to (ii) the ant-mediated defence against herbivores and (iii) the exploitation of EFN by non-ant consumers. Extrafloral investment enhanced ant recruitment and was positively related to the ant mediated defence against herbivores. The ant-mediated protection from exploiters also increased in proportion to the nectar sugar concentration. Although the daily peak of EFN production coincided with the highest activity of EFN thieves, Pseudomyrmex ferrugineus ants protected this resource effectively from exploiters. Nevertheless, the defensive effects by ants differed among seasons. During the dry season, plants grew slower and secreted more EFN than in the rainy season, and thus, experienced a higher level of ant-mediated indirect defence. Our results show that an increased plant investment in an indirect defence trait can improve the resulting defensive service against both herbivores and exploiters. EFN secretion by obligate ant-plants represents a defensive trait for which the level of investment correlates positively with the beneficial effects obtained.  相似文献   

14.
During introduction, invasive plants can be released from specialist herbivores, but may retain generalist herbivores and encounter novel enemies. For fast-growing invasive plants, tolerance of herbivory via compensatory regrowth may be an important defense against generalist herbivory, but it is unclear whether tolerance responses are specifically induced by different herbivores and whether specificity differs among native and invasive plant populations. We conducted a greenhouse experiment to examine the variation among native and invasive populations of Chinese tallow tree, Triadica sebifera, in their specificity of tolerance responses to herbivores by exposing plants to herbivory from either one of two generalist caterpillars occurring in the introduced range of Triadica. Simultaneously, we measured the specificity of another defensive trait, extrafloral nectar (EFN) production, to detect potential tradeoffs between resistance and tolerance of herbivores. Invasive populations had higher aboveground biomass tolerance than native populations, and responded non-specifically to either herbivore, while native populations had significantly different and specific aboveground biomass responses to the two herbivores. Both caterpillar species similarly induced EFN in native and invasive populations. Plant tolerance and EFN were positively correlated or had no relationship and biomass in control and herbivore-damaged plants was positively correlated, suggesting little costs of tolerance. Relationships among these vegetative traits depended on herbivore type, suggesting that some defense traits may have positive associations with growth-related processes that are differently induced by herbivores. Importantly, loss of specificity in invasive populations indicates subtle evolutionary changes in defenses in invasive plants that may relate to and enhance their invasive success.  相似文献   

15.
Although induced defenses are widespread in nature, and a potentially important strategy used by invasive plants, it is unclear how induced defenses vary among populations and whether the intensity and duration of induced defenses depends on herbivore type. For invasive plants, low herbivore loads in their introduced ranges can lead to differences in herbivore defense compared to their native ranges, but we currently know little about how induced defenses vary among native and invasive populations. We conducted a greenhouse experiment to examine variation in one type of induced defense, extrafloral nectar (EFN) production, among native and invasive populations of Chinese tallow tree, Triadica sebifera. We experimentally manipulated herbivory from an exotic generalist scale insect, a native generalist caterpillar, both herbivores, or neither and then examined EFN production by Triadica. Damage from leaf-chewing caterpillars resulted in strongly induced EFN in both native and invasive populations while damage from phloem-feeding scales did not. Extrafloral nectar production and dissolved solute content peaked 4 days after caterpillar herbivory for both native and invasive populations. Number and proportion of leaves producing EFN, EFN volume and concentration of dissolved solutes were similar among native and invasive populations. These results suggest that selection for indirect defenses may be different than selection for other defenses in the introduced ranges of invasive plants, as constitutive and induced EFN production is retained in invasive populations.  相似文献   

16.
Sambucus javanica is a perennial herb with extrafloral nectaries (EFNs) on its inflorescences. To explore the ecological functions of EFNs, a factorial combination experiment of ant (access or exclusion) and EFNs (with or without) at the plant level was created in two populations. The role of EFNs in the attraction of ants and flying pollinators, the defensive role of ants against foliar herbivores, the effects of ants on pollinator visitation and the effects of ant–pollinator interactions on fruit production in one or both populations were assessed. Ants were common on the ant-access plants with EFNs, but absent from the ant-access plants without EFNs. Foliar herbivory was independent of ant and EFN treatments and their interactions. The visitation frequency of flying pollinators (honeybees and syrphid flies) and fruit set were significantly higher for plants with EFNs than plants without EFNs, but were not affected by ant treatments or their interactions with EFN treatments. These results suggest that EFNs in S. javanica attracted both ants and flying pollinators, but ants did not present a defensive role against herbivores, did not deter flying pollinators from visiting inflorescences and had no effects on fruit production. In addition, ants were not significant pollen vectors.  相似文献   

17.
The pioneer tree Macaranga in SE Asia has developed manyfold associations with ants. The genus comprises all stages of interaction with ants, from facultative relationships to obligate myrmecophytes. Only myrmecophytic Macaranga offer nesting space for ants and are associated with a specific ant partner. The nonmyrmecophytic species are visited by a variety of different ant species which are attracted by extrafloral nectaries (EFN) and food bodies. Transitional Macaranga species like M. hosei are colonized later in their development due to their stem structure. Before the colonization by their specific Crematogaster partner the young plants are visited by different ant species attracted by EFN. These nectaries are reduced and food body production starts as soon as colonization becomes possible. We demonstrated earlier that obligate ant partners can protect their Macaranga plants against herbivore damage and vine cover. In this study we focused on nonspecific interactions and studied M. tanarius and M. hosei, representing a non-myrmecophyte and a transitional species respectively. In ant exclusion experiments both M. tanarius and M. hosei suffered significantly higher mean leaf damage than controls, 37% versus 6% in M. hosei, 16% versus 7% in M. tanarius. M. tanarius offers both EFN and food bodies so that tests for different effects of these two food rewards could be conducted. Plants with food bodies removed but with EFN remaining had the lowest mean increase of herbivore damage of all experimental groups. Main herbivores on M. hosei were mites and caterpillars. Many M. tanarius plants were infested by a shootborer. Both Macaranga species were visited by various ant species, Crematogaster spp. being the most abundant. We found no evidence for any specific relationships. The results of this study strongly support the hypothesis that non-specific, facultative associations with ants can be advantageous for Macaranga plants. Food bodies appear to have lower attractive value for opportunistic ants than EFN and may require a specific dietary adaptation. This is also indicated by the fact that food body production in the transitional M. hosei does not start before stem structure allows a colonization by the obligate Crematogaster species. M. hosei thus benefits from facultative association with a variety of ants until it produces its first domatia and can be colonized by its obligate mutualist.  相似文献   

18.
Herbivory is an ecological process that is known to generate different patterns of selection on defensive plant traits across populations. Studies on this topic could greatly benefit from the general framework of the Geographic Mosaic Theory of Coevolution (GMT). Here, we hypothesize that herbivory represents a strong pressure for extrafloral nectary (EFN) bearing plants, with differences in herbivore and ant visitor assemblages leading to different evolutionary pressures among localities and ultimately to differences in EFN abundance and function. In this study, we investigate this hypothesis by analyzing 10 populations of Anemopaegma album (30 individuals per population) distributed through ca. 600 km of Neotropical savanna and covering most of the geographic range of this plant species. A common garden experiment revealed a phenotypic differentiation in EFN abundance, in which field and experimental plants showed a similar pattern of EFN variation among populations. We also did not find significant correlations between EFN traits and ant abundance, herbivory and plant performance across localities. Instead, a more complex pattern of ant–EFN variation, a geographic mosaic, emerged throughout the geographical range of A. album. We modeled the functional relationship between EFNs and ant traits across ant species and extended this phenotypic interface to characterize local situations of phenotypic matching and mismatching at the population level. Two distinct types of phenotypic matching emerged throughout populations: (1) a population with smaller ants (Crematogaster crinosa) matched with low abundance of EFNs; and (2) seven populations with bigger ants (Camponotus species) matched with higher EFN abundances. Three matched populations showed the highest plant performance and narrower variance of EFN abundance, representing potential plant evolutionary hotspots. Cases of mismatched and matched populations with the lowest performance were associated with abundant and highly detrimental herbivores. Our findings provide insights on the ecology and evolution of plant–ant guarding systems, and suggest new directions to research on facultative mutualistic interactions at wide geographic scales.  相似文献   

19.
In protection mutualisms, one mutualist defends its partner against a natural enemy in exchange for a reward, usually food or shelter. For both partners, the costs and benefits of these interactions often vary considerably in space because the outcome (positive, negative or neutral) depends on the local abundance of at least three species: the protector, the beneficiary of protection and the beneficiary's natural enemy. In Gossypium thurberi (wild cotton), ants benefit nutritionally from the plant's extrafloral nectaries and guard plants from herbivores. Experimentally altering the availability of both ants and extrafloral nectar in three populations demonstrated that the mutualism is facultative, depending, in part, on the abundance of ants and the level of herbivore damage. The species composition of ants and a parasitic alga that clogs extrafloral nectaries were also implicated in altering the outcome of plant-ant interactions. Furthermore, experimental treatments that excluded ants (the putative selective agents) in combination with phenotypic selection analyses revealed that selection on extrafloral nectary traits was mediated by ants and, importantly, varied across populations. This work is some of the first to manipulate interactions experimentally across multiple sites and thereby document that geographically variable selection, mediated by a mutualist, can shape the evolution of plant traits.  相似文献   

20.
The present study examined whether or not coexisting congeneric plant species have different defense strategies against herbivores, and the intensity of defense changes ontogenetically. We focused on nine myrmecophytic Macaranga species and estimated the intensity of non-biotic and biotic defense by the degree of leaf damage in ant-free and ant-occupied plants, respectively. Ant colonization of myrmecophytic Macaranga species occurred in the early stage of plant development (5–50 cm-tall seedlings). Following the colonization, damage by leaf eaters was minimized and stable during the ontogenetic development of the host plants due to protection by ants. In ant-free trees, however, herbivore damage was immense in seedlings and decreased as trees grew. Interspecific comparison of leaf damage and herbivore fauna supported that coexisting congeneric plants differ in their types of non-biotic (chemical/structural) defense: without ant protection, Macaranga beccariana, for example, was somewhat resistant to leaf eaters but susceptible to gall-makers, Macaranga trachyphylla was heavily infested by generalist leaf eaters, and Macaranga winkleri was exploited by ant-predatory birds. Despite these variations in chemical/structural defense, ant-colonized plants were generally well defended by ants against all kinds of herbivores. This suggests that the individual host-specific ant mutualists are well adapted to deter the chemically or structurally adapted herbivores. These results imply that in the history of diversification in the Macaranga–ant–herbivore system, a sequence of mutual counter adaptation took place not only between plants and herbivores but also between ants and herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号